Int J Comput Vis (2013) 104:1-14
DOI 10.1007/s11263-013-0611-6

Linearized Alternating Direction Method with Adaptive
Penalty and Warm Starts for Fast Solving Transform Invariant

Low-Rank Textures

Xiang Ren - Zhouchen Lin

Received: 26 May 2012 / Accepted: 6 January 2013 / Published online: 24 January 2013

© Springer Science+Business Media New York 2013

Abstract Transform invariant low-rank textures (TILT)isa
novel and powerful tool that can effectively rectify arich class
of low-rank textures in 3D scenes from 2D images despite
significant deformation and corruption. The existing algo-
rithm for solving TILT is based on the alternating direction
method. It suffers from high computational cost and is not
theoretically guaranteed to converge to a correct solution to
the inner loop. In this paper, we propose a novel algorithm to
speed up solving TILT, with guaranteed convergence for the
inner loop. Our method is based on the recently proposed lin-
earized alternating direction method with adaptive penalty.
To further reduce computation, warm starts are also intro-
duced to initialize the variables better and cut the cost on sin-
gular value decomposition. Extensive experimental results
on both synthetic and real data demonstrate that this new
algorithm works much more efficiently and robustly than the
existing algorithm. It could be at least five times faster than
the previous method.

Keywords Transform invariant low-rank texutres -
Linearized alternating direction method with adaptive
penalty - Warm start - Singular value decomposition

X. Ren

Department of Computer Science, University of Illinois at
Urbana-champaign, Urbana, IL 61801, USA

e-mail: xren7 @illinois.edu

Z. Lin ()

Key Laboratory of Machine Perception (MOE), School of EECS,
Peking University, Beijing 100871, People’s Republic of China
e-mail: zlin@pku.edu.cn

1 Introduction

Extracting invariants in images is a fundamental problem
in computer vision. It is key to many vision tasks, such as
3D reconstruction, object recognition, and scene understand-
ing. Most of the existing methods start from low level local
features, such as SIFT points (Schindler et al. 2008), cor-
ners, edges, and small windows, which are inaccurate and
unrobust. Recently, Zhang et al. (2012b) proposed a holis-
tic method called the transform invariant low-rank textures
(TILT) that can recover the deformation of a relatively large
image patch so that the underlying textures become regular
(see Figs. la, b). This method utilizes the global structure
in the image patch, e.g. the regularity, such as symmetry,
rectilinearity and repetition, that can be measured by low
rankness, rather than the low level local features, hence can
be very robust to significant deformation and corruption.

TILT has been applied to many vision tasks and been
extended for many computer vision applications. For exam-
ple, Zhang et al. (2011b) used TILT to correct lens distortion
and do camera calibration, without detecting feature points
and straight lines. Zhang et al. (2012a) applied TILT to rec-
tify texts in natural scenes to improve text recognition on
mobile phones. Zhao and Quan (2011)) proposed a method
for detecting translational symmetry using TILT. Zhang et al.
(2011a) further generalized the transforms allowed by TILT
to polynomially parameterized ones so that the shape and
pose of low rank textures on generalized cylindrical surfaces
can be recovered. Mobabhi et al. (2011) used the low rank tex-
tures recovered by TILT as the building block for modeling
urban scenes and reconstructing the 3D structure.

TILT was inspired by Robust Alignment by Sparse and
Low-rank decomposition (RASL) (Peng et al. 2010), which
has been successfully applied to align faces and video frames.
TILT and RASL share the same mathematical model, namely

@ Springer

Int J Comput Vis (2013) 104:1-14

[1]
N R

|
l

O)W
Rl B OElR
e BB
I R

N

|l Eml e

Fig. 1 TILT for rectifying textures. Left column The original image
patches, specified by red rectangles, and the transforms found by TILT,
indicated by green quadrilaterals. Right column Rectified textures using
the transforms found. Top row Results by our method for solving TILT.
Bottom row Results by the original method in Zhang et al. (2012b)
for solving TILT. The original method does not converge to a correct
solution. (Images in this paper are best viewed on screen!)

1
0.9 |
0.8
0.7
0.6
0.5
0.4
0.3 |
0.2 | !

01 R
R !
o ‘ ‘ ‘ ‘ ; ‘ ‘

Rotation (6)

Skew (t)

Fig. 2 Range of convergence for affine transform. The x-axis and
y-axis stand for the rotation angle 6 and the skew value ¢ in an affine
transform, respectively. Regions inside the curves are affine transforms
that are successfully recovered in all trials. The blue dashed curve
and the red solid curve are the boundaries of the parameters of affine
transforms that can be successfully recovered by ADM and LADMAP,
respectively

after an appropriate transform a data matrix can be decom-
posed into a low rank component and a sparse one (see (1)).
The only difference between TILT and RASL is that the data
matrix in TILT is an image patch, while that in RASL is mul-
tiple images or frames, each being a column of the matrix.
So in the sequel, we just focus on TILT.

The existing most efficient solver for TILT is based on the
alternating direction method (ADM) (Zhang et al. 2012b; Lin
et al. 2009). It has been adopted by all the researchers that
use TILT for their problems. However, it still requires mul-
tiple seconds to rectify a small sized image patch, making
the applications of TILT far from being interactive. Another
critical drawback of the existing solver is that it was derived
out of intuition by simply mimicing the ADM for the robust
principal component analysis (RPCA) problem presented in
Linetal. (2009). In the literature of ADM in the Gauss-Seidel

@ Springer

Fig. 3 Visual comparison between the results by ADM and LADMAP.
First and second columns Rectification results by ADM. Third and
fourth columns Results by LADMAP. First and third columns Rectified
regions of interest. Second and fourth columns The initial transform
(illustrated by red rectangles which are manually prescribed) and the
computed transform (illustrated by green quadrilaterals)

fashion, almost all the convergence results were proven under
the case of two variables, while the inner loop of TILT prob-
lem (see (3)) has three variables. Hence the convergence of
ADM for the inner loop of TILT is not theoretically guar-
anteed. In our experiments, we did find many examples that
the existing solver for TILT failed to produce a correct solu-
tion (e.g., see Figs. 1c, d, 2, 3 and 4). Consequently, to make
the algorithm workable, its parameters have to be carefully
tuned in order to trade off between convergence speed and
robustness at the best (c.f. last paragraph of Sect. 2.2), which
is difficult for different applications. The above drawbacks
of the existing algorithm motivated us to design a more effi-
cient algorithm for TILT, with a theoretical guarantee on the
convergence of its inner loop.

We observe that the original method does not always con-
verge to a correct solution because the inner loop of the orig-
inal TILT problem have three variables. This motivates us
to cancel one of the variables and solve an equivalent TILT
problem that has only two variables in its inner loop. Then
using the recently developed linearized alternating direction
method with adaptive penalty (LADMAP) (Lin et al. 2011)
and some good properties of the annihilation matrix, the inner
loop can be solved efficiently and with a convergence guar-
antee. We further speed up the computation by warm starts in

Int J Comput Vis (2013) 104:1-14

(a)

1.2
1 = = = Original TILT algorithm
——— Our new approach
I 0.8
©
o
@ 06
0]
Q
o
>
D 04r
0.2
0 ! ! ! ! ! ! L !
0 01 02 03 04 05 06 07 08 09 1

Corruption Rate

(b)

Fig. 4 Robustness of ADM and LADMAP under different levels of corruption. (a) Sample textures. (b) Success rates of ADM and LADMAP

under different levels of corruption

two ways. First, we initialize the variables in the inner loop
by their values when they exit the previous inner loop. This
gives the variables very good initial values. So the number
of iterations in the inner loop can be greatly cut. Second,
as singular value decomposition (SVD) is the major bot-
tleneck of computation, we also solve SVD by warm start,
where the singular vectors and singular values are initial-
ized as those in the previous iteration. The update of SVD
is also based on a recently developed technique of optimiza-
tion with orthogonality constraints (Wen and Yin 2013). As
a result, our new algorithm, called LADMAP with warm
starts (LADMAP+WS), can be at least five times faster than
the original method and has a convergence guarantee for the
inner loop.

The rest of this paper is organized as follows. In Sect. 2 we
review the TILT problem and the ADM method for solving
it. In Sect. 3 we introduce the LADMAP method for solving
the inner loop of TILT and the variable warm start technique.
In Sect. 4, we present some important details of applying
LADMAP to TILT so that the computations can be made
efficient. In Sect. 5, we show the warm start technique to
compute SVD. Experimental results on both simulated and
real data are reported in Sect. 6. Finally, we conclude our
paper in Sect. 7.

2 Transform Invariant Low-rank Textures

In this section, we first briefly review the mathematical model
of TILT. Then we introduce its corresponding convex surro-
gate and the existing ADM based method for solving it.

2.1 Mathematical Model

Consider a 2D texture as a matrix A € R”*" It is called
a low-rank texture if » < min(m, n), where r = rank(A).
However, a real texture image is hardly an ideal low-rank
texture, mainly due to two factors (1) it undergoes a defor-
mation, e.g., a perspective transform from 3D scene to 2D
image; (2) it may be subject to many types of corruption,
such as noise and occlusion.

So if we could rectify a deformed texture D with a proper
inverse transform 7 and then remove the corruptions E, then
the resulting texture A will be low rank. This inspires the
following mathematical model for TILT (Zhang et al. 2012b):

/{nén rank(A) + A||E|lo, s.t.Dot=A+E, (1)
W L,T

where 7 : R?> — R? belongs to a certain group of transforms,
e.g., affine transforms, perspective transforms, and general
cylindrical transforms (Zhang et al. 2011a), || E ||o denotes the
number of non-zero entries in E, and A > 0 is a weighting
parameter which trades off the rank of the underlying texture
and the sparsity of the corruption.

2.2 The Existing Method for Solving TILT

The above problem (1) is not directly tractable, because the
rank of a matrix and the £o-norm are discrete and noncon-
vex, thus solving the optimization problem is NP-hard. As a
common practice, rank and £y-norm could be replaced by the
nuclear norm (Candés et al. 2011) (the sum of the singular
values) and £;-norm (Donoho 2004) (the sum of the absolute

@ Springer

Int J Comput Vis (2013) 104:1-14

values of entries), respectively. This yields the following opti-
mization problem with a convex objective function (Zhang
et al. 2012b):

min ||Allx + A|E|1, st.Dot=A+E. 2)
AE,T

The above problem is not a convex program as the constraint
is nonconvex. So Zhang et al. (2012b) proposed to linearize
D o 7 at the previous 7/ as Do (! + At) @ Dot + JAT
and determine the increment At in the transform by solving

|All« +AIE|1, st.Dot'+JAt=A+E, (3)

min
AE,AT
where J is the the Jacobian: derivative of the image with
respect to the transform parameters. J is full column rank.
We call the iterative procedure to solve (3) the inner loop
for solving TILT. When the increment At is computed, the
transform is updated as

it = ¢ + AT,

In the following, when we are focused on the inner loop,
for simplicity we may omit the superscripts i + 1 or i of
variables. This should not cause ambiguity by referring to the
context.

Zhang et al. (2012b) proposed an ADM based method
to solve (3). It is to minimize the augmented Lagrangian
function of problem (3):

LA E, AT, Y, 1) = ||All« + AE|L +(Y, Dot + JAT
—A—E)+%||DOI+JAT
—A—E|.

with respect to the unknown variables alternately (hence the
name ADM), where Y is the Lagrange multiplier, (A, B) =
tr(AT B) is the inner product, | - || ¢ is the Frobenius norm,
and p > 0 is the penalty parameter. The ADM in Zhang et
al. (2012b) goes as follows:

Agq1 = argmin L(A, Ey, Aty, Yi, i), 4
A

Epr1 = argmin L(Agy1, E, At, Yi, g), (5)
E

Atpyy = argmin L(Agq 1, Egqr, AT, Y, k), (6)
AT

Yiv1r = Yi + k(D ot + JAT} 41 — Ajt1 — Ext1),
k41 = Plbk,

where p > 1 is a constant. All subproblems (4)—(6) have
closed form solutions (Zhang et al. 2012b) (cf. (24) and (26)).
More complete details of the algorithm can be found as Algo-
rithm 1 in Zhang et al. (2012b).

Although the above ADM in the Gauss-Seidel fashion
empirically works well in most cases, there is no theoretical
guarantee on its convergence. There are two factors that may
result in its non-convergence. Namely, all the previous con-
vergence results of ADM in the Gauss-Seidel fashion were

@ Springer

proven under the conditions that the number of unknown
variables are only two' and the penalty parameter is upper
bounded. In contrast, the inner loop of TILT has three vari-
ables and its penalty parameter is not upper bounded. As one
will see, the naive ADM algorithm above may not produce
a correct solution. In particular, the choice of p is critical to
influence the number of iterations in the inner loop and the
quality of solution. If p is small, there will be a lot of iterations
but the solution is very likely to be correct. If p is large, the
number of iterations is small but an incorrect solution may
be produced. So one has to tune p very carefully so that the
number of iterations and the quality of solution can be best
traded off. This is difficult if the textures are different. So in
this paper we aim at addressing both the computation speed
and the convergence issue of the inner loop in the original
method.

3 Solving the Inner Loop by LADMAP

In this section, we show how to apply a recently developed
method LADMAP to solve the inner loop of TILT. We first
reformulate (3) so that At is canceled and hence LADMAP
can be applied.

3.1 Sketch of LADMAP

LADMAP (Lin et al. 2011) aims at solving the following
type of convex programs:

121;1 f&X) +gy), st AX) +B(y) =c, (N

where X, y and ¢ could be either vectors or matrices, f and
g are convex functions, and .4 and B are linear mappings.

If the original ADM is applied to (7), x and y are updated
by minimizing the augmented Lagrangian function of (7),
resulting in the following updating scheme:

X1 =argmin £ 0+ JAO+B0) —e+vi /il (8)

. Mk
Vi1 =arg mymg(y)+7||B(y>+A(xk+1>—c+yk/uk||2,

9
Vi1 = Yk + ik [AX1) +B(ye41) —c¢l, (10

where y is the Lagrange multiplier and u is the penalty para-
meter. In many problems, f and g are vector or matrix norms,
and the subproblems (8) and (9) have closed-form solutions
when A and /5 are identity mappings (Cai et al. 2010; Donoho

! For the case of more than two variables, ADM with some appropriate
modifications, such as introducing a dummy variable and treating all
the original variables as a super block (Bertsekas and Tsitsiklis 1997)
or introducing a Gaussian back substitution (He et al. 2012), can be
proven to converge.

Int J Comput Vis (2013) 104:1-14

1995; Liu et al. 2010; Yang and Zhang 2011), hence easily
solvable. However, when A4 and B are not identity mappings,
subproblems (8) and (9) may not be easy to solve. So Lin et
al. (2011) proposed linearizing the quadratic penalty term in
the augmented Lagrangian function and adding a proximal
term in (8) and (9) for updating x and y, resulting in the
following updating scheme:

X1 = argmin £ (%) + S5 x = xg
+ A (i ix (AR +Bye) —) / Guena) 17, (1)
. Mk B
Yi+1 = argmymg(y)+ > ly — vy«
+B* (yr+ iur (A1) +Byr) =)/ Guens) I

12)

and A is still updated as (10), where n4 > 0 and np > 0 are
some parameters. Then one can see the new subproblems (11)
and (12) can have closed-form solutions again when f and
g are norms. Lin et al. also proposed a strategy to adaptively
update the penalty parameter x> and proved that when
is non-decreasing and upper bounded, and 14 > A% and
ng > B2, (Xk, Yi) converges to an optimal solution to
(7), where || A| and || B]| are the operator norms of 4 and
B, respectively. For more details, please refer to Lin et al.
(2011).

3.2 Reformulating the Inner Loop of TILT

As almost all existing convergence results of ADM or lin-
earized ADM in the Gauss-Seidel fashion are proven in the
case of two variables, while the inner loop of TILT has three
variables, we aim at canceling one variable by taking advan-
tage of the special structure of the problem.

We notice that At does not appear in the objective function
of (3) and it is easy to see that if (A*, E*) is an optimal
solution, then the optimal At must be

At =T UIT(A*+ E* — Do), (13)

as (A*, E*, At*) must satisfy the linear constraint in (3). So
we have to find an optimization problem to obtain (A*, E*).

By plugging (13) into the linear constraint in (3), one can
see that (A*, E*) must satisfy the following constraint:

JTA+JrE=J Do), (14)

2 Please refer to (20) and (23). For succinctness, we do not repeat it
here. Disregarding the adaptive penalty, LADMAP is a special case of
the generalized ADM (Deng and Yin 2012) and is closely related to
the predictor corrector proximal multiplier method (Chen and Teboulle
1994) which updates variables parallelly rather than alternately.

where J© =1 — J(JTJ)™'JT and I is the identity matrix.
So we have an optimization problem for (A*, E*):

min [|A+AIEl st JYA+JrE=J Do1). (15)

We can prove the following proposition.

Proposition 1 Problems (3) and (15) have the same optimal
solution (A*, E*).

Proof We only have to prove that the constraints for (A, E)
do not change. The constraints for (A, E) in (3) and (15) can
be written as

St ={(A, E)JAAt suchthat Dot + JAT = A+ E},
and
Sr={(A, E)lJ*A+ J E = JH(D o 1)),

respectively. If (A, E) € Sy, then we can multiply J - to both
sidesof Dot 4+ JAT = A+ E to see that (A, E) € 5.
If (A,E) € Sh,then Dot — A — E € null(J1). Since
null(J+) = span(J), there exists At such that Dot — A
— E =JAt.Thus (A, E) € §;. O

One can easily check that J+ has the following nice prop-
erties:
UHT =gyt and Lt =g+ (16)

Moreover, denote the operator norm of J L as ||JL]l. Then
we have

Proposition 2 ||J | = 1.

Proof From (16) we have (J+)> = JL. So the eigenvalues
) of JL satisfies A2 — A = 0. Thus, the eigenvalues of J L
are either 1 or 0. As J =+ is symmetric, ||J || = 1. m]

Applying LADMAP ((11), (12), and (10)) directly to (15)
(where x, y, and y are A, E, and Y, respectively), with some
algebra we have the following updating scheme:

. Mk
Aj41 = argmin ||A||*+7||A—Mk||%, (17)
A
. Mk 2
Eyy1 = argmin || E|ly + -1 E = Nell7, (18)
E
Yir1 = Yi + uJ " (Ags1 + Exg1 — Do), (19)
k41 = min(max, P - 1k), (20)
where
My = Ax — J > (Ax + Ex — Do T + Yi /1), 21)
Ni = Ex — J Ayt + Ex — Do T+ Yi /), (22)

MUmax is an upper bound of p; and

p0, if g - max (| Ag1 — AxllF,
p= |Exs1 — ExIP)/ITE(Dot)|F < &2, (23)
1, otherwise,

@ Springer

Int J Comput Vis (2013) 104:1-14

in which pg > 11is aconstant and &, > 0 is a small threshold.
Note that in (17)—-(18) we have utilized the properties of J L
in (16) and || J1|| = 1. The updating scheme (20) and (23)
for u comes from the adaptive penalty strategy in LADMAP
(Lin et al. 2011).

The closed form solution to (17) is as follows (Cai et al.
2010):

Agt1 = S% (My), 24
k

where S(-) is the singular value shrinkage operator:
Se(W) = UT(2)V7, (25)

in which US VT is the SVD of W and T,(-) is the scalar
shrinkage operator defined as (Donoho 1995):

T:(x) = sgn(x) max(|x| — ¢, 0).

Subproblem (18) also has a closed form solution as follows
(Yang and Zhang 2011):

Exq1 = Tﬁ (Ni)- (26)

The iterations (17)—(20) stop when the following two condi-
tions are satisfied:

17 (Aks1 + Exs1 — Do DI/ IIT (Do D)llF <1 (27)
and

k- max(|Agr1 — AgllF,
I Ext1 — Exllp)/IT (D o D)l F < e (28)

These two stopping criteria are set based on the KKT con-
ditions of problem (15). Details of the deduction can be found
in Lin et al. (2011).

3.3 Warm Starting Variables in the Inner Loop

Since the number of iterations in the inner loop greatly affects
the efficiency of the whole algorithm, we should provide
good initial values to the variables in the inner loop so that
the number of iterations can be reduced.

The original algorithm initializes A as the input D o T and
E and Y as 0. Such a cold start strategy does not utilize any
information from the previous loop. We observe that solu-
tions from the previous inner loop are good initializations
for next inner loop, because the difference in D o T in suc-
cessive inner loops becomes smaller and smaller. So their
solutions should be close to each other. This motivates us to
use the following warm start strategy for the variables:

AT = AL, EY'=EL, and V[T =YL, (29)

where the subscripts and superscripts are indices of the inner
and outer loops, respectively. The subscripts O and oo stand
for the initial and final values in an inner loop, respectively.

@ Springer

We summarize our LADMAP with variable warm start
(LADMAP+VWS) approach for solving TILT in Algorithm
1. Note that we only change the part of the inner loop. The
rest of the algorithm is inherited from that in Zhang et al.
(2012b).

Algorithm 1 (TILT via LADMAP+VWS)

Input: A rectangular window D € R™*™ in an image, the
initial parameters 70 of the transform, weight parameter
A>0, po >1and ppmax > 0.
Initialize: A° = Do7% E° =0, Y% =0, and i =0.
While not converged Do
Step 1: normalize the image and compute the Jaco-

bian w.r.t. the transform:

DoTl ’L+1<_2(Do¢)]
IDori|F’ ¢ \Docllr/ ¢=r’

Dort" «

Step 2: solve the linearized convex optimization:

min Al AANE]1, st (JF)H(Dort) = (S H(A+E),

with the initial conditions: ASTE = AL BIYY = i
and YSJFI =Y, po>0,k=0:

While (27) or (28) are not satisfied Do

Aitl
S (A;€+1 — (JiIH)L (A L BT _Doqi +#;13/}?1))’
HE
i+
T, (E;jl — (JiF) LAY + B —Dor+ u,;ly,j“)),

. HE) . .
Vi =Y (VAR + B - Do),
Bk+1 = min(pmax, p - pk), where p is given by (23),
k+—k-+1.

End While

Step 3: compute optimal Ar* using Eq. (13), where
A* = AT B = BT,

Step 4: update transform: 70+ = 7% + Ar* § — i+ 1;

End While
Output: converged solution (A*, E*,7*).

4 Implementation Details

In the previous section we introduce the basic ideas of
LADMAP with variable warm start (LADMAP+VWS) algo-
rithm for solving the inner loop of TILT (15). However, there
are still some details that need to be handled carefully so that
the computation can be the most efficient. In this section,
we first show how to compute with J* efficiently, then we
discuss how to modify the algorithm in order to accommo-
date some additional constraints when putting TILT to real
applications.

4.1 Multiplying with J+
In Algorithm 1, J is actually an order-3 tensor (Zhang et

al. 2012b). When computing J is actually arranged into an
mn X p matrix, where m x n is the size of D o T and p

Int J Comput Vis (2013) 104:1-14

is the number of variables to parameterize the transform .
When multiplying J» with a matrix M we actually mean
to rearrange the matrix M into an mn x 1 vector and then
multiply it with J L. However, JL is an mn x mn matrix,
which is huge and often cannot be fit into the memory.
Moreover, the computation cost will be O ((mn)?), which
is also unaffordable. So we cannot form J+ explicitly and
then multiply it with a vectorized matrix. Recall that /- =
I —JJTT)~1JT, we may overcome this difficulty by mul-
tiplying successively:

Jrv=v—7-(JITH . Ty, (30

whose computation cost is only O (pmn). Note that (J7 J)1
isonly a p x p small matrix which can be pre-computed and
saved. So the above strategy is much more efficient in both
memory and computation.

4.2 Initializing Y

In Algorithm 1, we have to multiply (/1)L with three dif-
ferent matrices. If we initialize Yé“ in the subspace spanned
by (Ji+1)L, then Y,i“ is always in the subspace spanned by
(Ji+1L during the iteration. Then thanks to the idempotency
of (Ji*1)L, we have (JH‘I)J-Y,i‘H = Y,ﬁ“ and hence A and
E can be updated as

At — g (A;'(H _ (Ji+1)L(A;‘<+1 + E/i{+1 —Dorth)
Mk

k+1 —
_“k_lyziH)’
Ef =T (E,i“ — (JHY A 4 B — Do)
—M;1Y1f+1).

Then one can see that we only have to multiply (JiT1)+
with two different matrices, A;{H + E,i“ —Dotland Af{ill +
E,';H — Do 7!, because (J"fl)J-(A;;f]‘ + E,'(ﬂ — Dot
is used for updating both Y,éﬂ and A;:rlz This saves one
multiplication of multiplying with (J/+1)L for each iteration.

To combine with the warm start technique, Y should be

initialized as
Yot = (ThHyL. 31)
Because the dual problem of the inner loop (15) is

mgquY, Dot), st |lJ Y2 <1,[J Yl <27,

where || - || 18 the maximum absolute value in a matrix,
we see that the optimal ¥ can be chosen in span(JL).
So constraining Y in span(J+) does not affect the con-
vergence of LADMAP+VWS to the optimal solution. As
Y., € span((J)1), when J*! is close to J7, Yi ™ ~ Y.
So (31) makes good combination of warm starting ¥ and
making ¥ € span(Jl).

4.3 Handling Additional Constraints on ©

Asisdiscussed in Zhang et al. (2012b), additional constraints
should be imposed on t so as to eliminate degenerate or
trivial solutions, e.g., ™ being 0. Typical constrains include
that both the center and area of the rectangle being fixed.
These additional constraints can be formulated as [/ linear
constraints on At (Zhang et al. 2012b):

Q- At =0, (32)

where Q € RI*P.

Following the same idea as that in Sect. 3.2, we aim at
eliminating At with the/ additional constraints. As At needs
to satisfy both the linear constraints in Eq. (32) and that in
problem (3), the overall constraints for At are

J A+FE—-Dort
[Hac [5257] o

Similar to the deductions in Sect. 3.2, we can have an equiv-
alent problem:

Ifl;lilIi_l A« + A E1, st.WA+WE=W(Dort), (34)
where

wll-JUulr+ 0t~ T
L -ouTi+ oot

Matrix W also enjoys a nice property similar to J-:
wWiw=1-JU"7+ 0707, (35)

which can be utilized to reduce the computational cost. More-
over, || W||2 = 1. Then with some algebra LADMAP applied
to the above problem goes as follows:

Ak41 = S1 (M),
3
Ex+1 = T (Ng),
1
Yiv1 = Yi + g - W(Agt1 + Egy1 — D o 1),
Hk+1 = min (:0 © Mk Mmax)a
where
My = Ap — ' WYy — (W W)(Ay + Ex — Do),
Ni = Agpr — 1. WY = (WEW) (A1 + Ex — Do),

and p is still computed as (23).

Thanks to (35), the multiplication of WT W with a vector-
ized matrix can be done similarly as (30). To further reduce
the computational cost, we introduce Y; = WTY;, and ini-
tialize it in span(WT W). Then My, Ny and Y} are computed
as follows:

My = Ay — i 'Y = (WIW)(Ag + Ex — Do),
N = Agsr — 11 Ve = (WTW)(Akgr + Ex — Do 1),
Yiy1 = Vi + - W W)(Agg1 + Expr — Do 1) (36)

@ Springer

Int J Comput Vis (2013) 104:1-14

Again, (WT W) (A1 + Exy1 — Do) is used to update both
My ;1 and Y 1. In this way, the iterations for the inner loop
can be computed very efficiently.

Now the warm start of Y is replaced by that of Y, which
is:

Fit! = [(Wi+1)TWi+l] vi. 37)

Asl < mn, (WITHTwitlisactually very close to (Ji 1)L
So (37) is both a good combination of warm starting ¥ and
making ¥ € span(WT W),

5 Warm Starting for SVD in the Inner Loop

As shown in (24)—(25), to update A we have to compute the
SVD of M. Unlike other low-rank recovery problems (Cai
et al. 2010; Lin et al. 2009; Toh and Yun 2009), partial SVD
cannot be used here. This is because partial SVD is faster than
full SVD only when the rank of Ay 1 is less than min(m, n)/5
(Lin et al. 2009), while when rectifying general textures this
condition is often violated. So computing the full SVD of M
is very costly as its complexity is O (mn min(m, n)). With-
out exaggeration, the efficiency of computing the full SVD
dominates the computing time of solving TILT. So we have
to reduce the computation cost on full SVD as well.

We observe that, except for the first several steps in the
inner loop, the change in M} between two iterations is rel-
atively small. So we may expect that the SVDs of M} and
M;j._1 in two successive iterations may be close to each other.
This naturally inspires us to utilize the SVD of Mj_; to esti-
mate the SVD of M.

To do so, we first formulate the SVD problem as follows:

U*, X2*, V* = argming 5, y F(U, 2, V), (38)
s.t. UTU =1, ¥ is diagonal, and VTV = I,

where F(U, £, V) = %HM —UXVT|Z and M € R™" is
the matrix to be decomposed. Without loss of generality we
may assume m > n. U € R"*" and V € R"*" are columnly
orthonormal and orthogonal matrices, respectively. As we
can negate the columns of U or V, we need not require the
diagonal entries of ¥ to be nonnegative.

5.1 Optimization with Orthogonality Constraints

The usual method to solve a general orthogonality con-
strained optimization problem is to search along the geodesic
of the Stiefel manifold * along the direction of the gradient of
the objective function projected onto the tangent plane of the

3 A Stiefel manifold is a set of columnly orthonormal matrices whose
geodesic distance is induced from the Euclidian distance of its ambient
space.

@ Springer

manifold (Edelman et al. (1999)). This may require SVDs
in order to generate feasible points on the geodesic. Fortu-
nately, Wen and Yin (2013) recently developed a technique
that does not rely on SVDs, making our warm start for SVD
possible.

Denote the unknown variable as X. Suppose the gradient
of the objective function at X is G, then the projection of G
onto the tangent plane of the Stiefel manifold at X is P =
GXT — XGT (Edelman et al. 1999; Wen and Yin 2013).
Instead of parameterizing the geodesic of the Stiefel manifold
along direction P using the exponential function, Wen and
Yin (2013) proposed generating feasible points by the Cayley
transform:

X (1) = C(1)X, where C(z) = (1 n %P)_l (1 - %P) .

It can be verified that X (t) has the following properties:

X (7) is smooth in 7;

(X(t))TX(r) =1,Vt € R, given X'x =1
X(0) = X;

LX(0)=—P.

R

So when 7 > 0 is sufficiently small, X (7) can result in a
smaller objective function value than X.

X (t) could be viewed as reparameterizing the geodesic
with 7, which does not exactly equal to the geodesic distance.
However, when t is small it is very close to the geodesic dis-
tance as it is the length of the two segments enclosing the
geodesic (Wen and Yin (2013)). When computing X (), no
SVD is required. A matrix inversion and some matrix multi-
plications are required instead, which is of much lower cost
than SVD. However, as both matrix multiplication/inversion
and SVD are of the same order of complexity, we have to con-
trol the number of matrix multiplications and inversions, so
that our warm start based method can be faster than directly
computing the full SVD.

5.2 SVD with Warm Start

Now for our SVD problem (38), we can compute the gra-
dient (Gy, Gy, Gy) of the objective function F (U, X, V)
with respect to (U, X, V) and search on a geodesic on the
constraint manifold Cy x Cy x Cy in the gradient direction
for the next best solution, where Cy; is the Stiefel manifold
of all columnly orthonormal m x n matrices, Cy, is the sub-
space of all n x n diagonal matrices, and Cy is the Stiefel
manifold of all n x n orthogonal matrices.

Int J Comput Vis (2013) 104:1-14

We search on the constraint manifold on the following
curve:

U =117 tP - 1 tP U
(t)_(+§ U) (—5 U),

St)=%—1-Ps, (39

Vit)=|1 tP - 1 tP %
(f)—(‘i‘z V) (—5 V),

where Py = GyUT — UG, and Py = Gy VT — VG, are
the projection of Gy and Gy onto the tangent planes of Cy
and Cy at U and V, respectively, and Py = diag(Gy) is
the projection of Gy, onto Cyx. The details of computing the
gradients can be found in Appendix.

Then we may find the optimal #* such that

* = argmin f() = 1M~ UG- 50 VO I3 @0)
t

As f(t) is acomplicated function of 7, the optimal * has to be
found by iteration. This will be costly as many matrix inver-
sions and multiplication will be required. So we choose to
approximate f () by a quadratic function via Taylor expan-
sion:

1
f@~ fO)+ f0)-1+ Ef”(O) 12, (41)

where f/(0) and f”(0) are the first and second order deriv-
atives of f(¢) evaluated at 0, respectively. These two deriv-
atives can be computed efficiently. Details of the deductions
can be found in Appendix. Then we can obtain an approxi-
mated optimal solution 7* = — f'(0)/f” (0) and approximate
the SVD of M as U)X () V (7*)T.

The warm start SVD method is summarized in Algorithm
2.1tis called only when the difference between My and Mj_
is smaller than a pre-defined threshold &;,4.

Algorithm 2 (SVD with Warm Start)

Input: The decomposed matrices Uy_1, X_1 and Vj_q1 of
the SVD of My _;, and a matrix M.
If || My — Mg_1|| < espa (Else do full svd)

Step 0: M = M, U(O) = Uk_1, 2(0) = Yy_1, and
V(0) = Vi_1.

Step 1: compute the projected gradients Py, Py, and
Py of F at U(0), X(0), and V(0) using (42) to (47), respec-
tively.

Step 2: compute f/(0), f”(0), and t* = —f/(0)/f"(0)
using (48) to (49).

Step 3: compute U, = U(t*), X}, = 2(t*), Vi = V(#*)
using (39).
Output: Uy, Yy, and V), as the decomposed matrices in the

Although U (7*)Z (7*)V (7*)T is an approximate SVD of
M, our final goal is to compute the singular value shrinkage
of My, in order to update A1 (see (17), (24) and (25)), not
the SVD of M}, itself. We can show that when M is close
enough to Mj_1, computing the SVD of M} approximately
still produces a highly accurate Ax41. The corner stone of

our proof is the following pseudocontraction property of the
singular value shrinkage operator:

ISe(W1) — Se (W) 1% < [|W) — Wa %
—|I[Se(W1) — Wil — [Se(Wa) — Wal||%,

thanks to Lemma 3.3 of Pierra (1984) and the fact that S, (-) is
the proximal mapping of the nuclear norm (Cai et al. 2010).
Then we have:

ISe(U@HEEHVE)T) — Se (M) Il F
< U EE)VE)T — Ml F
< IUO)ZO)V©O) — Millp = |Mx—1 — MgllF-

Since we switch to our warm start technique for SVD in
the inner loop only when M} is very close to My_1 (i.e.,
|My—1 — M| < &sv4), it is guaranteed that:

IS (U @)V EDT) — Se(Mi)llF < &5va-

Hence our approximate SVD for M still results in a highly
accurate Agy1.

6 Experiments

In this section, we conduct several experiments on both the
inner loop only and the complete TILT problem to evaluate
the performance of our proposed LADMAP with warm starts
method. Numerical experiments on the inner loop only are
conducted by using synthetic data in order to demonstrate
the effectiveness of LADMAP and the warm start for SVD.
For the complete TILT problem, we conduct experiments on
images with simulated and real deformations to further test
the efficiency and robustness of LADMAP and the warm start
techniques. The images we use are from a low-rank textures
data set and a natural images data set, respectively.

The code for the original ADM based method is provided
by the first author of Zhang et al. (2012b). For fair compari-
son, we set the common parameters in all compared methods
the same. All the codes are in MATLAB and the experiments
arerun on a workstation with an Intel Xeon E5540@2.53GHz
CPU and 48 GB memory.

6.1 Numerical Study on the Inner Loop Only

In this section, we use synthetic data to compare the effi-
ciency of the original ADM based algorithm, our LADMAP
based algorithm, and LADMAP with warm start for com-
puting SVD (LADMAP+SVDWS) on the inner loop only.
As this time we only focus on the inner loop, the effec-
tiveness of variable warm start, which requires outer loops,
cannot be shown. We generate D o t and Jacobian J ran-
domly and use them as the input for ADM, LADMAP, and
LADMAP+SVDWS. For fair comparison, we tune the extra

@ Springer

10

Int J Comput Vis (2013) 104:1-14

Table 1 Comparison of the efficiency of algorithms on the inner loop of TILT only

Sizeof Dot ADM LADMAP LADMAP+SVDWS
Time (s) #lteration Objective function Time (s) #lteration Objective function Time (s) #lteration Objective function

10 x 10 1.98E-05 49.2 6.4836 7.49E-06 20.4 6.4814 8.76E-06 20.9 6.4815

50 x 50 0.00112 51.5 76.6508 0.00054 212 76.6468 0.00056 22.2 76.6585

100 x 100 0.00538 51.1 217.001 0.00252 222 216.985 0.00225 229 216.987

300 x 300 0.1859 50 1123.66 0.10501 21.9 1123.67 0.08792 229 1123.70

500 x 500 1.3802 50 2420.41 0.6574 22 2419.63 0.5343 21 2420.28

1000 x 1000 53.0936 50 6844.82 25.8139 23 6844.14 18.5953 23 6845.32

The time costs, numbers of iterations, and optimal objective function values are averaged over ten trials on random data

parameters &> and pg in LADMAP and LADMAP+SVDWS
and &;,7 in LADMAP+SVDWS so that the three methods
stop with almost the same objective function values. All
methods are initialized as A8 = Do1Yand E8 = 0. A1
in the ADM method is initialized as Aty = 0. Under these
conditions, we compare the three methods on their computa-
tion time, the number of iterations needed to converge, and
the objective function value when the iterations stop. The
comparison is done under different sizes of D o t. All the
tests are repeated for ten times and the average quantities are
reported.

The comparative results are shown in Table 1. We can
observe that all the three methods arrive at roughly the
same objective function values. However, LADMAP uses
less than half of the number of iterations than ADM does
and the SVD warm start only changes the number of itera-
tions very slightly. Consequently, LADMAP is much faster
than ADM, while SVDWS further speeds up the computa-
tion of LADMAP when the size of D o 7 is not too small
(e.g., > 100). The acceleration rate also increases when the
size of D o T grows*. When the size of D o 7 is very small
(e.g., < 100), SVDWS does not seems to speed up the com-
putation. This may due to the ultra-short computing time and
hence other processes on the workstation supporting the com-
puting environment can influence the total computing time.
Anyway, the slowdown is rather insignificant. As the speed
of solving large sized TILT is more time demanding in real
applications, adopting SVDWS is still advantageous.

6.2 Comparisons on the Complete TILT Problem

In this subsection, using real image data we compare the orig-
inal ADM method, LADMAP, LADMAP with variable warm
start (LADMAP+VWS), and LADMAP with both variable
warm start and SVD warm start (LADMAP+VWS+SVDWS)
on solving the whole TILT problem, in order to show the

4 We will see much higher acceleration rates when using SVDWS on
real data (see Sect. 6.2.3).

@ Springer

effectiveness of LADMAP and the two warm start tech-
niques. As we have pointed out before that the original
ADM may not converge to the optimal solution of the inner
loop, we first compare the convergence performance of ADM
and LADMAP. Then we test the robustness of ADM and
LADMAP when there are corruptions. We also present some
examples on which ADM fails but our LADMAP works well.
Finally, we compare the computation time of various meth-
ods on both synthetically and naturally deformed images. The
synthetically deformed images are generated by deforming
the low-rank textures with predefined transforms. The natu-
rally deformed images are from our images data set which
contains over 100 images downloaded from the web.

6.2.1 Range of Convergence

Since LADMAP for the inner loop is proven to converge to
the optimal solution, we expect that it will outperform ADM
inrecovering the correct deformation when solving the whole
TILT problem?. To show that LADMAP can recover broader
range of deformation than ADM does, we test them with a
standard checker-board pattern.

Following the same setting in Zhang et al. (2012b), we
deform a checker-board pattern by an affine transform: y =
Ax + b, where x, y € R2, and test if the two algorithms can
recover the correct transform. The matrix A is parameterized

cos@ —sinf || 1¢
as 4@, 1) = |:sin9 cos 0 i| |:O 1
tion angle and ¢ is the skew value. We change 6 within the
range [0, r/6] with a step size 7 /60, and ¢t € [0, 1] with a
step size 0.05. We can observe from Fig. 2 that the range of
convergence of our LADMAP completely encloses that of
ADM. So the working range of LADMAP is larger than that
of ADM.

We further test with real images taken from natural scenes
and manually prescribe the regions to be rectified. We have

i|, where 0 is the rota-

5 Note that as the whole TILT problem (2) is not a convex program,
LADMAP cannot achieve the global optimum either. So LADMAP can
also fail to recover the correct deformation.

Int J Comput Vis (2013) 104:1-14

Table 2 Comparison of speed on images with artificial affine deformations

Size ADM LADMAP LADMAP+VWS LADMAP+VWS+SVDWS
Time (s) Relative errors Time (s) Relative errors Time (s) Relative errors Time (s) Relative errors
6 = 30°
1 50 x43 6.6318 0.1563 2.2941 0.1561 1.1857 0.1561 0.4034 0.1560
2 31 x36 0.2503 0.0086 0.1834 0.0087 0.0913 0.0085 0.0063 0.0085
3 38 x37 0.1594 0.00087 0.1057 0.00087 0.0459 0.00088 0.0338 0.00088
4 28 x 26 0.1091 0.0040 0.0634 0.0040 0.0408 0.0039 0.0353 0.0039
5 38 x45 3.139 0.4226 1.977 0.4219 0.420 0.4193 0.199 0.4191
t=02
1 27 x27 0.8926 0.0252 0.3068 0.0245 0.1605 0.0243 0.0995 0.0247
2 47 x50 3.2381 0.2066 2.1583 0.2082 0.4551 0.1944 0.1988 0.1949
3 47 x 45 0.6271 0.0065 0.5043 0.0065 0.3914 0.0067 0.3124 0.0066
4 30 x26 24916 0.1896 1.3644 0.1881 0.9039 0.1859 0.6126 0.1849
5 26 x 28 0.3681 0.0538 0.2254 0.0536 0.1622 0.0536 0.1274 0.0539
The time costs are counted in seconds. The relative errors are between the computed 7 and the ground truth
Table 3 Comparison of computation speed on real images
Case Size ADM LADMAP LADMAP+VWS LADMAP+VWS+SVDWS
Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup
1 82 x 82 6.2728 4.8299 1.29 1.8119 3.46 1.1386 5.50
2 84 x 78 7.6238 2.8338 2.69 1.6067 4.75 1.3056 5.84
3 80 x 87 5.4040 2.4863 2.17 1.3238 4.08 0.9587 5.64
4 68 x 72 4.7575 2.8580 1.66 0.9953 4.78 0.8237 5.78
5 51 x 60 3.1128 2.7048 1.15 0.8821 3.53 0.4906 6.35
6 89 x 90 3.3004 2.2573 1.46 0.8274 3.99 0.5174 6.38
7 96 x 107 6.7319 2.2305 3.02 1.6650 4.04 0.8212 8.20
8 65 x 60 2.5367 1.4115 1.79 0.5022 5.05 0.4172 6.08
9 72 x 71 2.5501 0.9307 2.73 0.6234 4.09 0.3967 6.43
10 83 x 90 4.3284 3.6923 1.17 1.1078 391 0.7141 6.06

The time costs are counted in second. The speedup rates are w.r.t. the baseline ADM method

found many examples that LADMAP works better than
ADM. However, we have not encountered any example that
ADM works better. Part of the examples are shown in Fig. 3.
They are chosen according to the challenging cases listed
in Zhang et al. (2012b) for TILT to rectify. For example,
the first example is lacking regularity in the printed texts or
the prescribing rectangular contains too much background;
the second example has very large deformation; and the third
example may has a boundary effect. On these examples,
LADMAP works much better than ADM in rectifying the
prescribed regions.

6.2.2 Robustness under Corruption

In this subsection, we compare the robustness of ADM and
LADMAP when there is corruption in images. We test with

some low-rank textures shown in Fig. 4a. Following the same
setting in Zhang et al. (2012b), we introduce a small defor-
mation, say rotation by 10°, and examine whether the two
methods can recover the correct transform under different
levels of random corruption. We randomly select a fraction
(from 0 to 100 %) of the pixels and assign all their RGB val-
ues as random values uniformly distributed in (0, 255). We
run the two methods on such corrupted images and record
at each level of corruption how many images are correctly
rectified.

The comparative results are shown in Fig. 4b. We can see
that when the percentage of corruption is larger than 15 %, our
LADMAP always outperforms ADM. For example, when
50 % of the pixels are corrupted, LADMAP can still obtain
the correct solution on more than half of the test images,
while ADM can only deal with about 30 % of the images. The

@ Springer

12

Int J Comput Vis (2013) 104:1-14

above comparison demonstrates that our LADMAP method
is more robust than the original ADM method when there is
corruption in images.

6.2.3 Speed of the Algorithms

In this subsection, we report the computational cost of four
different algorithms: ADM, LADMAP, LADMAP+VWS,
and LADMAP+VWS+ SVDWS for solving the whole TILT
problem, in order to show the computational improvement
from each component.

The comparisons are done on two types of images. The
first type of images are obtained by applying affine trans-
forms to real images. The second one are images of natural
scenes that can undergo either affine or projective transform,
in which the rectangular regions to be rectified are manually
prescribed.

For the first type of images, part of the comparison results,
namely the images are rotated with & = 30° only or skewed
with ¢+ = 0.2 only, are presented in Table 2. We tuned the
four algorithms so that all of them produced nearly the same
relative error, which is defined as ”T‘TT_—G]G” where t* is the
optimal solution produced by the corresponding algorithm
and 7 is the ground-truth deformation matrix. We can see
that LADMAP is much faster than ADM, the variable warm
start speeds up the convergence, and SVD warm start further
cuts the computation cost.

For the second type of images, comparison of the speed
on ten of the images is shown in Table 3. We can see that
LADMAP can be at least 20 % faster than ADM, with the
variable warm start LADMAP can be at least 2.5 times faster
than ADM, and with the SVD warm start further added,
LADMAP can be at least 4.5 times faster than ADM. So
the speed advantage of our new algorithm is apparent.

7 Conclusions

In this paper we propose an efficient and robust algorithm
for solving the recently popular TILT problem. We reformu-
late the inner loop of TILT and apply a recently proposed
LADMAP to solve the subproblem of the inner loop. For
further speed up, we also propose variable warm start for
initialization and introduce an SVD warm start technique
to cut the computational cost of computing SVDs. Exten-
sive experiments have testified to the better convergence
property, higher robustness to corruption, and faster speed
of LADMAP, and the effectiveness of our warm start tech-
niques.

Acknowledgments Z. Lin is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 61272341, 61231002, and
61121002).

@ Springer

Appendix A: Details of Computing SVD with Warm Start

In this section, for brevity we simply write U (0), 2(0), and
V(0)as U, X, and V, respectively.

Gradients

The gradients are:

oF

Gy=-—=UX*- MV, 42
U=37 (42)
dF
Gy =—=Vs*-M'UZ, (43)
v
Gy = oF _ > -UTmv (44)
¥ = £y = .

The projected gradients are:

Py=GyU"-UGL=WUSVHM" —mUsv’)', (45
Py=GyV —vGL=wsv)'M—m"WwsvT), (46)
Ps = diag(L —UTMV). (47)

Note that U SV is just the SVD of the matrix in last iteration.
So we do not need to recompute their products.

Derivatives of f(¢)

First-Order Derivative

We utilize the chain rule to calculate the derivative, let
H=h(t)=M—-U@)-2()- V()"

and ¢(H) = 1||H|%, then

.o deH) pdecED\" dh)

f= dt _tr[(dH) ' dt]
= a7 W 0],

where

W) =-U0OzoO VvV —uns' v’

U0V,
and
U'@t) = I lP _llP I 1P o
(f)——(+§f U) 3 U(+§l U)

I 1tP U I+1tP _llPU
SHtu Sty Yol

(1) = —Ps,

Int J Comput Vis (2013) 104:1-14

1 1 -1
V! = VTEPV (1 — EzPV)

+vT I+1tP I—Lp -
2 2
1P 1]tP -
SV S .
Second-Order Derivative

Since d(tr(Q)) = tr(dQ) and dQ7 = (dQ)”, we have

" _ df/(t) _ 1T l T "
0 = =22 =[O WO +ho" 1 o)
where
y _dh/(t)
W) = dr
=-U'O=OVO =0 O @0)Vin)T
—U'OE0V'O" -UOE OVe’
—UnOE" v —uns' oV)T
—U'OzOV' O —un) T OV "
—Uun=)vV' 0T
and
oo dU' (1)
v =—4
LY PO _lP I+ ep o
SOEORAGT
py(r+tep o - Yipy)u
o(reg) (1-3m0)
L _lP I+ 1P _IPU
+§(+§t U) U(T3t U) vU,
(1) =0,
s AV
v = dr

—IVT I+1tP I ltP B
—2 2 2 Y
1 -1 1 -1
Py (I —=tP py(r1—=tP
V(2 V) V(2 V)
+1VTP I ltP _1P I ltP -
) v) \%4 v) \%4 .
Taylor Expansion

We want to do the second-order Taylor expansion of f(¢) at
t=0:

1
FOXFO+ O 1450 .

First, the function value at O is:
1
fO) = SIM —UTVT|E.

However, f(0) need not be computed as we are only inter-
ested in f/(0) and f”(0) for obtaining £*.
Second, since f'(t) = tr[h(t)T . h’(t)] we have

f'© =u[hO) 1O (48)
where

h0) =M — UO)Z0)V(©O)T,
W ©0) =-U'0)=0)VO)! —Uu0z 0V’
—U©O)z)V 0)T.

Given U(0) = U, Z(0) = =, V0 = V,U 0 =
—PyU, Y (0) =—Ps, V'(0) = —PyV, we have

WO)y=pPyUsVYy+UPsVT —(WUzVT)Py.

Finally, we come to the second-order derivative:
£7(0) = tr[h/(O)T SR (0) 4+ h(0)T - n” (0)], (49)
where

h"(0) = —U"(0)ZO)V () —U'0)Z' (0)V(©0)
—U'OZOV'O) —U O 0)VO)
—UO)Z"O)VO)" — U0 0V 0)

—U' OOV —UO)Z' 0V (0)
—UO)ZOV" (07,
with U”(0) = PAU, ©"(0) = 0 and V" (0) = PZV.
Thus we have

R'(0) = —PGUEVT —2. ppUPsVT +2. PyUSVT Py
+2.UPsVIPy —USVT P}

=—PyZ+ ZPy,

where Z =1 (0) + UPs VT,

References

Bertsekas, D., & Tsitsiklis, J. (1997). Parallel and distributed compu-
tation: Numerical methods. Cambridge: Athena Scientific.

Cai, J., Candés, E., & Shen, Z. (2010). A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization,
20(4), 1956-1982.

Candés, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal com-
ponent analysis? Journal of the ACM, 58(3), 1-37.

Chen, G., & Teboulle, M. (1994). A proximal-based decomposition
method for convex minimization problems. Mathematical Program-
ming, 64(1), 81-101.

Deng, W., & Yin, W. (2012). On the global and linear convergence
of the generalized alternating direction method of multipliers. Rice
University Technical Report. Houston: Rice University.

@ Springer

14

Int J Comput Vis (2013) 104:1-14

Donoho, D. (1995). De-noising by soft-thresholding. IEEE Transaction
on Information Theory, 41(3), 613-627.

Donoho, D. (2004). For most large underdetermined systems of linear
equations the minimal £ -norm solution is also the sparsest solution.
Communications on Pure and Applied Mathematics, 59(6), 797-829.

Edelman, A., Arias, T., & Smith, S. (1999). The geometry of algorithms
with orthogonality constraints. SIAM Journal on Matrix Analysis and
Applications, 20(2), 303-353.

He, B., Tao, M., & Yuan, X. (2012). Alternating direction method with
Gaussian back substitution for separable convex programming. SIAM
Journal on Optimization, 22(2), 313-340.

Lin,Z.,Chen, M., & Ma, Y. (2009). The augmented Lagrange multiplier
method for exact recovery of corrupted low-rank matrices. UIUC
Technical, Report UILU-ENG-09-2215. Urbana: UIUC.

Lin,Z.,Liu,R., & Su,Z. (2011). Linearized alternating direction method
with adaptive penalty for low-rank representation. In Advances in
Neural Information Processing System. Granada: NIPS.

Liu, G, Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by
low-rank representation. In International Conference on Machine
Learning. Haifa: ICML.

Mobahi, H., Zhou, Z., Yang, A., & Ma, Y. (2011). Holistic 3D recon-
struction of urban structures from low-rank textures. In IEEE Work-
shop on 3D Representation and Recognition (3dRR-11). Barcellona:
IEEE.

Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2010). RASL:
Robust alignment by sparse and low-rank decomposition for lin-
early correlated images. In IEEE Conference on Computer Vision
and Pattern Recognition. San Francisco: IEEE.

Pierra, G. (1984). Decomposition through formalization in a product
space. Mathematical Programming, 28, 96—115.

@ Springer

Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., & Dellaert,
F. (2008). Detecting and matching repeated patterns for automatic
geo-tagging in urban environments. In /IEEE Conference on Com-
puter Vision and Pattern Recognition. Anchorage: IEEE.

Toh, K., & Yun, S. (2009). An accelerated proximal gradient algorithm
for nuclear norm regularized least squares problems. Pacific Journal
of Optimization, 6, 615-640.

Wen, Z., & Yin, W. (2013). A feasible method for optimization with
orthogonality constraints. Mathematical Programming, accepted.
Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for /;
problems in compressive sensing. SIAM Journal on Scientific Com-

puting, 33(1), 250-278.

Zhang, Z., Liang, X., & Ma, Y. (201 1a). Unwrapping low-rank textures
on generalized cylindrical surfaces. In IEEE Conference on Com-
puter Vision and Pattern Recognition. Colorado Springs: IEEE.

Zhang, Z., Matsushita, Y., & Ma, Y. (2011b). Camera calibration with
lens distortion from low-rank textures. In /[EEE Conference on Com-
puter Vision and Pattern Recognition. Colorado Springs: IEEE.

Zhang, X., Lin, Z., Sun, F., & Ma, Y. (2012a). Rectification of Chinese
characters as transform invariant low-rank textures. Pattern Recog-
nition (submitted to).

Zhang, Z., Ganesh, A., Liang, X., & Ma, Y. (2012b). TILT: Transform-
invariant low-rank textures. International Journal of Computer
Vision (IJCV), 99(1), 1-24.

Zhao, P., & Quan, L. (2011). Translation symmetry detection in a fronto-
parallel view. In IEEE Conference on Computer Vision and Pattern
Recognition. Colorado Springs: IEEE.

	Linearized Alternating Direction Method with Adaptive Penalty and Warm Starts for Fast Solving Transform Invariant Low-Rank Textures
	Abstract
	1 Introduction
	2 Transform Invariant Low-rank Textures
	2.1 Mathematical Model
	2.2 The Existing Method for Solving TILT

	3 Solving the Inner Loop by LADMAP
	3.1 Sketch of LADMAP
	3.2 Reformulating the Inner Loop of TILT
	3.3 Warm Starting Variables in the Inner Loop

	4 Implementation Details
	4.1 Multiplying with J
	4.2 Initializing Y
	4.3 Handling Additional Constraints on τ

	5 Warm Starting for SVD in the Inner Loop
	5.1 Optimization with Orthogonality Constraints
	5.2 SVD with Warm Start

	6 Experiments
	6.1 Numerical Study on the Inner Loop Only
	6.2 Comparisons on the Complete TILT Problem
	6.2.1 Range of Convergence
	6.2.2 Robustness under Corruption
	6.2.3 Speed of the Algorithms

	7 Conclusions
	Acknowledgments
	Appendix A: Details of Computing SVD with Warm Start
	Gradients
	Derivatives of f(t)
	First-Order Derivative
	Second-Order Derivative

	Taylor Expansion

	References

