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Gradient vector flow (GVF) and generalized GVF (GGVF) have been widely applied in many image pro-
cessing applications. The high cost of GVF/GGVF computation, however, has restricted their potential
applications on images with large size. Motivated by progress in fast image restoration algorithms, we
reformulate the GVF/GGVF computation problem using the convex optimization model with equality
constraint, and solve it using the inexact augmented Lagrangian method (IALM). With fast Fourier trans-
form (FFT), we provide two novel simple and efficient algorithms for GVF/GGVF computation, respec-
tively. To further improve the computational efficiency, the multiresolution approach is adopted to
perform the GVF/GGVF computation in a coarse-to-fine manner. Experimental results show that the pro-
posed methods can improve the computational speed of the original GVF/GGVF by one or two order of
magnitude, and are more efficient than the state-of-the-art methods for GVF/GGVF computation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Gradient vector flow (GVF) field (Xu and Prince, 1998a) was
first introduced as a new external force to address the two key
problems in parametric active contour model (ACM) (Kass et al.,
1987): the small capture range of the external forces and difficul-
ties of progressing into boundary concavities. Xu and Prince
(1998b) further proposed a generalized GVF (GGVF) external field
to improve the convergence to long thin boundary indentations
by incorporating two spatially varying weights. Besides parametric
ACM, GVF had also been adopted by Paragios et al. (2004) in geo-
metric ACM for image segmentation.

Moreover, the applications of GVF can be extended to other im-
age processing tasks, e.g., tracking, denoising, restoration, and skel-
etonization. In (Ray and Acton, 2004), by embedding the motion
direction in the GVF energy functional using a regularized Heavi-
side function, Ray and Acton proposed a motion GVF external force
for tracking rolling leukocyte. In (Yu and Chua, 2006), Yu and Chua
introduced GVF field in the field of image restoration to reformu-
late several popular anisotropic diffusion models, e.g., shock filter,
mean curvature flow, and Perona–Malik model, to obtain better
robustness against noise and spurious edges with improved high-
order derivative estimation. In (He et al., 2008), GVF was used as
new intensity diffusion direction for better color photo denoising.
In (Ghita and Whelan, 2010), Ghita and Whelan proposed a new
GVF field formulation for adaptive denoising of mixed noise. In
ll rights reserved.
(Hassouna and Farag, 2009), Hassouna and Farag incorporated
GVF in the variational skeleton model by introducing modified
GVF medial function to improve the accuracy and robustness of
the curve skeleton method.

Despite its success and popularity, the GVF method requires a
high computational cost, which has restricted their potential
applications to images with large sizes. One possible solution is
to develop alternative external forces which can be efficiently com-
puted. For example, Li and Acton (2007) proposed a vector field
convolution (VFC) external force. Another solution is to design effi-
cient numerical schemes for fast GVF computation. In (Ntalianis
et al., 2001), Ntalianis et al. proposed a multiresolution implemen-
tation of GVF computation for video object segmentation. In (Bou-
kerroui, 2009), Boukerroui compared several efficient numerical
schemes for GVF computation, and showed that the alternating
direction explicit scheme (ADES) may be a suitable alternative to
the multigrid method. Recently, Han et al. (2007) proposed a mul-
tigrid GVF/GGVF (MGVF/MGGVF) algorithm, which can signifi-
cantly improve the computational efficiency. To the best of our
knowledge, MGVF/MGGVF are the most efficient schemes for
GVF/GGVF computation.

In this paper, we propose a novel fast GVF/GGVF computation
scheme based on the augmented Lagrangian method (ALM). We
reformulate GVF as a constrained convex optimization problem,
and use an efficient optimization scheme, i.e., ALM (Afonso et al.,
2010; Wang et al., 2008) with variable splitting method (Liu
et al., 2010), for fast GVF and GGVF computation. Part of the paper
had been presented in (Li et al., 2011). In this paper, we further
proposed different variable splitting methods for GVF and GGVF

http://dx.doi.org/10.1016/j.patrec.2012.09.017
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computation, respectively. Furthermore, multiresolution scheme is
adopted to enhance the efficiency. Experimental results indicate
that, the proposed methods can significantly improve the compu-
tational speed, and are more efficient than MGVF and MGGVF. Fi-
nally, the contributions of this paper can be summarized as
follows:

(1) We show that GVF/GGVF computation are convex optimiza-
tion problems, and then reformulate them to the problems
which can be efficiently solved using the augmented
Lagrangian methods (ALM). To the best of our knowledge,
ALM is used here for the first time for fast GVF/GGVF
computation.

(2) We further combine the multiresolution approach with the
proposed ALM solution, resulting in the MR-IALM algo-
rithms. Comparative studies indicate that, MR-IALM is much
faster than the multigrid method (Han et al., 2007).

The remainder of the paper is organized as follows. Section 2
introduces some background knowledge, including GVF, GGVF,
and the augmented Lagrangian methods. Section 3 introduces the
proposed GVF and GGVF computation methods. Section 4 first
evaluates the efficiency of the proposed methods, and demon-
strates the application of GVF for image segmentation and image
restoration. Finally, Section 5 ends this paper with several conclud-
ing remarks.
2. Prerequisites and related work

In this section, we first describe the GVF and GGVF fields, and
briefly review several fast computation schemes. Then we intro-
duce several basic ingredients on convex optimization, i.e., variable
splitting and augmented Lagrangian methods.
2.1. Gradient vector flow and generalized gradient vector flow

Given the edge map f(x,y) derived from the image I(x,y) using
any edge detector, e.g., Canny or Sobel operator, GVF and GGVF
fields (Xu and Prince, 1998a,b) can be defined as a vector field
w(x,y) = [u(x,y), v(x,y)] that minimizes the following energy
functional,

Eðwðx; yÞÞ ¼
Z Z

gðjrf jÞjrwj2 þ hðjrf jÞjw�rf j2dxdy; ð1Þ

where j � j denotes the l2 norm with jrwj2 ¼ ju2
x þ u2

y þ v2
x þ v2

y j. For
GVF, we choose gðjrf jÞ be a constant l and hðjrf jÞ ¼ jrf j2. For
GGVF, we choose gðjrf jÞ ¼ e�ðjrf j=KÞ and hðjrf jÞ ¼ 1� gðjrf jÞ. Based
on the calculus of variations, the GVF field can be obtained by solv-
ing the partial differential equation (PDE) problems, treating u and
v as functions of time t:

utðx; y; tÞ ¼ gðjrf jÞr2uðx; y; tÞ þ hðjrf jÞ½uðx; y; tÞ � fhðx; yÞ�; ð2Þ
v tðx; y; tÞ ¼ gðjrf jÞr2vðx; y; tÞ þ hðjrf jÞ½vðx; y; tÞ � fvðx; yÞ�; ð3Þ

where u(x,y,t) and v(x,y,t) can be obtained in parallel, where fh(x,y)
and fv(x,y) are the partial derivatives of f(x,y) in the horizontal and
vertical directions, respectively. Xu and Prince (1998a) adopted an
explicit difference scheme to obtain the solutions of (2) and (3).
Boukerroui (2009) tested several other numerical schemes, includ-
ing the alternating direction explicit scheme (ADES), the additive
operating splitting (AOS), and the locally one dimensional (LOD)
methods, and showed that ADES was more appropriate for fast
GVF computation.
Using the calculus of variations, the solution to (1) can be di-
rectly computed by seeking the solution to the following Euler–La-
grange equations,

0 ¼ gðjrf jÞr2uðx; yÞ þ hðjrf jÞ½uðx; yÞ � fhðx; yÞ�; ð4Þ

0 ¼ gðjrf jÞr2vðx; yÞ þ hðjrf jÞ½vðx; yÞ � fvðx; yÞ�: ð5Þ

Here, u(x,y) and v(x,y) denote the final solution of u(x,y,t) and
v(x,y,t), i.e., u(x,y) = u(x,y,+) and v(x,y) = v(x,y,+). In Han et al.,
2007, Han et al. proposed a multigrid GVF computation scheme
which adopted the full multigrid algorithm (FMG) framework Trot-
tenberg et al., 2001 to solve the above equations.

2.2. Variable splitting and augmented Lagrangian methods

2.2.1. Variable splitting
Consider the following type of unconstrained optimization

problem,

min
u2Rn

f ðuÞ þ gðGuÞ; ð6Þ

where G 2 Rd�n. Rather than directly solving the above problem,
variable splitting reformulates the problem (6) as an equivalent
constrained optimization problem,

min
u2Rn ;v2Rd

f ðuÞ þ gðvÞ; subject to v ¼ Gu; ð7Þ

by introducing an auxiliary variable v. In several image processing
applications (Afonso et al., 2010; Liu et al., 2010; Zuo and Lin,
2011), it is much easier to solve problem (7) than to solve the
unconstrained problem (6).

2.2.2. Augmented Lagrangian method
Consider a convex optimization problem with equality

constraints,

min
z2Rn

FðzÞ; subject to Az � b ¼ 0; ð8Þ

where b 2 Rp and A 2 Rp�n. The augmented Lagrangian (AL) func-
tion is then defined as,

Lðz; k;rÞ ¼ FðzÞ þ kTðb� AzÞ þ r
2
kAz � bk2

2; ð9Þ

where k 2 Rp is a vector of Lagrangian multiplier and r > 0 is the AL
penalty parameter. As described in Algorithm 1, the augmented
Lagrangian method (ALM) Ganesh et al., 2009, also known as the
method of multipliers (MM), solves problem (9) by iteratively
updating z, k, and r until some convergence criterion is satisfied.

Algorithm 1. ALM/MM

1. Initialize z0; k0;r0 > 0;q > 0
2. while not converged
3. zkþ1 ¼ arg minzfLðz; kk;rkÞg
4. kkþ1 ¼ kk þ rkðAzkþ1 � bÞ
5. rkþ1 þ qrk

6. k kþ 1
7. end while
2.2.3. Inexact augmented Lagrangian method
One can use ALM to solve the problem (7) by defining

F(z) = f(u) + g(v) and choosing

z ¼ ½uT ;vT �T ; b ¼ 0; A ¼ ½G;�I�: ð10Þ
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Here Steps 3 and 4 of Algorithm 1 become,

ðukþ1;vkþ1Þ ¼ arg min
u;v

f ðuÞ þ gðvÞ þ rkþ1

2
kGu� vk2

2 þ kT
kðv � GuÞ

n o
;

ð11Þ

kkþ1 ¼ kk þ rkðGukþ1 � vkþ1Þ: ð12Þ

For most problems, the solution to (11) is not trivial. Fortu-
nately, we can use the inexact ALM (IALM) algorithm Wang
et al., 2008; Ganesh et al., 2009, which is also called the alternating
direction method, to iterate between updating uk+1 by keeping v
fixed and updating vk+1 by keeping u fixed, and still guarantee
the convergence and optimality.

To converge to an optimal solution, we should guarantee that rk

is nondecreasing and
Pþ1

k¼1r�1
k ¼ þ1. The conventional updating

rule rk+1 = qrk cannot satisfy these constraints and we should re-
quires rk be upper bounded, e.g. rk + 1 = min(qrk, rmax), and thus
might result in slower convergence. In our implementation, we
adopt another strategy in (Lin et al., 2009, 2011) for updating rk

as follows:

rðkþ1Þ ¼ qrðkÞ; if vkþ1 � vkk k2
2= vkþ1k k2

2 < e
rk; otherwise

(
; ð13Þ

The detail of IALM is described in Algorithm 2.

Algorithm 2. IALM

1. Initialize z0; k0;r0 > 0;q > 0
2. while not converged

3. ukþ1 ¼ arg minu f ðuÞ þ rkþ1
2 jjGu� vkjj22 � kT

kðGuÞ
n o

4. vkþ1 ¼ arg minv gðvÞ þ rkþ1
2 jjGukþ1 � v jj22 � kT

kv
n o

5. kkþ1 ¼ kk þ rkðGukþ1 � vkþ1Þ
6. Update rk to rkþ1

7. k kþ 1
8. end while
3. Fast GVF and GGVF computation

In this section, we present the proposed methods for fast GVF
and GGVF computation by combining the augmented Lagrangian
method and multiresolution scheme. For GVF and GGVF computa-
tion, we design different variable splitting methods, respectively.
First, we provide a general outline of the proposed methods, then
describe the augmented Lagrangian methods for GVF and GGVF
computation, respectively, and finally present several remarks on
the algorithm implementation.

3.1. Outline of the proposed methods

Generally, the discrete version of the GVF or GGVF energy func-
tional can be rewritten as,

Eðu;vÞ ¼ ðjGDhuj2 þ jGDvuj2 þ jGDhv j2 þ jGDvvj2Þ þ ðu

� f hÞ
T Mðu� f hÞ þ ðv � f vÞ

T Mðv � f vÞ; ð14Þ

where Dh and Dv are the gradient operator in horizontal and vertical
directions, respectively, G is a diagonal weight matrix with
Gði; iÞ ¼ ðgðjrf jÞÞi;and M is a diagonal weight matrix with
Mði; iÞ ¼ ðhðjrf jÞÞi. In Eq. (14), all the terms are quadratic and the
Hessian is nonnegative definite, thus the function E(u, v) is convex
with respective to u and v. Then, u and v can be solved individually
by solving the following two unconstrained optimization problems:
u ¼ arg min
u
ðkGDhuk2 þ kGDvuk2Þ þ ðu� f hÞ

T Mðu� f hÞ; ð15Þ

v ¼ arg min
v
ðkGDhvk2 þ kGDvvk2Þ þ ðv � f vÞ

T Mðv � f vÞ: ð16Þ

Since u and v can be computed in parallel by using the same algo-
rithm, we only focus on the computation of u in the following.

Since the objective function defined in Eq. (15) is quadratic, we
can directly obtain the optimal solution of u by solving the follow-
ing system of linear equations,

ðDT
hGT GDh þ DT

vGT GDv þMÞu ¼ Ku ¼Mf h: ð17Þ

However, the mn �mn matrix K is neither diagonal nor circular,
making it is computationally expensive to obtain by direct solving
the system of linear equations. Fortunately, as described in the
remainder of this section, with the help of variable splitting, we
can reformulate the problem in Eq. (15) to a convex problem with
equality constraint, and then developed the IALM-based algorithms.
Thanks to the fast convergence speed of ALM-based algorithm
(Bertsekas, 1996), and all the subproblems can be efficiently solved,
the proposed IALM-GVF/GGVF method is very efficient for GVF/
GGVF computation. Moreover, we incorporate multiresolution
scheme with IALM, resulting in the MR-IALM-GVF/GGVF
algorithms.

The outline of the MR-IALM-GVF/GGVF algorithms are shown in
Algorithm 3. First, we obtain the multiscale pyramid representa-
tion of the edge images. The size ratio of 2 is adopted between
scales. Then we begin the GVF or GGVF computation (Please refer
to Section 3.2 and Section 3.3) on the edge image of the coarsest
scale, and then upsample the result as the initialization of the
GVF or GGVF field on the finer scale. We continue this procedure
to obtain the final GVF or GGVF field of the finest scale. In sum-
mary, we present the overall algorithm of the proposed method
in Algorithm 3.

Algorithm 3. Overall Algorithm

Input: Edge image, parameter values, initial GVF or GGVF
field in the coarsest level

Output: Final GVF or GGVF field
1. Construct coarse-to-fine pyramid of edge image
2. Loop over coarse-to-fine level
3. Run IALM-GVF (Section 3.2) or IALM-GGVF (Section 3.3)
4. Upsampling of the GVF or GGVF field
5. Run IALM-GVF (Section 3.2) or IALM-GGVF (Section 3.3)

in the finest level
3.2. Inexact augmented Lagrangian method for GVF computation

For GVF, we have gðjrf jÞ ¼ l and hðjrf jÞ ¼ jrf j2. Then Eq. (15)
becomes,

u ¼ arg minl
u
ðkDhuk2 þ kDvuk2Þ þ ðu� f hÞ

T Mðu� f hÞ; ð18Þ

where Mði; iÞ ¼ fhðiÞ2 þ fvðiÞ2. Using variable splitting, the problem
(18) can be reformulated as an equivalent constrained problem,

u ¼ arg min
u;u0

lðkDhuk2 þ kDvuk2Þ þ ðu0 � f hÞ
T Mðu0 � f hÞ

subject to u0 ¼ u
; ð19Þ

The augmented Lagrangian function of (19) is given by,

Lðu;u0; kÞ ¼ lðjDhuj2 þ jDvuj2Þ þ ðu0 � f hÞ
T Mðu0 � f hÞ

þ kTðu0 � uÞ þ r
2
ku� u0k2

2: ð20Þ
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Here Step 3 of Algorithm 2 becomes

uðkþ1Þ ¼ arg min
u

luTðDT
hDh þ DT

vDvÞu� kðkÞT uþ rðkÞ

2
ku

� u0ðkÞk2
2: ð21Þ

With the help of fast Fourier transform (FFT), we can derive the
closed-form solution of problem (21),

uðkþ1Þ ¼ FFT�1fðFFTðkðkÞ þ rðkÞu0ðkÞÞÞ£ð2lFFTðDT
hDh þ DT

vDvÞ
þ rðkÞIÞg; ð22Þ

where I is the identity matrix, £ is the entry-wise division, and
FFT�1 denotes the inverse fast Fourier transform. Step 4 of Algo-
rithm 2 becomes

u0ðkþ1Þ ¼ arg min
u0
ðu0 � f hÞ

T Mðu0 � f hÞ þ kðkÞT u0 þ rðkÞ

2
kuðkÞ

� u0k2
2; ð23Þ

and the closed-form solution of u0kþ1 is,

u0ðkþ1Þ ¼ ð2M þ rðkÞIÞ�1ð2Mf h � kðkÞ þ rðkÞuðkþ1ÞÞ: ð24Þ

Similar with Algorithm 2, we update the penalty parameter as
follows,

rðkþ1Þ ¼ qrðkÞ; if ukþ1 � ukk k2
2= ukþ1k k2

2 < e
rðkÞ; otherwise

(
: ð25Þ

Finally, we summarize the IALM-based algorithm for computing
u in Algorithm 4.

Algorithm 4. IALM-GVF

Input: fh, l, M
Output: u
1. Initialize k = 0, u(k), u0(k),k(k), r(k) > 0, q > 1
2. while not converged
3. u(k+1) = FFT�1{(FFT(k(k) + r(k)u0(k)))£(2 l

FFT(DT
hDh þ DT

v Dv ) + r(k)I)}
4. u0(k+1) = (2M + r(k)I)�1(2Mfh�k(k) + r(k) u(k+1))
5. k(k + 1) = k(k) + r(k+1)(u0(k+1) � u(k+1))
6. Update r(k) to r(k+1)

7. k kþ 1
8. end while
9. u = u(k)
3.3. Inexact augmented Lagrangian method for GGVF computation

For GGVF, we have gðjrf jÞ ¼ e�ðjrf j=KÞ and hðjrf jÞ ¼ 1� gðjrf jÞ.
Then Eq. (15) becomes,

u ¼ arg min
u
ðkGDhuk2 þ kGDvuk2Þ þ ðu� f hÞ

T Mðu� f hÞ; ð26Þ

where G is a diagonal matrix with Gði; iÞ ¼ ðgðjrf jÞÞi; and M is a
diagonal matrix with Mði; iÞ ¼ ðhðjrf jÞÞi: Since GT G is not equal to
lI, the use of the variable splitting strategy in Section 3.2 cannot re-
sult in efficient solution. So we adopt a new variable splitting meth-
od by introducing three auxiliary variables, u0, dh, and dv , with the
constraints, u0 ¼ u;dh ¼ Dhu;dv ¼ Dvu. Using variable splitting, the
problem (26) can be formulated as an equivalent constrained
problem,

u ¼ arg min
u;u0 ;dh ;dv

dT
hHdh þ dT

vHdv þ ðu0 � f hÞ
T Mðu0 � f hÞ

subject to u0 ¼ u
dh ¼ Dhu
dv ¼ Dvu

; ð27Þ
where H ¼ GT G is a diagonal matrix. The augmented Lagrangian
function of (27) is given by,

Lðu;u0;dh;dv ; k1; k2; k3Þ ¼ dT
hHdh þ dT

vHdv þ ðu0 � f hÞ
T Mðu0

� f hÞ þ kT
1ðu0 � uÞ þ r1

2
ku� u0k2

2

þ kT
2ðdh � DhuÞ þ r

2
kdh � Dhuk2

2

þ kT
3ðdv � DvuÞ þ r

2
kdv � Dvuk2

2: ð28Þ

Note that we use the penalty parameter r1 for ku� u0k2
2 and r for

kdh � Dhuk2
2 and kdv � Dvuk2

2.
Following the procedure of IALM, we first update dh and dv by

solving,

dðkþ1Þ
h ¼ argmin

dh

dT
hHdhþk

ðkÞT
2 ðdh�DhuðkÞÞþrðkÞ

2
kdh�DhuðkÞk2

2; ð29Þ

dðkþ1Þ
v ¼ argmin

dv
dT

v Hdv þk
ðkÞT
3 ðdv �Dv uðkÞÞþrðkÞ

2
kdv �Dv uðkÞk2

2: ð30Þ

By making derivatives of Eqs. (29) and (30) be zero with respect
to dh and dv, respectively, dðkþ1Þ

h and dðkþ1Þ
v can be obtained by,

dðkþ1Þ
h ¼ ð2H þ rðkÞIÞ�1ðrðkÞDhuðkÞ þ kðkÞ2 Þ; ð31Þ

dðkþ1Þ
v ¼ ð2H þ rðkÞIÞ�1ðrðkÞDvuðkÞ þ kðkÞ3 Þ; ð32Þ

where 2H þ rðkÞI is a diagonal matrix, so the corresponding inverse
matrix can be efficiently obtained.

Second, u0ðkþ1Þ can be obtained as follows,

u0ðkþ1Þ ¼ arg min
u0
ðu0 � f hÞ

T Mðu0 � f hÞ þ k
ðkÞT
1 u0 þ rðkÞ1

2
kuðkÞ

� u0k2
2; ð33Þ

and the closed-form solution of u0ðkþ1Þ is,

u0ðkþ1Þ ¼ ð2M þ rðkÞ1 IÞ�1ð2Mf h � k
ðkÞ
1 þ rðkÞ1 uðkÞÞ; ð34Þ

where 2M þ rðkÞ1 I is a diagonal matrix, so the corresponding inverse
matrix can be efficiently obtained.

Finally, uðkþ1Þ can be updated by solving following subproblem

uðkþ1Þ ¼ arg min
u

k
ðkÞT
1 ðu0

ðkþ1Þ � uÞ þ rðkÞ1

2
ku� u0ðkþ1Þk2

2

þ k
ðkÞT
2 ðd

ðkþ1Þ
h � DhuÞ þ rðkÞ

2
kdðkþ1Þ

h � Dhuk2
2

þ k
ðkÞT
3 ðd

ðkþ1Þ
h � DvuÞ þ rðkÞ

2
kdðkþ1Þ

v � Dvuk2
2; ð35Þ

and the closed-form solution of uðkþ1Þ is,

uðkþ1Þ ¼ FFT�1fðFFTðu0ÞÞ£ðrðkÞFFTðDT
hDh þ DT

vDvÞ þ rðkÞ1 IÞg; ð36Þ

where

u0 ¼ rðkÞ1 u0ðkþ1Þ � k
ðkÞ
1 � DT

hk
ðkÞ
2 þ rðkÞDT

hdðkþ1Þ
h þ rðkÞDT

vdðkþ1Þ
v

� DT
vk
ðkÞ
3 ; ð37Þ

and £ is the entry-wise division, and FFT�1 denotes the inverse fast
Fourier transform.

For updating r1, we have

rðkþ1Þ
1 ¼

qrðkÞ1 ; if ukþ1 � u0kþ1

�� ��2
2= ukþ1k k2

2 < e1

rðkÞ1 ; otherwise

(
ð38Þ

For updating r, we have
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rkþ1 ¼ qrðkÞ; if Rmin < e2

rðkÞ otherwise

(
; ð39Þ
where Rmin ¼minðkdðkþ1Þ
h � Dhuðkþ1Þk2

2=kd
ðkþ1Þ
h k2

2; kd
ðkþ1Þ
v � Dvuðkþ1Þk2

2=

kdðkþ1Þ
v k2

2Þ.
In summary, we describe the IALM-based algorithm for GGVF

computation in Algorithm 5.
Algorithm 5. IALM-GGVF

Input: fh, H, M
Output: u

1. Initialize k = 0, u(k), u0(k),

dk
h;d

k
v ; k

k
1; k

k
2; k

k
3;rk

1 > 0;rðkÞ > 0;q >1
2. while not converged

3. dðkþ1Þ
h ¼ ð2H þ rðkÞIÞ�1ðrðkÞDhuðkÞ þ k

ðkÞ
2 Þ

4. dðkþ1Þ
v ¼ ð2H þ rðkÞIÞ�1ðrðkÞDv uðkÞ þ k

ðkÞ
3 Þ

5. u0ðkþ1Þ ¼ ð2M þ rðkÞ1 IÞ�1ð2Mf h � k
ðkÞ
1 þ rðkÞ1 uðkÞÞ

6. u0 ¼ rðkÞ1 u0ðkþ1Þ � kðkÞ1 � DT
hk
ðkÞ
2 þ rðkÞDT

hdðkþ1Þ
h

þrðkÞDT
vdðkþ1Þ

v � DT
vk
ðkÞ
3

7. uðkþ1Þ ¼ FFT�1 FFTðu0Þð Þ£ rðkÞFFTðDT
hDh þ DT

v DvÞ
�n

þrðkÞ1 IÞg
8. k

ðkþ1Þ
1 ¼ k

ðkÞ
1 þ rðkÞ1 ðu0ðkþ1Þ � uðkþ1ÞÞ

9. k
ðkþ1Þ
2 ¼ k

ðkÞ
2 þ rðkÞðdðkþ1Þ

h � Dhuðkþ1ÞÞ
10. k

ðkþ1Þ
3 ¼ k

ðkÞ
3 þ rðkÞðdðkþ1Þ

v � Dv uðkþ1ÞÞ
11. Update rðkÞ1 to rðkþ1Þ

1

12. Update rðkÞ to rðkþ1Þ

13. k kþ 1
14. end while
15. u = u(k)

1 https://sites.google.com/site/cswmzuo/IALM-GVF_GGVF.rar.
3.4. Algorithm implementation and discussion

We use the similar initialization scheme for IALM-GVF and
IALM-GGVF. Both uð0Þ and u0ð0Þ are initialized to f h. kðkÞ, k

ðkÞ
1 , k

ðkÞ
2 ,

and k
ðkÞ
3 are all initialized to be zero. For IALM-GGVF, we choose

dð0Þh ¼ Dhuð0Þ and dð0Þv ¼ Dvuð0Þ.
Although the IALM-GVF algorithm converges for any l0 > 0,

q > 0, the values of l0 and q do affect the convergence speed of
the algorithm seriously. In our work, for an m �m image, we
empirically set r(0) = 0.5/m, e ¼ 10�3 and q = 3 for IALM-GVF, and
set rð0Þ ¼ 0:1=m, rð0Þ1 ¼maxð1; ðm� 60Þ=6Þrð0Þ, e1 ¼ e2 ¼ 10�3 and
q = 3 for IALM-GGVF.

Fast Fourier transform usually involves some assumptions on
boundary conditions, e.g., periodic or reflective. To alleviate the ad-
verse influence of boundary condition, we first make a larger zero
image g with the size of 1.14m � 1.14m, and then put the edge map
f at the centre of the image g. Then we use IALM-GVF or IALM-
GGVF on the larger image g to compute the field w(x,y) = [u(x,y),
v(x,y)] and crop the central part as the final result.

There are several possible choices of the stopping criteria of
IALM-GVF and IAML-GGVF. One may check whether the difference
in the objective function value or the iterative solution is below a
sufficient small positive value. Thanks to the multiresolution
scheme, one can also simply run a fixed number of iterations N
(= 1 or 2) to stop the algorithm.

Finally, we discuss the potential advantages of the proposed
IALM and MR-IALM methods. First, IALM is a convex optimization
algorithm, and it is guaranteed to converge to the global optimal
solution. Second, the proposed IALM and MR-IALM methods only
involve several FFT and matrix operations which have been in-
cluded in most image processing libraries, and thus it is easy to
implement them in C/C++ or matlab. Besides, similar optimization
problems and algorithms have been extensively investigated in im-
age restoration (Afonso et al., 2010; Zuo and Lin, 2011), com-
pressed sensing (Afonso et al., 2011), and robust principal
component analysis (Wang et al., 2008; Ganesh et al., 2009). With
the rapid progress in convex optimization algorithms and widely
applications of ALM, we hope more efficient GVF/GGVF computa-
tion algorithms would be developed in this context.
4. Experimental results

In this section, we first evaluate the computational speed of the
proposed IALM-GVF and IALM-GGVF methods1, and compare the
proposed methods with the original methods in (Xu and Prince,
1998b), the multiresolution method (MR-GVF/GGVF) in (Ntalianis
et al., 2001), and the multigrid methods (MGVF and MGGVF) in
(Han et al., 2007). Then, we verify the GVF fields computed by the
proposed methods by applying them on two GVF-based image pro-
cessing tasks: GVF snake and GVF-based anisotropic diffusion based
on Perona–Malik equation. Note that the programs are all coded in
C/C++ and ran on a 2.30 GHz Core(TM)i5–2410 M laptop PC with a
Windows 7 operating system. The implementation of these methods
are summarized as follows:

(a) The codes of the original GVF/GGVF and the multigrid GVF
are downloaded from the webpage (http://www.iacl.ece.j-
hu.edu/static/gvf/). The codes of GVF/GGVF are implemented
in matlab. For the sake of fairness, we have rewritten it in C/
C++. The code of multigrid GVF is implemented in C/C++, but
the website does not provide the MGGVF code. So we imple-
ment the multigrid GGVF code in C/C++ by modifying the
definition of h(f) and g(f).

(b) Based on Ntalianis et al., 2001, we implement the multires-
olution GVF/GGVF methods in C/C++. Finally, we implement
the proposed IALM-GVF/GGVF and MR-IALM-GVF/GGVF
methods in C/C++.

4.1. Evaluation on computational efficiency

In this section, we use a set of human lung CT images to evalu-
ate the speed of original GVF/GGVF, MGVF/MGGVF, and IALM-GVF/
GGVF methods. The sizes of images vary from 256 � 256 to
1024 � 1024. Fig. 1(a) shows one image from the set. For the sake
of fairness, all the algorithms are implemented in C/C++ and test
them using the same environment.

Table 1 lists the run time of different GVF algorithms on the test
images with different sizes. One can see that the run time of all
algorithms increases with the increasing of image size. Compared
with the original GVF and GGVF, IALM-GVF and MR-IALM-GVF
can significantly improve the computational speed by one or sev-
eral orders of magnitude, and would be more efficient when the
size of image increases. Moreover both IALM-GVF and MR-IALM-
GVF can achieve faster speed than MR-GVF and MGVF.

Table 2 lists the run time of different GGVF algorithms on the
test images with different sizes. Analogously, IALM-GGVF is more
efficient than GGVF and MR-GGVF, and MR-IALM-GGVF can
achieve much faster speed than all the other methods. So we can
conclude that the efficiency of MR-IALM-GGVF should be contrib-
uted to both the IALM algorithm and the multiresolution approach.



Fig. 2. Results of anisotropic diffusion model using Perona–Malik equation: (a)
Lena image with salt and pepper noise, (b) denoising result of (a), (c) Lena image
with Gaussian noise, and (d) denoising result of (c).

Fig. 1. Example of a 256 � 256 CT lung image: (a) original image, (b) edge map, (c)
details of partial GGVF field, and (d) segmentation result.

Table 1
Run time (s) of different GVF computation algorithms.

Image size 256 � 256 512 � 512 1024 � 1024

GVF 0.919 14.389 194.354
MR-GVF 0.246 0.640 1.386
MGVF 0.095 0.437 1.731
IALM-GVF 0.039 0.172 0.785
MR-IALM-GVF 0.051 0.219 0.999

Table 2
Run time (s) of different GGVF computation algorithms.

Image size 256 � 256 512 � 512 1024 � 1024

GGVF 1.191 15.323 206.663
MR-GGVF 0.396 0.997 2.242
MGGVF 0.509 2.100 7.868
IALM-GGVF 0.102 0.507 3.008
MR-IALM-GGVF 0.078 0.390 1.732
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In summary, by combining the advantages of IALM and multireso-
lution analysis, MR-IALM-GVF/GGVF can achieve much faster
speed than the state-of-the-art multigrid GVF/GGVF methods.

4.2. GVF-based image processing

In this subsection, we apply the GVF field on two GVF-based im-
age processing tasks to illustrate the effectiveness of the proposed
methods, i.e. image segmentation using GVF snake and GVF-based
anisotropic diffusion model.

4.2.1. GVF snake
An active model (or snake) Kass et al., 1987 is a curve

xðsÞ ¼ ½xðsÞ; yðsÞ�, s 2 ½0;1�, that moves through the spatial domain
of an image to minimize the following energy functional,
E ¼
Z 1

0

1
2

ajx0ðsÞj2 þ bjx00ðsÞj2
h i

þ EextðxðsÞÞds; ð40Þ

where a and b are weighting parameters that control the snake’s
tension and rigidity, respectively, and x0ðsÞ and x00ðsÞ denote the first
and second derivatives of xðsÞ with respect to s. For traditional
snake, Eext is defined as �jrIðx; yÞj2. But for GVF snake, we replace
rEext with the GVF or GGVF field wðx; yÞ.

We perform GVF snake based on the GGVF field computed by
IALM-GGVF. Fig. 1(c) shows part of the GGVF field and Fig. 1(d)
shows the segmentation result on a 256 � 256 CT lung image.
One can see that MR-IALM-GGVF can obtain satisfactory GVF field
to make GVF snake converge to correct image boundary. Besides,
we note that one can incorporate MR-IALM-GGVF scheme with
multiresolution GVF snake. In this way, the segmentation of
Fig. 1(a) can be finished within 0.096 s.

4.2.2. GVF-based anisotropic diffusion model
We implemented a GVF-based anisotropic diffusion model

based on Perona–Malik equation (Yu and Chua, 2006), where the
GVF field is computed in advance using the proposed MR-IALM-
GVF method. The GVF-based Perona–Malik equation is written as

It ¼ �w � rI þ gDI; ð41Þ

where w is the GVF field, gðjrIjÞ ¼ ð1=
ffiffiffiffiffiffiffi
2p
p

rEÞ expð�jrIj2=2r2
EÞ. We

use a 512 � 512 Lena image to evaluate the denoising performance
of the GVF-based Perona–Malik equation. Two kinds of noise was
added to the Lena image: 10% percent of salt and pepper noise (as
shown in Fig. 2(a)) and Gaussian noise with mean of zero and var-
iance of 0.04 (as shown in Fig. 2(c)). As shown in Fig. 2(b) and (d),
satisfactory results can be obtained by GVF-based anisotropic diffu-
sion model with the GVF field obtained by MR-IALM-GVF.

5. Conclusion

In this paper, by reformulating GVF or GGVF computation as
constrained convex optimization problems and using the variable
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splitting and augmented Lagrangian methods, we proposed two
algorithms, IALM-GVF and IALM-GGVF, for fast GVF and GGVF
computation, respectively. The proposed methods can be further
incorporated in the multiresolution scheme for efficient GVF/GGVF
field computation (MR-IALM-GVF/GGVF). Compared with the ori-
ginal GVF and GGVF methods, the proposed methods can improve
the computational speed by one or two order of magnitude, and
are even more efficient for images with large size. Moreover, MR-
IALM-GVF/GGVF are also much faster than multigrid GVF/GGVF
in terms of computational efficiency, and are easy to be
implemented. Finally, we implemented GVF snake for image seg-
mentation and GVF-based anisotropic diffusion model for image
denoising to confirm the validity of our new methods.

Besides, this paper suggested a viewpoint of convex optimiza-
tion for fast GVF or GGVF computation. Recently, convex optimiza-
tion algorithms have received increasing interests and been widely
applied in many applications, e.g., image restoration, and com-
pressed sensing, and matrix completion, In the future, we will
investigate more efficient scheme for GVF/GGVF computation by
referring to progress in related optimization algorithms.
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