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We propose an algorithm, called Bases Sorting, to sort the bases of over-complete dictionaries used in

sparse representation according to the magnitudes of coefficients when representing the training

samples. Then the bases are considered to be ordered from low to high frequencies, thus generalizing

the traditional concept of frequency for over-complete dictionaries. Applications are also shown.
1. Introduction

Nowadays sparse representation has attracted a lot of attention
from signal processing, image processing, pattern recognition,
and machine learning communities, and its wide applications have
been found, e.g., blind source separation [1], image restoration
and repairing [2–4], super-resolution [5], face recognition [6], and
subspace segmentation [7]. The reader is referred to [8] for a
detailed survey on applications of sparse representation.

Different from Fourier or wavelet transform, which depends
upon pre-constructed or pre-defined bases, sparse representation
uses data-adaptive over-complete bases, also called over-
complete dictionaries. Besides being over-complete, current dic-
tionaries are usually unstructured. In contrast, in Fourier or
wavelet transform, the bases are well ordered according to their
frequencies, which have an intuitive physical interpretation: low
and high frequency bases correspond to slow-varying and fast-
varying waveforms, respectively (Fig. 1). Note that the concept of
frequency plays a critical role in the traditional signal processing
theory. Unfortunately, for over-complete dictionaries such a
concept is lacking. This incurs a lot of disadvantages. For example,
one has to display an over-complete dictionary in a random order,
and when performing data compression it is unclear which bases
should be kept and which should be discarded. In this paper, we
aim at generalizing the concept of ‘‘frequency’’ for over-complete
ll rights reserved.
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dictionaries. Once the generalized frequency is defined, many
concepts and techniques in the traditional signal processing may
be transplanted to sparse representation.

For general over-complete dictionaries, we can no longer
define their frequencies by looking at whether a basis is fast or
slowly varying, because the bases may not be in waveforms. For
example, for a given basis of 128-dimensional SIFT features [9]
(see Fig. 2(b)) it is hard to say whether its ‘‘frequency’’ is low or
high. This is nontrivial even for a dictionary learnt from raw
image patches (see Fig. 2(a)). As a result, in the literature
[2,5,10–14], people simply show and store their over-complete
dictionaries in a random order. In this paper, we propose to define
‘‘frequency’’ for an over-complete dictionary by sorting the bases
appropriately, so that the generalized frequency can indeed be a
generalization of frequency in the traditional sense, when the
dictionary reduces to the traditional bases. The algorithm is called
Bases Sorting (BS). After sorting, the leading bases can be
regarded as of ‘‘low frequency’’ while the ending bases regarded
as of ‘‘high frequency.’’ The sorting criterion is inspired by the
1/f-power law [15] of the Fourier spectra of natural images. As the
over-complete dictionary is data-adaptive, so should the orders of
the bases be. Given training data, for each sample BS first
computes the sparest representation coefficients with respect to
the dictionary, then sorts the bases according to the magnitudes
of the coefficients. The final order of a basis is its average position
over the training data.

We validate our criterion and BS algorithm on a two-
dimensional Discrete Cosine Transform (2D-DCT) dictionary. The
experimental results confirm that the natural order of the 2D-DCT
dictionary can be well recovered by BS. Moreover, the 1/f-power
zing the concept of frequency for over-complete dictionaries,
.005i
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Fig. 1. The low frequency bases and high frequency bases. (a) Cosine functions. (b) Haar wavelets.

Fig. 2. Unsorted dictionaries. (a) Dictionary learnt from 14�14 raw image patches. (b) Dictionary learnt from 128-dimensional SIFT features. (The images in this paper
are best viewed on screen!).
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law can also be preserved for general over-complete dictionaries,
e.g., those learnt from raw image patches and SIFT features. These
suggest that the traditional concept of frequency is successfully
generalized by using our BS algorithm to sort the bases. We further
apply the generalized frequency to dictionary visualization and
data compression to show the usefulness of generalized frequency.
2. Sparse representation

Denote the data set as X ¼ ½x1,x2, . . . ,xn�, where xiARp,
i¼ 1, . . . ,n, and the dictionary U ¼ ½u1,u2, . . . ,um�, where ujARp,
j¼ 1, . . . ,m. Each column uj of U is called a basis or an atom.
The dictionary is often over-complete, i.e., p5m, and is learnt
from training data, e.g., by K-SVD [10] or the Lagrange dual
method [11].

The core of the sparse representation theory is to represent
a data vector as the sparest linear combination of the bases in an
over-complete dictionary. A basic formulation is as follows:

min
v

JvJ0

s:t: x¼Uv, ð1Þ

where JvJ0 denotes the l0-norm1 of v, which is the number of
non-zero entries in v.

Problem (1) is NP-hard. There has been a lot of effort on
solving (1). Donoho [16] proved that the following convex
1 Strictly speaking, l0-norm is not a norm but a pseudo-norm.

Please cite this article as: C.-G. Li, et al., Bases sorting: Generali
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program:

min
v

JvJ1

s:t: x¼Uv ð2Þ

is equivalent to (1) under rather general conditions, where JvJ1

denotes the l1-norm of v, which is the sum of absolute values of
the entries in v, and there have been many algorithms to solve (2)
efficiently. See [17] for a review. To tolerate a certain level of
noise, problem (2) can be relaxed as

min
v

JvJ1

s:t: Jx�UvJ2
2oE, ð3Þ

where E40 is an estimated noise level.
Unlike Fourier and wavelet transforms in which the order of

bases are analytically predefined as frequency, the bases uj’s in
the dictionary U are usually orderless because there is no counter-
part definition of ‘‘frequency’’ for over-complete dictionaries.
In the next section, we will introduce our criterion and algorithm
to sort the bases in an over-complete dictionary. Then the bases
are considered to be arranged from low to high frequencies. In
this way, we generalize the traditional concept of frequency.
3. Criterion and algorithm to sort an over-complete
dictionary

It has been observed that statistics of many man-made or natural
objects, such as city size, incomes, word frequencies, earthquake
zing the concept of frequency for over-complete dictionaries,
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magnitudes, and the vertex degrees in the World Wide Web, obey
a power law distribution [18–20], i.e., small magnitudes are very
common, whereas large magnitudes are very rare. In the study of
natural image statistics, Field [15] discovered a 1/f-power law, i.e.,
Fig. 3. Two schemes to arrange the sorted bases. (a) The r

Fig. 4. Validation experiments on 256 standard 2D-DCT bases. (a) The standard 2D-

arrangements. (d) The result of baseline shown in zigzag arrangement.

Please cite this article as: C.-G. Li, et al., Bases sorting: Generali
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by performing Fourier transform on natural images the magnitudes
of the Fourier coefficients at frequency f (averaged over orientations)
are proportional to 1/f. For wavelet transforms, the magnitudes of
wavelet coefficients also obey this law.
ow-by-row arrangement. (b) The zigzag arrangement.

DCT bases in the natural order. (b) and (c) are the results of BS shown in two
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Fig. 5. Frequency indices of the 256 2D-DCT bases sorted by (a) BS and (b) baseline, respectively.
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Fig. 6. Stability comparison of the estimated generalized frequency order.
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Inspired by the above observations, we propose to sort
the bases in an over-complete dictionary so that the magnitudes
of the sparest representation coefficients of data are also in a
descending order. In this way, the indices of bases can be
naturally interpreted as frequencies.

According to this principle, a straightforward way, called the
baseline method, is to first compute the average magnitudes of
the representation coefficients of the training samples and then
sort the bases in the descending order of the averaged magni-
tudes. However, we will show that such a method is not the best
approach. A much better way is to first sort the bases according to
the magnitudes of the representation coefficients for each train-
ing sample, then record the position of each basis, and finally
resort the bases according to their averaged positions. We call our
method the Bases Sorting (BS) algorithm, as detailed below.

Given an over-complete dictionary U which is learnt from data
set X, for vARm, suppðvÞ ¼ fjA I9vja0g denotes the support of v,
where I¼ f1,2, . . . ,mg. For the sparsest representation v of xAX

w.r.t. U, i.e., v is the solution to (1), we define the non-zero
components fvj9jAsuppðvÞg as the active coefficients of x and the
subset of bases UðxÞ ¼ fuj9jAsuppðvÞg as x-activated bases. Then we
can sort UðxÞ in an descending order of the absolute values of their
coefficients f9vj9g. The indices of the x-activated bases are
recorded as pðUðxÞÞ. Then the final order of bases are the expecta-
tion of the orders, i.e.,

pðUÞ ¼ E½pðUðxÞÞ�, ð4Þ

where E½�� is the expectation operator.
Formally our BS algorithm consists of four steps:
1.
P
N

For each data vector xiAX, calculate its sparsest representation
vector vi with respect to the dictionary U.
2.
 Determine the order pðUðxiÞÞ of bases in UðxiÞ by sorting the
magnitudes of the corresponding active coefficients f9vj99jA
suppðviÞg of xi in descending order.
3.
 Record all the order pðUðxiÞÞ to obtain an averaged frequency
order pðUÞ.
4.
 Sort the bases in U in an ascending order of pðUÞ.

The pseudo-code of BS algorithm is presented in Algorithm 1.
Note that as calculating the sparsest representation of training
samples is a part of dictionary learning, sorting the bases is
lease cite this article as: C.-G. Li, et al., Bases sorting: Generali
eurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.0
simply a by-product of dictionary learning and actually does not
add to the computation load.

Algorithm 1. Bases Sorting (BS) algorithm.

1: Input: training data matrix X ¼ ðx1, . . . ,xnÞ, dictionary
U ¼ ðu1, . . . ,umÞ, and parameter E40.
2: Initialize the accumulation buffer: s¼ ð0, . . . ,0Þ.
3: for i¼1 to n do
4: Calculate the sparsest representation of xi by solving

vi ¼ arg min
v

JvJ1, s:t: Jxi�UvJ2
2oE: ð5Þ

5: Identify the support of sparse representation vector vi and
the set of active bases:

IðiÞ ¼ fj9vija0,j¼ 1, . . . ,mg,

UðxiÞ ¼ fuj9jA IðiÞg: ð6Þ

6: Compute the magnitude vector ai of active coefficients, i.e.,

aij ¼ 9vij9.

7: Sort the activated bases in UðxiÞ according to the
descending order of the magnitude vector ai:

pðUðxiÞÞ ¼ sortðIðiÞ,aiÞ:
ð7Þ

8: Update the accumulation buffer: sj ¼ sjþ1 for all jA IðiÞ.

9: end for
10: Compute the averaged order by

pðUÞ ¼
Pn

i ¼ 1

pðUðxiÞÞ:=s, ð8Þ

where ./ is element-wise division.
11: Sort U in an ascending order of pðUÞ.
zing the concept of frequency for over-complete dictionaries,
2.005i
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Fig. 7. The average spectra of the test data in log scale. The top and bottom rows are the results of using the sorted dictionary consisting of 256 bases learnt from raw

image patches and SIFT features, respectively. The left and right columns are the average spectra defined by BS and baseline, respectively.
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With the sorted dictionary U, we can say that uj is of frequency

j and the bases in U are sorted from low to high frequencies. The
sparsest representation v of a data vector x, arranged according to
the corresponding bases, is called the spectrum of x. If the active
bases of a data vector x are all low, middle, or high frequency
bases, we can say that x is a low, middle, or high frequency signal,
respectively. Thus the traditional concepts related to frequency
are naturally generalized.
2 Scene-15 is a benchmark data set for scene classification, available at http://

www-cvr.ai.uiuc.edu/ponce_grp/data/.
4. Experiments

We first validate our criterion and BS algorithm by testing
with 2D-DCT bases to show that our generalized concept of
frequency is consistent with the traditional sense when the bases
are waveform. Moreover, the 1/f-power law can be preserved by our
generalized frequency. We further apply the generalized frequency to
dictionary visualization and data compression to show its usefulness
in practice.

In our experiments, we use the Lagrange dual method [11] to
learn the dictionary and adopt the Feature-Sign algorithm [11] to
find the sparsest representation in Algorithm 1. Throughout the
experiments, we will compare our BS algorithm with the baseline
method to show the advantages of BS algorithm.

To visualize sorted dictionaries when the bases are 2D signals,
we arrange their bases in two schemes, row-by-row and zigzag, as
illustrated in Fig. 3.

4.1. Validations

A natural question about our generalized frequency is whether
it is consistent with the classical concept of frequency. To answer
this question, we first apply our BS algorithm to sort the standard
2D-DCT bases. The training data X consist of 200,000 image
Please cite this article as: C.-G. Li, et al., Bases sorting: Generali
Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02
patches of 16�16 pixels, which are randomly sampled from the
images of Scene-15.2 The dictionary U simply consists of the 256
standard 2D-DCT bases (see Fig. 4(a)), rearranged into 256-
dimensional vectors.

The 256 2D-DCT bases sorted by the BS algorithm are dis-
played in Fig. 4(b) and (c), in row-by-row and zigzag schemes,
respectively. As can be seen, the 2D-DCT bases are organized in a
good order: the visually low frequency bases are in the front and
the visually high frequency bases are at the end.

As the BS results on the 2D-DCT bases are not identical to the
natural order, it is not easy to tell visually how much they differ.
To compute the difference between them quantitatively, we recall
that the 2D-DCT bases on the same anti-diagonals in Fig. 4(a) are
considered of the same frequency. So we define the following
zigzag step function z(j) that maps the j-th sorted basis to the
z(j)-th anti-diagonal (or called the z(j)-th frequency index):

zðjÞ ¼

1, j¼ 1,

2, j¼ 2,3,

3, j¼ 4,5,6,

� � �

29, j¼ 251,252,253,

30, j¼ 254,255,

31, j¼ 256:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

The zigzag step functions of both the natural order and general-
ized frequency order are shown in Fig. 5(a). We can see that they
agree with each other fairly well. The average difference between
their zigzag step functions is only 0.4430. For comparison, we
present the results of baseline in Figs. 4(d) and 5(b). It can be seen
zing the concept of frequency for over-complete dictionaries,
.005i
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Fig. 8. Visualization of an over-complete dictionary of size 256, learnt from 50,000 image patches. (a) The orderless display. (b) and (c) are the sorted results by BS in

row-by-row and zigzag arrangements, respectively. (d) The result of the baseline in zigzag arrangement.

3 The 10 images are available at http://ai.stanford.edu/�hllee/softwares/

nips06-sparsecoding.htm.
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that baseline is worse than BS, especially when the index is
between 100 and 250. Actually, the average difference between
the zigzag step functions of baseline and natural order is 0.6172.

The generalized frequency defined by BS is actually also more
robust than that by baseline. To show this, we compute the zigzag
step functions of bases sorted using different numbers of training
samples and then calculate their difference as follows:

dðnÞ ¼
1

m
Jzn�zðnÞJ1, ð10Þ

where zn is the zigzag step function of the generalized frequency
order estimated by using 200,000 training samples, zðnÞ is the
zigzag step function estimated by using n training samples, and m

is the number of bases in U. We randomly select n¼104, 5�104,
105 training samples to estimate the generalized frequency order
and calculate the distances dðnÞ. The means and standard var-
iances of distance dðnÞ over 20 trials are displayed in Fig. 6. We can
see that the generalized frequency order by BS is much more
stable than that by baseline when the number of training samples
changes. This is because BS uses the expectation of order to define
its generalized frequency order.

To test whether the 1/f-power law can be preserved by our
generalized frequency, we randomly sample one million raw
image patches from the images of Scene-15 as test data and
Please cite this article as: C.-G. Li, et al., Bases sorting: Generali
Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.0
shown in Fig. 7(a) the average magnitudes of the coefficients of
the bases when representing the test data. We can see that the
average magnitudes fall off quickly when the generalized fre-
quency increases. The fall-off curve is very close to Laplacian. This
suggests that the 1/f-power law is indeed preserved by our
generalized frequency. For the baseline method, there are several
high peaks in the ‘‘mid-and-high frequencies,’’ as shown in
Fig. 7(b). Similar phenomenon can be observed on the dictionary
learnt from 50,000 128-D SIFT features (Fig. 7(c) and (d)).

These experiments suggest that our generalized frequency is
indeed a good generalization of the traditional frequency.
4.2. Dictionary visualization

A straightforward application of generalized frequency is to
display the bases in a good order.

First, we randomly sample 50,000 image patches of 14�14
pixels from 10 natural scene images3 and learn an over-complete
dictionary with 256 bases (Fig. 8(a)). The dictionary sorted by our
BS algorithm is displayed in Fig. 8(b) and (c) in two arrangement
zing the concept of frequency for over-complete dictionaries,
2.005i
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Fig. 9. Visualization of a dictionary of size 256, learnt from 50,000 128-dimensional SIFT features. (a) The orderless display. (b) and (c) are the sorted results by BS in row-

by-row and zigzag arrangement schemes, respectively. (d) The result of the baseline shown in zigzag arrangement.
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by truncated k bases.
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schemes. We can see that visually low frequency bases are sorted
before visually high frequency ones. The bases sorted by the
baseline method are presented in Fig. 8(d). As can be seen, the
bases are not sorted properly. For example, the lowest frequency
basis (i.e., the brightest block) is not at the leading position. So our
BS algorithm can yield better sorting result than the baseline.

Second, we learn an over-complete dictionary on 50,000 128-
dimensional SIFT features [9] (Fig. 9(a)) randomly sampled from
images in the Scene-15 data set and sort it by BS. The learnt bases
look like Morse code. The sorted dictionary is displayed in
Fig. 9(b) and (c) in two arrangement schemes. Compared with
the orderless display in Fig. 9(a), the sorted bases are in an
interesting order, which seems to change from simple pattern
(e.g., regularly spaced dots or dashes) to complex patterns (e.g.,
irregularly spaced dots). The bases sorted by the baseline method
Please cite this article as: C.-G. Li, et al., Bases sorting: Generali
Neurocomputing (2013), http://dx.doi.org/10.1016/j.neucom.2013.02
are presented in Fig. 9(d). It is difficult to tell the difference
between the results of BS and baseline intuitively because SIFT
feature is not visually perceivable.

These experiments show that BS can find the intrinsic order
among the bases of an over-complete dictionary.
4.3. Data compression

DCT and Discrete Wavelet Transform (DWT) have been widely
used in data compression thanks to an important property of DCT
and DWT. Namely, the high frequency coefficients can be truncated
and the data can still be well approximated by the low frequency
ones. In this section we show that over-complete dictionaries also
have such a property in the sense of generalized frequency.
zing the concept of frequency for over-complete dictionaries,
.005i
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Fig. 11. Reconstructed images by using truncated k bases. The values in brackets are the reconstruction errors. (a) The original image. (b) Reconstructed by using all 256

bases. (d), (g), and (j) are reconstructed by using k randomly chosen bases. (e), (h), and (k) are reconstructed by using the k lowest frequency bases defined by the baseline

method. (c), (f), (i), and (l) are reconstructed by the k lowest frequency bases defined by BS.
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We prepare an over-complete dictionary learnt from raw
image patches as in Section 4.2. Then we compute the average
reconstruction errors using a part of the bases. The bases are
chosen in three ways:
1.
P
N

Randomly choose k bases from the dictionary.
2.
 Choose the k lowest frequency bases of the dictionary.

3.
 Choose the k highest frequency bases of the dictionary.
The average reconstruction errors on the training samples are
presented in Fig. 10(a). One can observe that using the k lowest
frequency bases always leads to the best reconstruction accuracy,
while using the k highest frequency bases results in the worst
accuracy, and using random k bases is between these two choices.
Moreover, the reconstruction errors using k lowest frequency
bases defined by BS are consistently lower than those by baseline.
Although the difference between BS and baseline on the training
samples is not salient, their difference is drastic on the testing
samples (Fig. 10(b)), especially when k is small.

For visual comparison, we reconstruct an image with the
dictionary in Fig. 8 and display in Fig. 11 the images reconstructed
by using k lowest frequency bases. Clearly, using the k lowest
frequency bases defined by BS yields much better visual quality
than the baseline, which is only slightly better than using k

randomly chosen bases. This is because BS can result in better
average spectra that facilitate data compression. Namely, high
frequencies have lower representation magnitudes, as having
been shown in Fig. 7.
5. Conclusions

We have proposed a novel criterion and an algorithm to sort
the bases in an over-complete dictionary, and accordingly defined
the generalized frequency as the indices of the sorted bases.
We have validated that our generalized frequency can be a good
generalization of the traditional concept of frequency used in
Fourier and wavelet transforms. We have also applied generalized
frequency to dictionary visualization and data compression. We
believe that based on our generalized frequency more concepts in
the traditional signal processing theory can be transplanted to
sparse representation. This will be our future work.
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