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Recently, compressed sensing has been widely applied to various areas such as signal processing,
machine learning, and pattern recognition. To find the sparse representation of a vector w.r.t. a
dictionary, an ℓ1 minimization problem, which is convex, is usually solved in order to overcome the
computational difficulty. However, to guarantee that the ℓ1 minimizer is close to the sparsest solution,

such as those with the ℓp ð0opo1Þ penalties require much weaker incoherence conditions and smaller
signal to noise ratio to guarantee a successful recovery. Hence the ℓp ð0opo1Þ regularization serves as a
better alternative to the popular ℓ1 one. In this paper, we review some typical algorithms, Iteratively
Reweighted ℓ1 minimization (IRL1), Iteratively Reweighted Least Squares (IRLS) (and its general form General
Iteratively Reweighted Least Squares (GIRLS)), and Iteratively Thresholding Method (ITM), for ℓp minimiza-
tion and do comprehensive comparison among them, in which IRLS is identified as having the best
performance and being the fastest as well.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Compressed sensing [1,2] has drawn much attention in recent
years. It has found wide applications in various areas such as signal
processing, machine learning, and pattern recognition. At the core
of the compressed sensing theory, one has to solve for the sparsest
representation vector of a given vector with respect to a given
dictionary:

min
x∈Rn

∥x∥0; subject to y¼Ax; ðEℓ0Þ

where A∈Rm�n ðm⪡nÞ is an over-complete dictionary, y is a given
vector, and ∥x∥0 is the number of non-zeros in x.

Unfortunately, problem Eℓ0 is NP-hard [3] for general A and y.
To overcome such a computational difficulty, various methods
have been proposed. A major class of methods is to solve

min
x∈Rn

∥x∥1; subject to y¼Ax; ðEℓ1Þ

instead and Donoho [4] proved that under some conditions
problem (Eℓ1) is equivalent to (Eℓ0) with an overwhelming prob-
ability. Many algorithms have been proposed to solve (Eℓ1).
Heuristic greedy algorithms include Orthogonal Matching Pursuit
(OMP) [5] and Least Angle Regression (LARS) [6]. As (Eℓ1) is convex,
many efficient algorithms that guarantee globally optimal
ll rights reserved.
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solutions have also been proposed, such as Gradient Projection
(GP) [7], Homotopy [8], Iterative Shrinkage-Thresholding (IST) [9],
Accelerated Proximal Gradient (APG) [10], and Alternating Direc-
tion Method (ADM) [11] and its linearized version (LADM) [12].
Interested readers may refer to [13] for a comprehensive compar-
ison among these algorithms. Other excellent reviews on ℓ1
minimization algorithms include [14,15].

However, some conditions [4], e.g., the sparsest solution is
indeed very sparse and the matrix A satisfies low coherence
conditions, are necessary to guarantee the equivalence between
(Eℓ1) and (Eℓ0). But in practice, these conditions may not be
satisfied. So solving (Eℓ1) may fail to provide a desired solution.
In this case, one has to turn to other nonconvex variants of (Eℓ0),
which requires weaker conditions to guarantee a successful
recovery, to solve for the sparsest solution. One natural variant is
via ℓp minimization:

min
x∈Rn

∥x∥pp; subject to y¼Ax; ðEℓpÞ

where 0opo1. It is intuitive that when p is close to 0, the
solution to (Eℓp) will be close to that of (Eℓ0), hence producing a
sparser solution than (Eℓ1). This has been supported by theoretical
analysis [16,17]. So it is desirable to develop efficient algorithms
for (Eℓp).

When there is noise, as in ℓ1 minimization the following
variants of (Eℓp) are also often considered:

min
x∈Rn

∥x∥pp; subject to ∥y−Ax∥22≤ε; ðNℓpÞ
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and

min
x∈Rn

1
2∥y−Ax∥

2
2 þ λ∥x∥pp: ðLℓpÞ

In practice (Lℓp) is more popular than (Nℓp). So like [13] in this
paper we mainly focus on (Eℓp) and (Lℓp).

A major drawback of ℓp minimization is that it is nonconvex. So
it is challenging to design efficient algorithms for solving (Eℓp) and
(Lℓp). Nonetheless, there is still much effort devoted to solving (Eℓp)
and (Lℓp) efficiently, although not as abundant as those for (Eℓ1)
and (Lℓ1). There have been various algorithms targeting on ℓp
minimization, e.g., [16–28], to name just a few. However, we have
found that many of them are actually equivalent or have only
slight difference between each other. Actually, the existing algo-
rithms can be categorized into three kinds: Iteratively Reweighted
ℓ1 minimization (IRL1), Iteratively Reweighted Least Squares (IRLS)
(and its general form General Iteratively Reweighted Least Squares
(GIRLS)), and Iteratively Thresholding Method (ITM). This paper
aims at briefly reviewing these three representative ℓp minimiza-
tion algorithms and systematically comparing their performance.

Although for nonconvex problems no globally optimal solu-
tions can always be guaranteed and the convergence of the
algorithms is much more difficult to analyze, these algorithms
empirically work well for ℓp minimization.

The remainder of this paper is organized as follows. Section 2
will introduce three typical algorithms for ℓp minimization pro-
blems. Section 3 will compare ℓp minimization and ℓ1 minimization
and the typical algorithms for ℓp minimization. Finally, Section 4
concludes this paper.
2. Algorithms

In this section we will introduce three typical algorithms for ℓp
minimization problems: Iteratively Reweighted ℓ1 minimization
(IRL1), Iteratively Reweighted Least Squares (IRLS) (and its general
form General Iteratively Reweighted Least Squares (GIRLS)), and
Iteratively Thresholding Method (ITM). IRL1 and IRLS can solve both
the constrained problem Eℓp and the unconstrained problem Lℓp,
while ITM is designed for the unconstrained problem only.

We use bold font, like x, to denote a vector and denote xi for its
component, i.e., x¼ ðx1; x2;…; xnÞ∈Rn. Especially, we denote the
true solution as x0. Moreover, we denote the value of a variable at
the lth iteration as ð�ÞðlÞ, e.g., xðlÞ represents the solution obtained at
the lth iteration. Finally, xn denotes the converged solution.
2.1. Iteratively reweighted ℓ1 minimization

2.1.1. For equality constrained problem
Since the IRL1 algorithm for ℓp minimization is derived from

reweighted ℓ1 minimization algorithm [29], we introduce the
latter first.

Consider the following weighted ℓ1 minimization problem:

min
x∈Rn

∑
n

i ¼ 1
wijxij; subject to y¼Ax: ð1Þ

To improve the sparsity of the solution, Candes et al. [29]
suggested that the weights be chosen as inversely proportional to
the magnitudes of the components of the true solution, i.e.,

wi ¼
1

jx0;ij
; x0;i≠0;

þ∞; x0;i ¼ 0:

8><
>: ð2Þ

Since x0 is unknown when we solve (1), and to avoid division
by zeros, Candes et al. [29] suggested that the weights be chosen
according to the current iterate:

wðlþ1Þ
i ¼ 1

jxðlÞi j þ ε
; ð3Þ

where 0oε⪡1 is a small parameter to prevent division by zeros. It
is shown in [29] that by iteratively solving the weighted ℓ1
minimization problem, with the weights chosen as (3), sparser
solutions can be obtained than by directly solving the ℓ1 mini-
mization problem (Eℓ1).

When extending the reweighted ℓ1 algorithm for ℓp minimiza-
tion, several papers, like [18–20], all suggested using the following
weights:

wðlþ1Þ
i ¼ 1

ðjxðlÞi j þ εlÞ1−p
; ð4Þ

where fεlg is a sequence of positive real numbers that approach
zero to avoid the problem of division by zeros. In practice one can
also set it to be a small positive constant. Then the iteration goes as
follows:

xðlþ1Þ ¼ argmin
x∈Rn

∑
n

i ¼ 1

jxij
ðjxðlÞi j þ εðlÞÞ1−p

; subject to y¼ Ax: ð5Þ

Namely, IRL1 solves a series of ℓ1 minimization problems to
approximate the minimizer of ℓp minimization problem. The
pseudo code of IRL1 for the equality constrained problem is
presented in Algorithm 1.

Algorithm 1. Iteratively reweighted ℓ1 minimization algorithm
(for equality constrained problem)
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ.

1:
 Set a sequence of positive numbers fεlg such that

liml-∞εl ¼ 0. Initialize xð0Þ such that y¼Axð0Þ.

2:
 while not converged (l¼ 0;1;2;…) do

3:
 Solve the following ℓ1 minimization problem:

xðlþ1Þ←argmin
x∈Rn

∑
n

i ¼ 1

jxij
ðjxðlÞi jþεlÞ1−p

; subject to y¼ Ax:4:

end while

5:
 xn←xðlÞ.

Output: xn.

Some scholars have analyzed the convergence of IRL1 [30,19],
but the results are all weak. However, numerical experiments
showed that the iterates converge with an overwhelming prob-
ability, and actually converge to the sparsest solution when the
measurements are sufficient, i.e., m=n is large enough.

2.1.2. For unconstrained problem
For unconstrained ℓp minimization problem ðLℓpÞ, Gasso et al.

[20] proposed updating x by the following way:

xðlþ1Þ ¼ argmin
x∈Rn

1
2
∥y−Ax∥22 þ ∑

n

i ¼ 1
λðlÞi xi ;jj ð6Þ

where λðlÞi ¼ λp=ðjxðlÞi j þ εlÞ1−p and εl is a small positive number.
Zou and Li also proposed and analyzed the same form in [28],

where they called it Local Linear Approximation (LLA). The intuitive
idea of both [20,28] is almost the same, which is to approximate
the penalty function with its first-order Taylor expansion at the
current iterate. Here we will follow [20], where the approximation
was deduced in the framework of Difference of Convex functions
(DC) programming [31].

For a nonconvex minimization problem:

min
x∈Rn

JðxÞ; ð7Þ
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where Jð�Þ is a nonconvex function, the main idea of DC programm-
ing is to decompose JðxÞ as:
JðxÞ ¼ J1ðxÞ−J2ðxÞ; ð8Þ
where J1ð�Þ and J2ð�Þ are lower semi-continuous proper convex
functions on Rn. Then x is updated as follows1:

xðlþ1Þ ¼ argmin
x

J1ðxÞ−〈yðlÞ; x−xðlÞ〉; ð9Þ

where yðlÞ∈∂J2ðxðlÞÞ and J2ðxÞ is approximated by its “first-order
Taylor expansion” J2ðxðlÞÞ þ 〈yðlÞ; x−xðlÞ〉 at xðlÞ, in which ∂J2ð�Þ is the
subgradient of J2. Then by choosing J1ðxÞ ¼ 1

2 ∥y−Ax∥
2
2 þ λ∥x∥1 and

J2ðxÞ ¼ λð∥x∥1−∥x∥ppÞ, we can obtain the following updating scheme:

xðlþ1Þ ¼ argmin
x∈Rn

1
2
∥y−Ax∥22 þ ∑

n

i ¼ 1

λp

jxðlÞi j1−p
xi :jj ð10Þ

By introducing a small positive number εl to avoid division by zero,
we can obtain (6).

Problem (6) is an adaptive LASSO problem [33], and can be
solved by many methods for convex minimization, e.g., Approx-
imate Proximal Gradient (APG) [10]. It can also be solved by the
iteratively thresholding method which we will introduce in
Section 2.3, where the thresholding function should be

Φl1 ðt; λÞ ¼
t−λ; if t4λ;

t þ λ; if to−λ;
0; if jtj≤λ;

8><
>:

and the iteration goes as follows:

xðlþ1Þ
i ¼Φl1 ðti; λðlÞi ∥A∥−22 Þ; i¼ 1;2;…;n; ð11Þ
where ti is the ith component of t¼ ðI−∥A∥−22 ATAÞxðlÞ þ ∥A∥−22 ATy.

The pseudo code of IRL1 for unconstrained problem is sum-
marized in Algorithm 2.

Algorithm 2. Iteratively reweighted ℓ1 minimization algorithm
(for unconstrained problem)
1 He
which is
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ; λ40.

1:
 Set a sequence of positive numbers fεlg such that

liml-∞εl ¼ 0. Initialize xð0Þ.

2:
 while not converged (l¼ 0;1;2;…) do

3:
 Solve the following ℓ1 minimization problem:

xðlþ1Þ←argmin
x∈Rn

1
2 ∥y−Ax∥

2
2 þ ∑

n

i ¼ 1

λp

ðjxðlÞi j þ εlÞ1−p
xi :jj 4:

end while

5:
 xn←xðlÞ.

Output: xn.

For fixed εl, Chen and Zhou [30] proved that under some
conditions the iterates of IRL1 converge to the global minimizer
of a truncated ℓp minimization problem and the convergence rate
is approximately linear. For variable εl, no theoretical analysis is
available.

2.2. Iteratively reweighted least squares

2.2.1. For equality constraint problem
Iteratively reweighted least squares (IRLS) was proposed by Rao

and Kreutz-Delgado in [34] for ℓp minimization. As stated in that
paper, IRLS is equivalent to the FOCUSS algorithm originally
proposed in [35,36]. Further discussions on IRLS can be found in
[27,26,37].
re we switch to the deduction by the concave-convex procedure [32],
equivalent to the deduction in [20] yet much more intuitive.
The formulation of IRLS is very similar to that of IRL1. However, the
solution method is completely different. IRLS is essentially composed
of a series of weighted ℓ2 optimization problems as follows:

min
x∈Rn

∑
n

i ¼ 1
wix2i ; subject to y¼ Ax; ð12Þ

where the weights are set iteratively by

wðlÞ
i ¼ ððxðlÞi Þ2 þ εlÞp=2−1: ð13Þ

Here fεlg-0 is a sequence of positive numbers to avoid division by
zeros. The above formulation was derived through the minimizing a
concave function via a convex function replacement (MCCR) algorithm
which was proposed by Mourad and Reilly [25]. The MCCR algorithm
is to replace the objective function with a convex function, in
particular, a quadratic function.

Let Q l ¼ diagðf1=wðlÞ
i gÞ, then the solution to (12) can be expli-

citly given as follows:

xðlþ1Þ ¼Q lA
T ðAQ lA

T Þ−1y: ð14Þ
The original weighted least squares problem (12) can be

rewritten as follows:

min
x∈Rn

‖Q−1=2
l x‖22; subject to y¼ Ax ð15Þ

Mourad and Reilly suggested a more general form in [25], called
Generalized IRLS (GIRLS), which is to update x by solving:

min
x∈Rn

‖Q−1=2
l ðx−θxðlÞÞ‖22; subject to y¼Ax; ð16Þ

instead, where θ∈ð0;1Þ. Accordingly, the update scheme is as follows:

xðlþ1Þ ¼ θxðlÞ þ ð1−θÞQ lA
T ðAQ lA

T Þ−1y: ð17Þ
Mourad and Reilly showed that the direction from xðlÞ to
Q lA

T ðAQ lA
T Þ−1y provides a descending direction of the objective

function ∥x∥pp [25]. So θ≤1 is necessary for ∥xðlþ1Þ∥pp≤∥xðlÞ∥pp. Based on
these facts, we can determine the “optimal” θ at each iteration by
solving the following 1-D optimization problem:

θl ¼ argmin
θmin o θo1

‖θxðlÞ þ ð1−θÞQ lA
T ðAQ lA

T Þ−1y‖pp; ð18Þ

where θmin40 is a lower bound of θ.
A brief summary of the IRLS algorithm for equality constrained

problem is presented in Algorithm 3, and the GIRLS algorithm is
summarized in Algorithm 4.

Algorithm 3. Iteratively reweighted least squares algorithm (for
equality constrained problem)
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ.

1:
 Set a sequence of positive numbers fεlg such that

liml-∞εl ¼ 0. Initialize xð0Þ such that y¼Axð0Þ.

2:
 while not converged (l¼ 0;1;2;…) do

3:
 Solve the following ℓ1 minimization problem: Solve the

following weighted least square problem:

xðlþ1Þ← arg min
x∈Rn

∑
n

i ¼ 1
wðlÞ

i x
2
i ; subject to y¼Ax; ð19Þ
where the weights are

wðlÞ
i ¼ ððxðlÞi Þ2 þ εlÞp=2−1:

(Or directly compute xðlþ1Þ←Q lA
T ðAQ lA

T Þ−1y, where

Q l ¼ diagðf1=wðlÞ
i gÞ.)
4:
 end while

5:
 xn←xðlÞ.

Output: xn.

Algorithm 4. Generalized Iteratively Reweighted Least Squares
Algorithm (for equality constrained problem)
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ.
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1:
 Set a sequence of positive numbers fεlg such that

liml-∞εl ¼ 0. Initialize xð0Þ such that y¼ Axð0Þ.

2:
 while not converged (l¼ 0;1;2;…) do

3:
 x̂ ðlþ1Þ←Q lA

T ðAQ lA
T Þ−1y, where Q l ¼ diagðf1=wðlÞ

i gÞ.

4:
 Solve the following optimization problem:

θl←arg min
θ

∥θxðlÞ þ ð1−θÞx̂ ðlþ1Þ∥pp; subject to θminoθo1:5:

xðlþ1Þ←θlxðlÞ þ ð1−θlÞx̂ ðlþ1Þ.

6:
 end while

7:
 xn←xðlÞ.

Output: xn.

Chartrand and Yin [26] analyzed the convergence behavior of
Algorithm 3 and proved that if every 2∥x0∥0 columns of A is
linearly independent then fxðlÞg converges to a vector whose
sparsity is also ∥x0∥0. This result shows that IRLS is theoretically
better than IRL1, whose convergence is uncertain. This will be
verified by our experiments.

2.2.2. For unconstrained problem
The unconstrained ℓp optimization problem ðLℓpÞ can be

approximated as

min
x∈Rn

λ ∑
n

i ¼ 1
ðx2i þ εÞp=2 þ 1

2
∥y−Ax∥22 _¼ Lpðx; εÞ: ð20Þ

Consider the function Lpðx; εÞ, its critical point x should satisfy the
following equation:

λpxi
ðεþ ðx2i ÞÞ1−p=2

" #
1≤i≤n

þ AT ðAx−yÞ ¼ 0: ð21Þ

So Lai and Wang [21] suggested the following iteration scheme:

λpxðlþ1Þ
i

ðεþ ðxðlÞi Þ2Þ1−p=2

" #
1≤i≤n

þ AT ðAxðlþ1Þ−yÞ ¼ 0; ð22Þ

or equivalently:

ATA þ diag
pλ

ðεþ ðxðlÞi Þ2Þ1−p=2

( ) ! !
xðlþ1Þ ¼ATy: ð23Þ

Note that the xðlþ1Þ obtained by (23) is also the minimizer of the
following problem:

min
x∈Rn

1
2
∥y−Ax∥22 þ ∑

n

i ¼ 1

pλ

ðεþ ðxðlÞi Þ2Þ1−p=2
x2i : ð24Þ

It is easy to see that the ℓp penalty function in (20) is approximated
by a quadratic term in (24), which shares the same idea as Local
Quadratic Approximation (LQA) [38]. Fan and Li applied LQA to
several penalties like ℓ0, ℓ1, and SCAD in [38]. Later Hunter and Li
studied the convergence property of the LQA algorithm and found
that LQA is one of the minorize–maximize (MM) algorithms [39].
They also suggested a perturbed version like (24) for general
penalty functions.

Lai and Wang [21] proved that fxðlÞg generated by IRLS con-
verges to a critical point of (20). So one can get an approximate
local minimizer of the unconstrained ℓp minimization problem by
IRLS. To improve numerical accuracy, one may allow ε to change
along iterations. The corresponding IRLS algorithm is summarized
in Algorithm 5 and recently Lai et al. generalized the analysis on
IRLS with a fixed ε to that with adaptive εl 's [40].

Algorithm 5. Iteratively reweighted least squares algorithm (for
unconstrained problem)
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ; λ40.

1:
 Set a sequence of positive numbers fεlg such that

liml-∞εl ¼ 0. Initialize xð0Þ.
2:
 while not converged (l¼ 0;1;2;…) do

3:
 Solve the following linear system:

ATA þ diag
pλ

ðεl þ ðxðlÞi Þ2Þ1−p=2

( ) ! !
x¼ATy:

and set xðlþ1Þ←x.

4:
 end while

5:
 xn←xðlÞ.

Output: xn.

Although the iterates of IRLS may converge to a sparse solution,
they themselves may not have zero entries at all, because IRLS is
composed of a series of ridge regression problems. Usually the
output of IRLS contains a few large entries and a lot of entries with
very small magnitudes. Thresholding may be adopted to enforce
sparsity of the solution by IRLS. However, care must be taken in
order to choose the threshold appropriately.
2.3. Iteratively thresholding method

Iteratively thresholding method (ITM) [41] is for unconstrained
problem only. To introduce it, we start from a more general
penalized regression problem as follows:

min
x∈Rn

1
2
∥y−Ax∥22 þ Pðx; λÞ _¼ f ðxÞ; ð25Þ

where Pðx; λÞ is a penalty function. By introducing an auxiliary
variable z, we define

gðx; zÞ ¼ 1
2 ∥y−Ax∥

2
2 þ Pðx; λÞ þ 1

2ðx−zÞT ðI−ATAÞðx−zÞ: ð26Þ

Suppose A has been scaled properly such that ∥A∥2o1, where ∥A∥2
denotes the spectral norm (the largest singular value) of A, then
I−ATA is positive definite and hence it is easy to see that
minimizing gðx; zÞ over ðx; zÞ is equivalent to minimizing f ðxÞ
over x.

We may minimize gðx; zÞ by alternating minimization. Given
zðlÞ, the update scheme for xðlþ1Þ can be found as equivalent to

xðlþ1Þ ¼ argmin
x∈Rn

1
2‖x−½ðI−ATAÞzðlÞ þ ATy�‖22 þ Pðx; λÞ: ð27Þ

Given xðlþ1Þ, minimizing over gðxðlþ1Þ; zÞ simply gives zðlþ1Þ ¼ xðlþ1Þ.
Suppose the solution to (27) is given by

xðlþ1Þ ¼ΦððI−ATAÞzðlÞ þ ATy; λÞ; ð28Þ
where Φ is called the thresholding function [41]. Then the
iterations for solving (25) can be written as

xðlþ1Þ ¼ΦððI−ATAÞxðlÞ þ ATy; λÞ: ð29Þ
She [41] showed that different penalty functions may result in the
same thresholding function. It is shown in [23] that for the λ∥x∥pp
penalty function, the corresponding thresholding function is

Φlp ðt; λÞ ¼
0; if jtj≤τðλÞ;
sgnðtÞmaxfθ : gðθÞ ¼ jtjg; if jtj4τðλÞ;

(
ð30Þ

where gðθ; λÞ ¼ θ þ λpθp−1; τðλÞ ¼ λ1=ð2−pÞð2−pÞ½p=ð1−pÞ1−p�1=ð2−pÞ.
Obviously, g attains its minimum τðλÞ at θ0 ¼ λ1=ð2−pÞ½pð1−pÞ�1=ð2−pÞ.
What is more, gðθÞ is strictly increasing on ½θ0;þ∞Þ and gðθÞ-þ ∞
as θ-þ ∞. Therefore, given any t4τðλÞ, the equation gðθÞ ¼ t has
one and only one root in ½θ0;þ∞Þ, which can be found via any
numerical method.

She [23] proved that if ∥A∥2o1 then the algorithm converges to
a stationary point of the objective function in (25). Therefore, we
should use the following updating scheme to obtain a convergent
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sequence:

xðlþ1Þ ¼Φlp ððI−∥A∥−22 ATAÞxðlÞ þ ∥A∥−22 ATy; λ∥A∥−22 Þ: ð31Þ

A brief summary of ITM is in Algorithm 6.
ITM can also be done in an elementary-wise way, i.e., the entries

of x are updated successively by fixing other entries, thus at each
update we are solving a 1-dimensional ℓp minimization problem.
This is actually the well-known coordinate descent algorithm [42],
which has been proposed for LASSO for some time. The popular R
package glmnet is based on this approach [43].

Algorithm 6. Iteratively thresholding method (for unconstrained
problem)
Input: A∈Rm�n; y∈Rm; p∈ð0;1Þ; λ40.

1:
 Initialize xð0Þ.

2:
 while not converged (l¼ 0;1;2;…) do

3:
 xðlþ1Þ←Φlp ððI−∥A∥−22 ATAÞxðlÞ þ ∥A∥−22 ATy; λ∥A∥−22 Þ:
Fig. 1. Comparison of sparse recovery ability for ℓp minimization with different p's
(n¼ 256; S¼ 40; p¼ 0:1;0:5;0:9;1). The horizontal and vertical axes are the number
4:
 end while
of measurements and the success rate, respectively.
5:
 xn←xðlÞ.

Output: xn.

She proved that such an algorithm with no stepsize search
always has a global convergence property [23], and it also works
for group ℓp penalty in generalized linear models (including
classification). Note that neither IRL1 nor IRLS has the guarantee
of convergence without extra conditions. Another issue we want to
mention here is that much faster convergence can be achieved by
using a relaxation form [23], but we restrict ourselves to the basic
form in this paper.
Fig. 2. The recognition rates under different projection dimensions. n¼190, p¼0.5,
and m varies from 20 to 160.
2.4. A brief summary

We have reviewed three types of algorithms for solving the ℓp
minimization problems. Namely, iteratively reweighted ℓ1 mini-
mization (IRL1), iteratively reweighted least squares (IRLS) and its
general form (GIRLS), and iteratively thresholding method (ITM).
Here we give a brief summary on the relations and differences
among them.

IRL1 and IRLS have close connections. They approximate the ℓp
norm with the ℓ1 and ℓ2 norm, which result in solving a series of
reweighted ℓ1 and ℓ2 problems, respectively. ITM, on the other
hand, tackles the problem from a quite different way by using
threshold function techniques.

One of their differences is the sparsity of solutions. Theoreti-
cally, reweighted ℓ2 problems do not generate sparse solutions.
Thus the solution may not have zero entries at all, even if the
iterates of IRLS converge to a sparse vector. On the other hand,
IRL1 and ITM guarantee the sparsity of each iterate, which makes
their zero entries more convincing than the zeros obtained by the
extra thresholding needed by IRLS.

Another difference is in their convergence properties. The
conditions for the convergence of IRL1 and IRLS are rather strict,
while ITM has a global convergence property. This makes the
programming of ITM easier than those of IRL1 and IRLS.
Fig. 3. Medians of SCI values under different projection dimensions. n¼190, p¼0.5,
and m varies from 20 to 160.
3. Numerical experiments

In this section we present extensive experiments to compare
the performance of ℓp minimization algorithms. The codes are all
in MATLAB and run on a Dell workstation with dual quad-core
2.26 GHz Xeon processors and 24 GB of memory.



Fig. 6. False alarms of ℓ1 and ℓp algorithms (p¼0.5).

Q. Lyu et al. / Neurocomputing 119 (2013) 413–424418
3.1. Comparison of sparse recovery properties of ℓp and ℓ1

minimizations

Intuitively and as analyzed in [16,17], ℓp minimization usually
obtains sparser solutions than ℓ1 minimization does. Moreover, the
smaller p is, the sparser solution is. We will testify to this by
experiments.

We fix vector length n¼256 and sparsity S¼40. Let the number
m of measurements vary from 70 to 120. For each m, we generate a
Gaussian random matrix A and normalize its columns to unit ℓ2
length. Then we randomly generate a ground truth vector x0 and
get the measurement vector y¼Ax0. Finally, we solve ℓp mini-
mization problem Eℓp for p¼ 0:1;0:5;0:9 by the IRLS algorithm. For
ℓ1 minimization problem Eℓ1, we solve it by the primal-dual
interior point method, which has a MATLAB implementation in
the ℓ1-magic package [44]. If the solution xn satisfy ∥xn−x0∥2=
∥x0∥2o10−3, we regard it as successful recovery. For each m we do
experiments 100 times and calculate the successful recovery rate.
The results are shown in Fig. 1.

As we can see from Fig. 1, ℓp minimization does have a much
higher success rate in recovering the sparsest solution than ℓ1
does, no matter p¼ 0:1;0:5 or 0.9. For fix p, the successful recovery
rate grows as the number of measurements grows. And as p
Fig. 5. Difference of sparsity under 90% success rate.

Fig. 7. Misses of ℓ1 and ℓp algorithms (p¼0.5).

Fig. 8. The running time of ℓ1 and ℓp algorithms (p¼0.5).

Fig. 4. The 90% success-rate curves of ℓ1 and ℓp algorithms (p¼0.5).
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decreases, the successful recovery rate increases drastically. How-
ever, the difference between the successful recovery rates of
p¼0.9 and p¼0.5 is much larger than that between p¼0.5 and
p¼0.1. Similar phenomenon has been noticed by Xu et al. [22]. So
they advocated p¼0.5.

We further test with a real application: face recognition with
sparse representation proposed by Wright et al. [45]. This method
is to solve the following problem:

min
x∈Rn

λ∥x∥pp þ
1
2
∥Ry−RAx∥22 ð32Þ

first, where y is the test image, A¼ ½A1;A2;…;Ak� is the collection
of all training face images, Ai ¼ ½ai;1; ai;2;…; ai;ni

� is the collection of
all training face images of the ith subject, and R is a Gaussian
random matrix for reducing the data dimension, and then classify
the test image y to the class that has the least residual reconstruc-
tion error using the training images in that class:

min
i

∥y−AδiðxnÞ∥2; ð33Þ

where δi is an operator that picks out the entries corresponding to
the ith subject and sets the rest entries to zeros. To identify invalid
test images, Wright et al. [45] further proposed the following
Fig. 9. The recovery errors under different noise leve
Sparsity Concentration Index (SCI):

SCIðxÞ _¼
k � ð max

i
∥δiðxÞ∥1Þ=∥x∥1−1

k−1
ð34Þ

to reject a test image as an invalid face image if SCIðxnÞoτ, where k
is the number of groups and τ40 is a threshold. Obviously, the
larger SCI is, the heavier the coefficients concentrate on one
subject.

To do real experiments, we use the cropped images in Extended
Yale Face Database B [46], which contains 2414 frontal-face images
of 38 individuals captured under various lighting conditions, the
size of each image being 192�168 pixels. We randomly select 20
images from each subject to form the ith training image sub-
matrix Ai. As we have to do a huge amount of random tests, to
facilitate computation we do singular value decomposition (SVD)
on each RAi: RAi ¼UiΣiV

T
i , and replace the matrix RAi with the

leading five orthonormal faces ~U i _¼ Uið:;1 : 5Þ. Accordingly, the
matrix RA in (32) is replaced with U¼ ½ ~U1; ~U2;…; ~U38�, which has
n¼ 38� 5¼ 190 columns. For fair comparison between ℓp and ℓ1,
which should use different λ's, we further randomly select another
70 images from each subject and tune the λ's in a range ð10−4;10−1Þ
for ℓp and ℓ1 minimizations, respectively, such that they both achieve
the highest recognition rates. We vary the projection dimension (i.e.,
the number of rows in R) from 20 to 160. For each projection
ls and p's. (a) p¼ 0:1, (b) p¼ 0:5, and (c) p¼ 0:9.
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dimension, we randomly select 500 test images from the remaining
images and record the recognition rate and the median of SCI values
obtained in the 500 times experiments. The SCI threshold is set to 0.2,
and those recoveries with SCI values lower than the threshold will be
regarded as mis-classifications as there is no invalid test face images.
The value of p is fixed at 0.5. The results are shown in Figs. 2 and 3.

We can see that ℓp minimization consistently improves the
recognition rates over ℓ1 minimization by at least 5%. Moreover, ℓp
minimization consistently has much higher SCI values, which
indicates that the nonzero entries of the ℓp solutions strongly
concentrate on one subject, hence help improve recognition.

To summarize, by solving ℓp minimization problems one can get
sparser solutions. So ℓp minimization is often desirable if sparsity is
a critical issue.

3.2. Comparison of algorithms for equality constrained problem

In this experiment, we compare the success rates of recovering
the sparsest solution with different algorithms. The value of p is
fixed. The algorithms chosen for comparison are IRL1, IRLS, and
GIRLS. They are all initialized as xð0Þ ¼ 0 as they all aim at finding
the sparsest solution.

We follow Yang et al. [13] to do this experiment. We fix
p¼0.5 and the ambient dimension n¼500, and calculate for each
Fig. 10. The number of false alarms under different noise
algorithm the success rates under different sparsity rates s¼
S=n∈ð0;1� and sampling rates δ¼m=n∈ð0;1�. The test samples
ðA; yÞ are generated in the same way as in the last section. Then
we apply algorithms to problem Eℓp and obtain a recovered vector
xn. xn is regarded as a successful recovery if ∥xn−x0∥2=∥x0∥2o10−3.
The success rate is obtained by doing 100 times of experiments for
each setting of ðs; δÞ. The 90% success-rate curves are drawn in Fig. 4.
We can see that IRLS and GIRLS can recover the sparsest solution
better than IRL1, and all ℓp algorithms result in much higher success
rates than ℓ1 minimization does. A blow-up plot of the differences
from IRL1 (Fig. 5) shows that GIRLS is not much better than IRLS.
This is because the nonconvex nature of ℓp problem.

Although the relative error ∥xn−x0∥2=∥x0∥2 measures the differ-
ence of the computed solution to the ground truth, people may
also care about the false alarms and misses in the computed
solution. Here false alarm means that an entry in the ground truth
is zero but is nonzero in the computed solution; while miss means
that an entry is zero in the computed solution but actually it
should not be zero. These two measures are important for some
applications, e.g., feature selection.

To measure false alarm and miss, we fix p¼0.5, the ambient
dimension to n¼512 and number of measurements to m¼120,
and test ℓp algorithms and ℓ1 minimization for different sparsity S.
For each setting we run the algorithms for 10 times and report the
levels and p's. (a) p¼ 0:1, (b) p¼ 0:5, and (c) p¼ 0:9.
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average quantity. The results are shown in Figs. 6 and 7. We can
see that the false alarms of ℓ1 minimization are always higher than
those of ℓp minimization and when S≤55 the misses of ℓ1 mini-
mization are also always higher than those of ℓp minimization. This
is because ℓp minimization has higher success rates on recovering
the ground truth solution. However, when S is larger the misses of
ℓp minimization may be nearly the same as, or even be slightly
more than, those of ℓ1 minimization. This is because for larger S,
the sparsest solution is less unlikely to be unique and ℓp mini-
mization may have found other sparsest solutions. Moreover, it is
more likely that 0 is no longer a good initialization. Note that the
performances of IRLS and GIRLS are very close to each other and
are both better than IRL1.

Finally, we compare the running time of the algorithms. As IRL1
requires solving an ℓ1 minimization problem at each iteration and IRLS
has a closed-form solution at each iteration, it is expected that IRL1 is
slower than ℓl minimization and IRLS. Moreover, as GIRLS further
involves a 1D minimization but usually has fewer iterations, the
running time of GIRLS and IRLS should be nearly the same. To verify
the above, we use ℓ1-magic [44] to solve the ℓ1 minimization and the ℓ1
subproblems in IRL1. The running time under different sparsities is
displayed in Fig. 8, where we fix p¼0.5, the ambient dimension to
n¼512 and number of measurements to m¼120. We can see that by
using highly optimized packages to solve ℓ1 problem at each iteration,
Fig. 11. The number of misses under different noise lev
IRL1 has achieved comparable or even faster speed than IRLS in our
experiments. The running time of IRLS and GIRLS is indeed nearly the
same as we have not used optimized tools to solve the 1D minimiza-
tion problem at each iteration of GIRLS. Moreover, IRL1, IRLS and GIRLS
are much slower than ℓ1 minimization because ℓ1 minimization is a
convex program.

By the above experiments and observations, we may have the
following conclusions:
1.
els
Measured by success recovery rates, false alarms, and misses,
equality constrained ℓp minimization indeed can produce spar-
ser solutions than ℓ1 minimization does.
2.
 When the ground truth solution is sparse enough, the speed of ℓp
minimization is acceptable as compared with ℓ1 minimization.
3.
 IRLS and GIRLS have very similar performances and are both
better than IRL1.
4.
 By considering both speed and performance, we recommend
using IRLS for equality constrained ℓp minimization.
3.3. Comparison of algorithms for unconstrained problem

In this section, we compare the performance of different
algorithms for the unconstrained problem Lℓp. The algorithms
and p's. (a) p¼ 0:1, (b) p¼ 0:5, and (c) p¼ 0:9.
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involve IRL1, IRLS, and ITM. We also compare with ℓ1-norm based
unconstrained minimization to show the advantage of ℓp over ℓ1
minimizations.

For fair comparison between ℓ1 and ℓp, which should use
different λ's, we tune the λ's in a range ð10−5;10−1Þ for ℓp and ℓ1
minimizations, respectively, such that they both achieve the
smallest recovery error. We fix n¼512, m¼120, and S¼20
throughout the experiments.

To prepare test data, we first generate a ground-truth vector x0

randomly, a Gaussian random matrix A with normalized columns,
and a Gaussian noise e, then the measurement vector y is obtained
by y¼ Ax0 þ e. We vary the noise level ∥e∥2=∥y∥2 from 10−3 to
10−0:5, and for each setting we test the algorithms for 10 times to
obtain the average quantity of recovery error, false alarms, misses,
and running time.

The results are shown in Figs. 9–12. We can have the following
observations:
1.
 ℓp minimization recovers the ground truth much better than
ℓ1 minimization does, especially when the noise level is low
and p is small. Note that the misses of ℓp and ℓ1 minimiza-
tions are nearly the same, while ℓp minimization results in
Fig. 12. The running times under different noise levels a
much fewer false alarms for high noise level case, thus ℓp
minimization achieves much sparser solutions than ℓ1 does
when there is considerable amount of noise. However, ℓ1
minimization is again much faster than ℓp minimization as
expected.
2.
 ℓp algorithms have nearly the same performance, they only have
significant difference on speed. ITM is the fastest among ℓp
algorithms, and its performance is competitive. Note that ITM
has obtained awhole solution path, thus it is much faster than IRL1
and IRLS when solutions under different parameters are needed.
3.
 There is not much difference between p¼0.1 and p¼0.5 for the
performance of ℓp algorithms. When p approaches 1, say, p¼0.9,
the speed and false alarms of ℓp algorithms becomes much
worse. So we suggest p¼0.5 for practical use. This is also
consistent with [22].

So we may conclude that ℓp minimization leads to sparser solu-
tions than ℓ1 does by sacrificing efficiency. Considering both
performance and speed, we recommend IRLS again for solving
the unconstrained ℓp minimization problemwhen the parameter is
given. To obtain solutions under different λ's, e.g., when tuning
parameters, we recommend ITM instead.
nd p's. (a) p¼ 0:1, (b) p¼ 0:5 and (c) p¼ 0:9.
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4. Conclusions and remarks

In this paper, we have reviewed three typical ℓp minimization
algorithms: IRL1, IRLS (and its generalized form GIRLS), and ITM, and
compared their performance on equality constrained ℓp minimization
problem and unconstrained ℓp minimization problem.We have found
that IRLS is the best among the three algorithms, regarding perfor-
mance and computation speed. We also compare ℓp minimization
with ℓ1 minimization and verify that ℓp minimization can result in
sparser solution than ℓ1 minimization does, justifying the necessity of
using ℓp minimization for solving the sparsest representation vector.
As ℓp minimization is generally slower than ℓ1 minimization, in real
applications we recommend using ℓp minimization (and solving by
IRLS) only when the sparsity of solution is a critical issue.

Finally, wewould like to mention some practical issues when using
these algorithms. First, although we recommend IRLS, as mentioned in
Section 2.2.2, one has to choose an appropriate threshold to enforce
the sparsity of its solution. Otherwise, false alarms or misses may
occur. In comparison, IRL1 and ITM do not have such an issue as they
both contain thresholding operations in their iterations. Second, in
practice people may want to obtain a whole solution path, i.e.,
solutions under different λ's, for parameter tuning, where λ starts
from a relatively large value and gradually reduces to a relatively small
value. In this case, ITM is more preferred over IRLS because the warm
start technique can be easily incorporated in ITM to boost its speed
significantly, as having been showed in Fig. 12. The warm start
technique simply uses the solution of last problem as the initial value
of next problem. Third, as for the initialization of the solution for the
unconstrained ℓp problem, no theoretical analysis has been developed
for IRL1 and IRLS. So in practice one may simply initialize with a zero
vector. However, for ITM She has reported in [23] that if starting with
the zero vector ITM with warm start can easily be trapped at a poor
local optimum, hence initializing with a zero vector is not recom-
mended for ITM. Nonetheless, how to choose a good initial vector is
still an open problem.
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