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Abstract—In this paper, we address the subspace clustering problem. Given a set of data samples (vectors) approximately drawn

from a union of multiple subspaces, our goal is to cluster the samples into their respective subspaces and remove possible outliers as

well. To this end, we propose a novel objective function named Low-Rank Representation (LRR), which seeks the lowest rank

representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary.

It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the

data is clean, we prove that LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, we prove

that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for data

corrupted by arbitrary sparse errors, LRR can also approximately recover the row space with theoretical guarantees. Since the

subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace clustering

and error correction in an efficient and effective way.

Index Terms—Low-rank representation, subspace clustering, segmentation, outlier detection

Ç

1 INTRODUCTION

IN pattern analysis and signal processing, an underlying
tenet is that the data often contains some type of structure

that enables intelligent representation and processing. So
one usually needs a parametric model to characterize a
given set of data. To this end, the well-known (linear)
subspaces are possibly the most common choice, mainly
because they are easy to compute and often effective in real
applications. Several types of visual data, such as motion [1],

[2], [3], face [4], and texture [5], have been known to be well
characterized by subspaces. Moreover, by applying the
concept of reproducing kernel Hilbert space, one can easily
extend the linear models to handle nonlinear data. So the
subspace methods have been gaining much attention in
recent years. For example, the widely used Principal
Component Analysis (PCA) method and the recently
established matrix completion [6] and recovery [7] methods
are essentially based on the hypothesis that the data is
approximately drawn from a low-rank subspace. However,
a given dataset can seldom be well described by a single
subspace. A more reasonable model is to consider data as
lying near several subspaces, namely, the data is considered
as samples approximately drawn from a mixture of several
low-rank subspaces, as shown in Fig. 1.

The generality and importance of subspaces naturally
lead to a challenging problem of subspace segmentation (or
clustering), whose goal is to segment (cluster or group) data
into clusters with each cluster corresponding to a subspace.
Subspace segmentation is an important data clustering
problem and arises in numerous research areas, including
computer vision [3], [8], [9], image processing [5], [10], and
system identification [11]. When the data is clean, i.e., the
samples are strictly drawn from the subspaces, several
existing methods (e.g., [12], [13], [14]) are able to exactly
solve the subspace segmentation problem. So, as pointed
out by Rao et al. [3] and Liu et al. [14], the main challenge of
subspace segmentation is to handle the errors (e.g., noise
and corruptions) that possibly exist in data, i.e., to handle
the data that may not strictly follow subspace structures.
With this viewpoint, in this paper we therefore study the
following robust subspace clustering [15] problem.

Problem 1.1 (Robust Subspace Clustering). Given a set of

data samples approximately (i.e., the data may contain errors)
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drawn from a union of linear subspaces, correct the possible

errors and segment all samples into their respective subspaces

simultaneously.

Notice that the word “error” generally refers to the
deviation between model assumption (i.e., subspaces) and
data. It could exhibit as noise [6], missed entries [6], outliers
[16], and corruptions [7] in reality. Fig. 2 illustrates three
typical types of errors under the context of subspace
modeling. In this paper, we shall focus on the sample-
specific corruptions (and outliers) shown in Fig. 2c, with mild
concerns to the cases of Figs. 2a and 2b. Notice that an outlier
is from a different model other than subspaces and is
essentially different from a corrupted sample that belongs to
the subspaces. We put them into the same category just
because they can be handled in the same way, as will be
shown in Section 5.2.

To recover the subspace structures from the data
containing errors, we propose a novel method termed
Low-Rank Representation (LRR) [14]. Given a set of data
samples, each of which can be represented as a linear
combination of the bases in a dictionary, LRR aims at
finding the lowest rank representation of all data jointly. The
computational procedure of LRR is to solve a nuclear norm
[17] regularized optimization problem, which is convex and
can be solved in polynomial time. By choosing a specific
dictionary, it is shown that LRR can well solve the subspace
clustering problem: When the data is clean, we prove that
LRR exactly recovers the row space of the data; for the data
contaminated by outliers, we prove that under certain
conditions LRR can exactly recover the row space of the
original data and detect the outlier as well; for the data
corrupted by arbitrary errors, LRR can also approximately
recover the row space with theoretical guarantees. Since the
subspace membership is provably determined by the row
space (we will discuss this in Section 3.2), these further
imply that LRR can perform robust subspace clustering and
error correction in an efficient way. In summary, the
contributions of this work include:

. We develop a simple yet effective method, termed
LRR, which has been used to achieve state-of-the-art
performance in several applications such as motion
segmentation [4], image segmentation [18], saliency
detection [19], and face recognition [4].

. Our work extends the recovery of corrupted data
from a single subspace [7] to multiple subspaces.
Compared to [20], which requires the bases of
subspaces to be known for handling the corrupted

data from multiple subspaces, our method is
autonomous, i.e., no extra clean data is required.

. Theoretical results for robust recovery are provided.
While our analysis shares similar features as
previous work in matrix completion [6] and Robust
PCA (RPCA) [7], [16], it is considerably more
challenging due to the fact that there is a dictionary
matrix in LRR.

2 RELATED WORK

In this section, we discuss some existing subspace segmen-
tation methods. In general, existing works can be roughly
divided into four main categories: mixture of Gaussian,
factorization, algebraic, and spectral-type methods.

In statistical learning, mixed data is typically modeled as
a set of independent samples drawn from a mixture of
probabilistic distributions. As a single subspace can be well
modeled by a (degenerate) Gaussian distribution, it is
straightforward to assume that each probabilistic distribu-
tion is Gaussian, i.e., adopting a mixture of Gaussian
models. Then the problem of segmenting the data is
converted to a model estimation problem. The estimation
can be performed either by using the Expectation Max-
imization (EM) algorithm to find a maximum likelihood
estimate, as done in [21], or by iteratively finding a min-max
estimate, as adopted by K-subspaces [8] and Random
Sample Consensus (RANSAC) [10]. These methods are
sensitive to errors. So several efforts have been made for
improving their robustness, e.g., the Median K-flats [22] for
K-subspaces, the work [23] for RANSAC, and [5] use a
coding length to characterize a mixture of Gaussian. These
refinements may introduce some robustness. Nevertheless,
the problem is still not well solved due to the optimization
difficulty, which is a bottleneck for these methods.

Factorization-based methods [12] seek to approximate the
given data matrix as a product of two matrices such that the
support pattern for one of the factors reveals the segmenta-
tion of the samples. In order to achieve robustness to noise,
these methods modify the formulations by adding extra
regularization terms. Nevertheless, such modifications
usually lead to non-convex optimization problems which
need heuristic algorithms (often based on alternating
minimization or EM-style algorithms) to solve. Getting
stuck at local minima may undermine their performances,
especially when the data is grossly corrupted. It will be
shown that LRR can be regarded as a robust generalization
of the method in [12] (which is referred to as PCA in this

172 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 1, JANUARY 2013

Fig. 1. A mixture of subspaces consisting of a 2D plane and two 1D
lines. (a) The samples are strictly drawn from the underlying subspaces.
(b) The samples are approximately drawn from the underlying
subspaces.

Fig. 2. Illustrating three typical types of errors: (a) noise [6], which
indicates the phenomena that the data is slightly perturbed around the
subspaces (what we show is a perturbed data matrix whose columns
are samples drawn from the subspaces), (b) random corruptions [7],
which indicate that a fraction of random entries are grossly corrupted,
(c) sample-specific corruptions (and outliers), which indicate the
phenomena that a fraction of the data samples (i.e., columns of the
data matrix) are far away from the subspaces.



paper). The formulation of LRR is convex and can be solved
in polynomial time.

Generalized Principal Component Analysis (GPCA) [24]
presents an algebraic way to model the data drawn from
a union of multiple subspaces. This method describes a
subspace containing a data point by using the gradient of a
polynomial at that point. Then subspace segmentation is
made equivalent to fitting the data with polynomials. GPCA
can guarantee the success of the segmentation under certain
conditions, and it does not impose any restriction on the
subspaces. However, this method is sensitive to noise due to
the difficulty of estimating the polynomials from real data,
which also causes the high computation cost of GPCA.
Recently, Robust Algebraic Segmentation (RAS) [25] has
been proposed to resolve the robustness issue of GPCA.
However, the computation difficulty for fitting polynomials
is unfathomably large. So RAS can make sense only when the
data dimension is low and the number of subspaces is small.

As a data clustering problem, subspace segmentation can
be done by first learning an affinity matrix from the given
data and then obtaining the final segmentation results by
Spectral Clustering (SC) algorithms such as Normalized
Cuts (NCut) [26]. Many existing methods, such as Sparse
Subspace Clustering (SSC) [13], Spectral Curvature Cluster-
ing (SCC) [27], [28], Spectral Local Best-fit Flats (SLBF) [29],
[30], the proposed LRR method, and [2], [31], possess such a
spectral nature, so-called spectral-type methods. The main
difference among various spectral-type methods is
the approach for learning the affinity matrix. Under the
assumption that the data is clean and the subspaces are
independent, Elhamifar and Vidal [13] show that a solution
produced by Sparse Representation (SR) [32] could achieve
the so-called ‘1 Subspace Detection Property (‘1-SDP): The
within-class affinities are sparse and the between-class
affinities are all zeros. In the presence of outliers, it is shown
in [15] that the SR method can still obey ‘1-SDP. However,
‘1-SDP may not be sufficient to ensure the success of
subspace segmentation [33]. Recently, Lerman and Zhang
[34] proved that under certain conditions the multiple
subspace structures can be exactly recovered via ‘p (p � 1)
minimization. Unfortunately, since the formulation is not
convex, it is still unknown how to efficiently obtain the
globally optimal solution. In contrast, the formulation of LRR
is convex and the corresponding optimization problem can
be solved in polynomial time. What is more, even if the data
is contaminated by outliers, the proposed LRR method is
proven to exactly recover the right row space, which
provably determines the subspace segmentation results
(we shall discuss this in Section 3.2). In the presence of
arbitrary errors (e.g., corruptions, outliers, and noise), LRR is
also guaranteed to produce near recovery.

3 PRELIMINARIES AND PROBLEM STATEMENT

3.1 Summary of Main Notations

In this paper, matrices are represented with capital symbols.
In particular, I is used to denote the identity matrix, and the
entries of matrices are denoted by using ½�� with subscripts.
For instance, M is a matrix, ½M�ij is its ði; jÞth entry, ½M�i;: is
its ith row, and ½M�:;j is its jth column. For ease of
presentation, the horizontal (respectively, vertical) concate-
nation of a collection of matrices along row (respectively,
column) is denoted by ½M1;M2; . . . ;Mk� (respectively,

½M1;M2; . . . ;Mk�). The block-diagonal matrix formed by a
collection of matrices M1;M2; . . . ;Mk is denoted by

diag M1;M2; . . . ;Mkð Þ ¼

M1 0 0 0
0 M2 0 0

0 0 . .
.

0
0 0 0 Mk

2
6664

3
7775: ð1Þ

The only used vector norm is the ‘2 norm, denoted by
�k k2. A variety of norms on matrices will be used. The matrix
‘0, ‘2;0, ‘1, ‘2;1 norms are defined by Mk k0¼ #fði; jÞ : ½M�ij 6¼
0g, Mk k2;0¼ #fi : k½M�:;ik2 6¼ 0g, Mk k1¼

P
i;j j½M�ijj, and

Mk k2;1¼
P

i k½M�:;ik2, respectively. The matrix ‘1 norm is
defined as Mk k1¼ maxi;jj½M�ijj. The spectral norm of a
matrix M is denoted by Mk k, i.e., Mk k is the largest singular
value of M. The Frobenius norm and the nuclear norm (the
sum of singular values of a matrix) are denoted by Mk kF
and Mk k�, respectively. The euclidean inner product
between two matrices is hM;Ni ¼ trðMTNÞ, where MT is
the transpose of a matrix and trð�Þ is the trace of a matrix.

The supports of a matrix M are the indices of its nonzero
entries, i.e., fði; jÞ : ½M�ij 6¼ 0g. Similarly, its column supports
are the indices of its nonzero columns. The symbol I
(superscripts, subscripts, etc.) is used to denote the column
supports of a matrix, i.e., I ¼ fðiÞ : k½M�:;ik2 6¼ 0g. The
corresponding complement set (i.e., zero columns) is I c.
There are two projection operators associated with I and I c:
PI and PI c . While applying them to a matrix M, the matrix
PIðMÞ (respectively, PI cðMÞ) is obtained from M by setting
½M�:;i to zero for all i 62 I (respectively, i 62 I c).

We also adopt the conventions of using spanðMÞ to
denote the linear space spanned by the columns of a
matrix M, using y 2 spanðMÞ to denote that a vector y
belongs to the space spanðMÞ, and using Y 2 spanðMÞ to
denote that all column vectors of Y belong to spanðMÞ.

Finally, in this paper we use several terminologies,
including “block-diagonal matrix,” “union and sum of
subspaces,” “independent (and disjoint) subspaces,” “full
SVD and skinny SVD,” “pseudo-inverse,” “column space
and row space,” and “affinity degree.” These terminologies
are defined in the Appendix, which can be found in the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2012.88.

3.2 Relations between Segmentation and Row
Space

Let X0 with skinny SVD U0�0V
T

0 be a collection of data
samples strictly drawn from a union of multiple subspaces
(i.e., X0 is clean); the subspace membership of the samples is
determined by the row space ofX0. Indeed, as shown in [12],
when subspaces are independent, V0V

T
0 forms a block-

diagonal matrix: The ði; jÞth entry of V0V
T

0 can be nonzero
only if the ith and jth samples are from the same subspace.
Hence, this matrix, termed Shape Interaction Matrix (SIM)
[12], has been widely used for subspace segmentation.
Previous approaches simply compute the SVD of the data
matrix X ¼ UX�XV

T
X and then use jVXV T

X j
1 for subspace

segmentation. However, in the presence of outliers and
corruptions, VX can be far away from V0 and thus the
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1. For a matrix M, jMj denotes the matrix with the ði; jÞth entry being the
absolute value of ½M�ij .



segmentation using such approaches is inaccurate. In
contrast, we show that LRR can recover V0V

T
0 even when

the data matrix X is contaminated by outliers.
If the subspaces are not independent, V0V

T
0 may not be

strictly block-diagonal. This is indeed well expected since
when the subspaces have nonzero (nonempty) intersections,
then some samples may belong to multiple subspaces
simultaneously. When the subspaces are pairwise disjoint
(but not independent), our extensive numerical experiments
show that V0V

T
0 may still be close to be block-diagonal, as

exemplified in Fig. 3. Hence, to recover V0V
T

0 is still of
interest to subspace segmentation.

3.3 Problem Statement

Problem 1.1 only roughly describes what we want to study.
More precisely, this paper addresses the following problem.

Problem 3.1 (Subspace Recovery). Let X0 2 IRd�n with

skinny SVD U0�0V
T

0 store a set of n d-dimensional samples

(vectors) strictly drawn from a union of k subspaces fSigki¼1 of

unknown dimensions (k is unknown either). Given a set of

observation vectors X generated by

X ¼ X0 þ E0;

the goal is to recover the row space of X0 or to recover the true

SIM V0V
T

0 as equal.

The recovery of row space can guarantee high segmenta-
tion accuracy, as analyzed in Section 3.2. Also, the recovery
of row space naturally implies success in error correction. So
it is sufficient to set the goal of subspace clustering as the
recovery of the row space identified by V0V

T
0 . For ease of

exploration, we consider the problem under three assump-
tions of increasing practicality and difficulty.

Assumption 1. The data is clean, i.e., E0 ¼ 0.

Assumption 2. A fraction of the data samples are grossly

corrupted and the others are clean, i.e., E0 has sparse column

supports as shown in Fig. 2c.

Assumption 3. A fraction of the data samples are grossly

corrupted and the others are contaminated by small Gaussian

noise, i.e., E0 is characterized by a combination of the models

shown in Figs. 2a and 2c.

Unlike [14], the independent assumption on the sub-
spaces is not highlighted in this paper because the analysis
in this work focuses on recovering V0V

T
0 rather than a

pursuit of block-diagonal matrix.

4 LOW-RANK REPRESENTATION FOR MATRIX

RECOVERY

In this section, we abstractly present the LRR method for
recovering a matrix from corrupted observations. The basic
theorems and optimization algorithms will be presented.
The specific methods and theories for handling the sub-
space clustering problem are deferred until Section 5.

4.1 Low-Rank Representation

In order to recover the low-rank matrix X0 from the given
observation matrix X corrupted by errors E0 (X ¼ X0 þ E0),
it is straightforward to consider the following regularized
rank minimization problem:

min
D;E

rank Dð Þ þ � Ek k‘; s:t: X ¼ DþE; ð2Þ

where � > 0 is a parameter and �k k‘ indicates certain
regularization strategy, such as the squared Frobenius norm
(i.e., k � k2

F ) used for modeling the noise as show in Fig. 2a [6],
the ‘0 norm adopted by Candès et al. [7] for characterizing
the random corruptions as shown in Fig. 2b, and the
‘2;0 norm adopted by Liu et al. [14] and Xu et al. [16] for
dealing with sample-specific corruptions and outliers.
Suppose D� is a minimizer with respect to the variable D,
then it gives a low-rank recovery to the original data X0.

The above formulation is adopted by the recently
established the Robust PCA method [7], which has been
used to achieve the state-of-the-art performance in several
applications (e.g., [35]). However, this formulation impli-
citly assumes that the underlying data structure is a single
low-rank subspace. When the data is drawn from a union of
multiple subspaces, denoted as S1;S2; . . . ;Sk, it actually
treats the data as being sampled from a single subspace
defined by S ¼

Pk
i¼1 Si. Since the sum

Pk
i¼1 Si can be much

larger than the union [ki¼1Si, the specifics of the individual
subspaces are not well considered and so the recovery may
be inaccurate.

To better handle the mixed data, here we suggest a more
general rank minimization problem defined as follows:

min
Z;E

rank Zð Þ þ � Ek k‘; s:t: X ¼ AZ þ E; ð3Þ

where A is a “dictionary” that linearly spans the data space.
We call the minimizer Z� (with regard to the variable Z) the
“lowest rank representation” of data X with respect to a
dictionary A. After obtaining an optimal solution ðZ�; E�Þ,
we could recover the original data by usingAZ� (orX � E�).
Since rankðAZ�Þ � rankðZ�Þ,AZ� is also a low-rank recovery
to the original data X0. By setting A ¼ I, the formulation (3)
falls back to (2). So LRR could be regarded as a general-
ization of RPCA that essentially uses the standard bases as
the dictionary. By choosing an appropriate dictionary A, as
we will see, the lowest rank representation can recover the
underlying row space so as to reveal the true segmentation
of data. So, LRR could handle well the data drawn from a
union of multiple subspaces.
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Fig. 3. An example of the matrix V0V
T

0 computed from dependent
subspaces. In this example, we create 11 pairwise disjoint subspaces,
each of which is of dimension 20 and draw 20 samples from each
subspace without errors. The ambient dimension is 200, which is smaller
than the sum of the dimensions of the subspaces. So the subspaces are
dependent and V0V

T
0 is not strictly block-diagonal. Nevertheless, it is

simple to see that high segmentation accuracy can be achieved by using
the above affinity matrix to do spectral clustering.



4.2 Analysis on the LRR Problem

The optimization problem (3) is difficult to solve due to the

discrete nature of the rank function. For ease of exploration,

we begin with the “ideal” case that the data is clean. That is,

we consider the following rank minimization problem:

min
Z

rank Zð Þ; s:t: X ¼ AZ: ð4Þ

It is easy to see that the solution to (4) may not be unique.

As a common practice in rank minimization problems, we

replace the rank function with the nuclear norm, resulting

in the following convex optimization problem:

min
Z

Zk k�; s:t: X ¼ AZ: ð5Þ

We will show that the solution to (5) is also a solution to (4)

and this special solution is useful for subspace segmentation.
In the following, we shall show some general properties

of the minimizer to problem (5). These general conclusions

form the foundations of LRR (the proofs can be found in

Appendix, which is available in the online supplemental

material).

4.2.1 Uniqueness of the Minimizer

The nuclear norm is convex, but not strongly convex. So it is

possible that (5) has multiple optimal solutions. Fortunately,

it can be proven that the minimizer to (5) is always uniquely

defined by a closed form. This is summarized in the

following theorem.

Theorem 4.1. Assume A 6¼ 0 and X ¼ AZ have feasible

solution(s), i.e., X 2 spanðAÞ. Then,

Z� ¼ AyX ð6Þ

is the unique minimizer to (5), where Ay is the pseudo-inverse

of A.

From the above theorem, we have the following corollary

which shows that (5) is a good surrogate of (4).

Corollary 4.1. Assume A 6¼ 0 and X ¼ AZ have feasible

solutions. Let Z� be the minimizer to (5), then rankðZ�Þ ¼
rankðXÞ and Z� is also a minimal rank solution to (4).

4.2.2 Block-Diagonal Property of the Minimizer

By choosing an appropriate dictionary, the lowest rank

representation can reveal the true segmentation results.

Namely, when the columns of A and X are exactly sampled

from independent subspaces, the minimizer to (5) can

reveal the subspace membership among the samples. Let

fS1;S2; . . . ;Skg be a collection of k subspaces, each of which

has a rank (dimension) of ri > 0. Also, let A ¼ ½A1;

A2; . . . ; Ak� and X ¼ ½X1; X2; . . . ; Xk�. Then we have the

following theorem.

Theorem 4.2. Without loss of generality, assume that Ai is a

collection of mi samples of the ith subspace Si, Xi is a

collection of ni samples from Si, and the sampling of each Ai is

sufficient such that rankðAiÞ ¼ ri (i.e., Ai can be regarded as

the bases that span the subspace). If the subspaces are

independent, then the minimizer to (5) is block-diagonal:

Z� ¼

Z�1 0 0 0
0 Z�2 0 0

0 0 . .
.

0
0 0 0 Z�k

2
6664

3
7775;

where Z�i is an mi � ni coefficient matrix with rankðZ�i Þ ¼
rankðXiÞ; 8 i.

Note that the claim of rankðZ�i Þ ¼ rankðXiÞ guarantees

the high within-class homogeneity of Z�i since the low-rank

properties generally require Z�i to be dense. This is different

from SR, which is prone to produce a “trivial” solution if

A ¼ X because the sparsest representation is an identity

matrix in this case. It is also worth noting that the above

block-diagonal property does not require the data samples

to have been grouped together according to their subspace

memberships. There is no loss of generality to assume that

the indices of the samples have been rearranged to satisfy

the true subspace memberships, because the solution

produced by LRR is globally optimal and does not depend

on the arrangements of the data samples.

4.3 Recovering Low-Rank Matrices by Convex
Optimization

Corollary 4.1 suggests that it is appropriate to use the

nuclear norm as a surrogate to replace the rank function in

(3). Also, the matrix ‘1 and ‘2;1 norms are good relaxations

of the ‘0 and ‘2;0 norms, respectively. So we could obtain a

low-rank recovery to X0 by solving the following convex

optimization problem:

min
Z;E
kZk� þ �kEk2;1; s:t: X ¼ AZ þ E: ð7Þ

Here, the ‘2;1 norm is adopted to characterize the error termE

since we want to model the sample-specific corruptions (and
outliers) as shown in Fig. 2c. For the small Gaussian noise as
shown in Fig. 2a, kEk2

F should be chosen; for the random
corruptions as shown in Fig. 2b, kEk1 is an appropriate
choice. After obtaining the minimizer ðZ�; E�Þ, we could use
AZ� (orX � E�) to obtain a low-rank recovery to the original
data X0.

The optimization problem (7) is convex and can be solved
by various methods. For efficiency, we adopt in this paper
the Augmented Lagrange Multiplier (ALM) [36], [37]
method. We first convert (7) to the following equivalent
problem:

min
Z;E;J

Jk k�þ� Ek k2;1; s:t: X ¼ AZ þ E;Z ¼ J:

This problem can be solved by the ALM method, which
minimizes the following augmented Lagrangian function:

L ¼ kJk� þ �kEk2;1 þ tr
�
Y T

1 ðX �AZ � EÞ
�

þ tr
�
Y T

2 ðZ � JÞ
�
þ �

2

���X �AZ � E��2

F
þ
��Z � J��2

F

�
:

The above problem is unconstrained. So it can be minimized
with respect to J , Z, and E, respectively, by fixing the other
variables and then updating the Lagrange multipliers Y1 and
Y2, where � > 0 is a penalty parameter. The inexact ALM
method, also called the alternating direction method, is
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outlined in Algorithm 1.2 Note that although Steps 1 and 3 of

the algorithm are convex problems, they both have closed-

form solutions. Step 1 is solved via the Singular Value

Thresholding (SVT) operator [38], while Step 3 is solved via

the following lemma.

Lemma 4.1 ([39]). Let Q be a given matrix. If the optimal

solution to

min
W

�kWk2;1 þ
1

2
kW �Qk2

F

is W �, then the ith column of W � is

½W ��:;i ¼
k½Q�:;ik2 � �
k½Q�:;ik2

Q:;i; if k½Q�:;ik2 > �;

0; otherwise:

8<
:

4.3.1 Convergence Properties

When the objective function is smooth, the convergence of

the exact ALM algorithm has been generally proven in [37].

For inexact ALM, which is a variation of exact ALM, its

convergence has also been well studied when the number of

blocks is at most two [36], [40]. Up to the present, it is still

difficult to generally ensure the convergence of inexact ALM

with three or more blocks [40]. Since there are three blocks

(including Z, J , and E) in Algorithm 1 and the objective

function of (7) is not smooth, it would be not easy to prove

the convergence in theory.

Algorithm 1. Solving Problem (7) by Inexact ALM

Input: data matrix X, parameter �.

Initialize: Z ¼ J ¼ 0; E ¼ 0; Y1 ¼ 0; Y2 ¼ 0; � ¼ 10�6,

�max ¼ 106; � ¼ 1:1, and " ¼ 10�8.
while not converged do

1. fix the others and update J by

J ¼ arg min 1
� kJk� þ 1

2 kJ � ðZ þ Y2=�Þk2
F .

2. fix the others and update Z by

Z ¼ ðIþATAÞ�1ðAT ðX � EÞ þ J þ ðATY1 � Y2Þ=�Þ.
3. fix the others and update E by

E ¼ arg min �
� kEk2;1 þ 1

2 kE � ðX �AZ þ Y1=�Þk2
F .

4. update the multipliers

Y1 ¼ Y1 þ �ðX �AZ �EÞ;
Y2 ¼ Y2 þ �ðZ � JÞ:

5. update the parameter � by � ¼ minð��; �maxÞ.
6. check the convergence conditions:

kX �AZ � Ek1 < " andkZ � Jk1 < ".

end while

Fortunately, there actually exist some guarantees for
ensuring the convergence of Algorithm 1. According to the
theoretical results in [41], two conditions are sufficient (but
may not necessary) for Algorithm 1 to converge: The first
condition is that the dictionary matrix A is of full column
rank; the second one is that the optimality gap produced in

each iteration step is monotonically decreasing, namely, the
error

�k ¼ ðZk; JkÞ � arg min
Z;J
L

����
����

2

F

is monotonically decreasing, where Zk (respectively, Jk)
denotes the solution produced at the kth iteration,
arg minZ;JL indicates the “ideal” solution obtained by
minimizing the Lagrangian function L with respect to both
Z and J simultaneously. The first condition is easy to obey
since (7) can be converted into an equivalent problem where
the full column rank condition is always satisfied (we will
show this in the next subsection). For the monotonically
decreasing condition, although it is not easy to strictly prove
it, the convexity of the Lagrangian function could guarantee
its validity to some extent [41]. So, it could be well expected
that Algorithm 1 has good convergence properties. More-
over, inexact ALM is known to generally perform well in
reality, as illustrated in [40].

That � should be upper bounded (Step 5 of Algorithm 1) is
required by the traditional theory of the alternating direction
method in order to guarantee the convergence of the
algorithm. So we also adopt this convention. Nevertheless,
please note that the upper boundedness may not be
necessary for some particular problems, e.g., the RPCA
problem as analyzed in [36].

4.3.2 Computational Complexity

For ease of analysis, we assume that the sizes of both A and
X are d� n in the following. The major computation of
Algorithm 1 is Step 1, which requires computing the SVD of
an n� n matrix. So it will be time consuming if n is large,
i.e., the number of data samples is large. Fortunately, the
computational cost of LRR can be easily reduced by
the following theorem, which follows from Theorem 4.1.

Theorem 4.3. For any optimal solution ðZ�; E�Þ to the LRR
problem (7), we have that

Z� 2 span AT
� �

:

The above theorem concludes that the optimal solutionZ�

(with respect to the variable Z) to (7) always lies within the
subspace spanned by the rows of A. This means that Z� can
be factorized into Z� ¼ P � ~Z�, where P � can be computed in
advance by orthogonalizing the columns of AT . Hence, (7)
can be equivalently transformed into a simpler problem by
replacing Z with P � ~Z:

min
~Z;E
k ~Zk� þ � Ek k2;1; s:t: X ¼ B ~Z þ E;

where B ¼ AP �. After obtaining a solution ð ~Z�; E�Þ to the
above problem, the optimal solution to (7) is recovered by
ðP � ~Z�; E�Þ. Since the number of rows of ~Z is at most rA (the
rank of A), the above problem can be solved with a
complexity of OðdnrA þ nr2

A þ r3
AÞ by using Algorithm 1. So

LRR is quite scalable for large-size (n is large) datasets,
provided that a low-rank dictionary A has been obtained.
While using A ¼ X, the computational complexity is at
most Oðd2nþ d3Þ (assuming d � n). This is also fast
provided that the data dimension d is not high.
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2. To solve the problem minZ;E Zk k�þ� Ek k1; s:t:X ¼ AZ þ E, one only
needs to replace Step 3 of Algorithm 1 by E ¼ arg min �

� kEk1 þ 1
2 kE � ðX �

AZ þ Y1=�Þk2
F , which is solved by using the shrinkage operator [36]. Also,

please note here that the setting of " ¼ 10�8 is based on the assumption that
the values in X has been normalized within the range of ½0; 1�.



While considering the cost of orthogonalization and the
number of iterations needed to converge, the complexity of
Algorithm 1 is

Oðd2nÞ þOðnsðdnrA þ nr2
A þ r3

AÞÞ;

where ns is the number of iterations. The iteration number ns
depends on the choice of �: ns is smaller while � is larger,
and vice versa. Although larger � does produce higher
efficiency, it has the risk of losing optimality to use large �
[36]. In our experiments, we always set � ¼ 1:1. Under this
setting, the iteration number usually locates within the
range of 50-300.

5 SUBSPACE RECOVERY BY LRR

In this section, we utilize LRR to address Problem 3.1,
which is to recover the original row space from a set of
corrupted observations. Both theoretical and experimental
results will be presented.

5.1 Exactness to Clean Data

When there are no errors in data, i.e., X ¼ X0 and E0 ¼ 0, it
is simple to show that the row space (identified by V0V

T
0 ) of

X0 is exactly recovered by solving the following nuclear
norm minimization problem:

min
Z

Zk k�; s:t: X ¼ XZ; ð8Þ

which is to choose the data matrix X itself as the dictionary
in (5). By Theorem 4.1, we have the following theorem,
which has also been proven by Wei and Lin [42].

Theorem 5.1. Suppose the skinny SVD of X is U�V T , then the

minimizer to (8) is uniquely defined by

Z� ¼ V V T :

This naturally implies that Z� exactly recovers V0V
T

0 when X

is clean (i.e., E0 ¼ 0).

The above theorem reveals the connection between LRR
and the method in [12], which is a counterpart of PCA
(referred to as “PCA” for simplicity). Nevertheless, it is well
known that PCA is fragile to the presence of outliers. In
contrast, it can be proven in theory that LRR exactly recovers
the row space of X0 from the data contaminated by outliers,
as will be shown in the next section.

5.2 Robustness to Outliers and Sample-Specific
Corruptions

Assumption 2 is to imagine that a fraction of the data
samples are away from the underlying subspaces. This
implies that the error term E0 has sparse column supports.
So, the ‘2;1 norm is appropriate for characterizing E0. By
choosing A ¼ X in (7), we have the following convex
optimization problem:

min
Z;E
kZk� þ �kEk2;1; s:t: X ¼ XZ þ E: ð9Þ

The above formulation “seems” questionable because the
data matrix (which itself can contain errors) is used as the
dictionary for error correction. Nevertheless, as shown in

the following two subsections, A ¼ X is indeed a good
choice for several particular problems.3

5.2.1 Exactness to Outliers

When an observed data sample is far away from the
underlying subspaces, a typical regime is that this sample is
from a different model other than subspaces, a so-called
outlier.4 In this case, the data matrix X contains two parts,
one part consists of authentic samples (denoted by X0)
strictly drawn from the underlying subspaces and the other
part consists of outliers (denoted as E0) that are not
subspace members. To precisely describe this setting, we
need to impose an additional constraint on X0, that is,

PI0
ðX0Þ ¼ 0; ð10Þ

where I 0 is the indices of the outliers (i.e., the column
supports of E0). Furthermore, we use n to denote the total
number of data samples in X, � ¼4 jI 0j=n the fraction of
outliers, and r0 the rank ofX0. With these notations, we have
the following theorem, which states that LRR can exactly
recover the row space of X0 and identify the indices of
outliers as well.

Theorem 5.2 ([43]). There exists �� > 0 such that LRR with
parameter � ¼ 3=ð7kXk ffiffiffiffiffiffiffiffi

��n
p Þ strictly succeeds, as long as

� � ��. Here, the success is in the sense that any minimizer
ðZ�; E�Þ to (9) can produce

U�ðU�ÞT ¼ V0V
T

0 and I� ¼ I 0; ð11Þ

where U� is the column space of Z� and I� is the column
supports of E�.

There are several important notices in the above
theorem. First, although the objective function (9) is not
strongly convex and multiple minimizers may exist, it is
proven that any minimizer is effective for subspace
recovery. Second, the coefficient matrix Z� itself does not
recover V0V

T
0 (notice that Z� is usually asymmetric except

E� ¼ 0), and it is the column space of Z� that recovers the
row space of X0. Third, the performance of LRR is
measured by the value of �� (the larger, the better), which
depends on some data properties such as the incoherence
and the extrinsic rank r0 (�� is larger when r0 is lower). For
more details, please refer to [43].

Fig. 4 shows some experimental results which verify the
conclusions of Theorem 5.2. Notice that the parameter
setting � ¼ 3=ð7kXk ffiffiffiffiffiffiffiffi

��n
p Þ is based on the condition � � ��

(i.e., the outlier fraction is smaller than a certain threshold),
which is just a sufficient (but not necessary) condition for
ensuring the success of LRR. So, in practice (even for
synthetic examples), where � > �� it is possible that other
values of � achieve better performances.

5.2.2 Robustness to Sample-Specific Corruptions

For the phenomenon that an observed sample is away from
the subspaces, another regime is that this sample is an
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3. Note that this does not deny the importance of learning the dictionary.
Indeed, the choice of dictionary is a very important aspect in LRR. We leave
this as future work.

4. Precisely, we define an outlier as a data vector that is independent of
the samples drawn from the subspaces [43].



authentic subspace member, but grossly corrupted. Usual-
ly, such corruptions only happen on a small fraction of data
samples, so-called “sample-specific” corruptions. The mod-
eling of sample-specific corruptions is the same as outliers,
because in both cases E0 has sparse column supports. So
the formulation (9) is still applicable. However, the setting
(10) is no longer valid, and thus LRR may not exactly
recover the row space V0V

T
0 in this case. Empirically, the

conclusion of I� ¼ I 0 still holds [14], which means that
the column supports of E� can identify the indices of the
corrupted samples.

While both outliers and sample-specific corruptions5 are

handled in the same way, a question is how to deal with the

cases where the authentic samples are heavily corrupted to

have similar properties as the outliers. If a sample is heavily

corrupted so as to be independent from the underlying

subspaces, it will be treated as an outlier in LRR, as

illustrated in Fig. 5. This is a reasonable manipulation. For

example, it is appropriate to treat a face image as a nonface

outlier if the image has been corrupted to be look like

something else.

5.3 Robustness in the Presence of Noise, Outliers,
and Sample-Specific Corruptions

When there is noise in the data, the column supports of E0

are not strictly sparse. Nevertheless, the formulation (9) is

still applicable, because the ‘2;1 norm (which is relaxed from

the ‘2;0 norm) can handle the signals that approximately

have sparse column supports well. Since all observations

may be contaminated, it is unlikely in theory that the row

space V0V
T

0 can be exactly recovered. So we target near

recovery in this case. By the triangle inequality of matrix

norms, the following theorem can be simply proven

without any assumptions.

Theorem 5.3. Let the size of X be d� n, and the rank of X0 be

r0. For any minimizer ðZ�; E�Þ to (9) with � > 0, we have

kZ� � V0V
T

0 kF � minðd; nÞ þ r0:

Fig. 6 demonstrates the performance of LRR, in the
presence of noise, outliers, and sample-specific corruptions.
It can be seen that the results produced by LRR are quite
promising.

One may have noticed that the bound given in the above
theorem is somewhat loose. To obtain a more accurate
bound in theory, one needs to relax the equality constraint
of (9) into:

min
Z;E
kZk� þ �kEk2;1; s:t: kX �XZ �EkF � �;

where � is a parameter for characterizing the amount of the
dense noise (Fig. 2a) possibly existing in data. The above
problem can be solved by ALM, in a similar procedure as
Algorithm 1. However, the above formulation needs to
invoke another parameter �, and thus we do not further
explore it in this paper.
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Fig. 4. An example of the matrices U�ðU�ÞT and E� computed from the
data contaminated by outliers. In a similar way as [14], we create
five pairwise disjoint subspaces, each of which is of dimension 4, and
draw 40 samples (with ambient dimension 200) from each subspace.
Then, 50 outliers are randomly generated from Nð0; sÞ, where the
standard deviation s is set to be three times as large as the averaged
magnitudes of the samples. By choosing 0:16 � � � 0:34, LRR produces
a solution ðZ�; E�Þ with the column space of Z� exactly recovering the
row space of X0, and the column supports of E� exactly identifying the
indices of the outliers.

Fig. 5. Two examples of the matrix U�ðU�ÞT computed from the data
corrupted by sample-specific corruptions. (a) The magnitudes of the
corruptions are set to be about 0.7 times as large as the samples.
Considering jU�ðU�ÞT j as an affinity matrix, the average affinity degree
of the corrupted samples is about 40, which means that the corrupted
samples can be projected back onto their respective subspaces. (b) The
magnitudes of the corruptions are set to be about 3.5 times as large as
the samples. The affinity degrees of the corrupted samples are all zero,
which means that the corrupted samples are treated as outliers. In these
experiments, the data samples are generated in the same way as in
Fig. 4. Then, 10 percent samples are randomly chosen to be corrupted
by additive errors of Gaussian distribution. For each experiment, the
parameter � is carefully determined such that the column supports of E�

identify the indices of the corrupted samples.

Fig. 6. An example of the matrices U�ðU�ÞT and E� computed from the
data contaminated by noise, outliers, and sample-specific corruptions. In
this experiment, first we create 10 pairwise disjoint subspaces (each of
which is of dimension 4) and draw 40 samples (with ambient dimension
2,000) from each subspace. Second, we randomly choose 10 percent
samples to be grossly corrupted by large errors. The remaining 90 percent
samples are slightly corrupted by small errors. Finally, as in Fig. 4, 100
outliers are randomly generated. The total amount of errors (including
noise, sample-specific corruptions, and outliers) is given by
kE0kF =kX0kF ¼ 0:63. By setting � ¼ 0:3, U�ðU�ÞT approximately re-
covers V0V

T
0 with error kU�ðU�ÞT � V0V

T
0 kF =kV0V

T
0 kF ¼ 0:17, and the

column supports of E� accurately identify the indices of the outliers and
corrupted samples. In contrast, the recover error produced by PCA is
0.66 and that by the RPCA method (using the best parameters)
introduced in [16] is 0.23.

5. Unlike outlier, a corrupted sample is unnecessary to be independent of
the clean samples.



5.4 Algorithms for Subspace Segmentation, Model
Estimation, and Outlier Detection

5.4.1 Segmentation with Given Subspace Number

After obtaining ðZ�; E�Þ by solving (9), the matrix U�ðU�ÞT
that identifies the column space of Z� is useful for subspace
segmentation. Letting the skinny SVD of Z� be U���ðV �ÞT ,
we define an affinity matrix W as follows:

½W �ij ¼
�
½ ~U ~UT �ij

�2
; ð12Þ

where ~U is formed by U�ð��Þ
1
2 with normalized rows. Here,

for obtaining better performance on corrupted data, we
assign each column of U� a weight by multiplying ð��Þ

1
2.

Notice that when the data is clean, �� ¼ I and thus this
technique does not take any effects. The technical detail of
using ð�Þ2 is to ensure that the values of the affinity matrix W
are positive (note that the matrix ~U ~UT can have negative
values). Finally, we could use the spectral clustering
algorithms such as Normalized Cuts [26] to segment the
data samples into a given number k of clusters. Algorithm 2
summarizes the whole procedure of performing segmenta-
tion by LRR.

Algorithm 2. Subspace Segmentation

Input: data matrix X, number k of subspaces.

1. obtain the minimizer Z� to problem (9).

2. compute the skinny SVD Z� ¼ U���ðV �ÞT .

3. construct an affinity matrix W by (12).
4. use W to perform NCut and segment the data samples

into k clusters.

5.4.2 Estimating the Subspace Number k

Although it is generally challenging to estimate the number
of subspaces (i.e., number of clusters), it is possible to resolve
this model estimation problem due to the block-diagonal
structure of the affinity matrix produced by specific
algorithms [13], [44], [45]. While a strictly block-diagonal
affinity matrix W is obtained, the subspace number k can be
found by first computing the normalized Laplacian (denoted
as L) matrix of W and then counting the number of zero
singular values ofL. While the obtained affinity matrix is just
near block-diagonal (this is the case in reality), one could
predict the subspace number as the number of singular
values smaller than a threshold. Here, we suggest a soft
thresholding approach that outputs the estimated subspace
number k̂ by

k̂ ¼ n� int
Xn
i¼1

f	 ð
iÞ
 !

: ð13Þ

Here, n is the total number of data samples, f
igni¼1 are the
singular values of the Laplacian matrix L, intð�Þ is the
function that outputs the nearest integer of a real number,
and f	 ð�Þ is a soft thresholding operator defined as

f	ð
Þ ¼
1; if 
 � 	;
log2ð1þ 
2

	2Þ; otherwise;

�

where 0 < 	 < 1 is a parameter. Algorithm 3 summarizes
the whole procedure of estimating the subspace number
based on LRR.

Algorithm 3. Estimating the Subspace Number k
Input: data matrix X.

1. compute the affinity matrix W in the same way as in

Algorithm 2.

2. compute the Laplacian matrix L ¼ I�D�1
2WD�

1
2,

where D ¼ diag
�P

j½W �1j; � � � ;
P

j½W �nj
�
.

3. estimate the subspace number by (13).

5.4.3 Outlier Detection

As shown in Theorem 5.2, the minimizer E� (with respect to
the variableE) can be used to detect the outliers that possibly
exist in data. This can be simply done by finding the nonzero
columns of E�, when all or a fraction of data samples are
clean (i.e., Assumptions 1 and 2). For the cases where the
learned E� only approximately has sparse column supports,
one could use thresholding strategy, that is, the ith data
vector of X is judged to be outlier if and only if

k½E��:;ik2 > �; ð14Þ

where � > 0 is a parameter.
Since the affinity degrees of the outliers are zero or close to

being zero (see Figs. 4 and 6), the possible outliers can be also
removed by discarding the data samples whose affinity
degrees are smaller than a certain threshold. Such a strategy is
commonly used in spectral-type methods [13], [34]. Gener-
ally, the underlying principle of this strategy is essential the
same as (14). Comparing to the strategy of characterizing the
outliers by affinity degrees, there is an advantage of usingE�

to indicate outliers, that is, formulation (9) can be easily
extended to include more priors, e.g., the multiple visual
features as done in [18] and [19].

6 EXPERIMENTS

LRR has been used to achieve state-of-the-art performance
in several applications such as motion segmentation [4],
image segmentation [18], face recognition [4], and saliency
detection [19]. In the experiments of this paper, we shall
focus on analyzing the essential aspects of LRR under the
context of subspace segmentation and outlier detection.

6.1 Experimental Data

6.1.1 Hopkins155

To verify the segmentation performance of LRR, we adopt
for experiments the Hopkins155 [46] motion database,
which provides an extensive benchmark for testing various
subspace segmentation algorithms. In Hopkins155, there
are 156 video sequences along with the features extracted
and tracked in all the frames. Each sequence is a sole
dataset (i.e., data matrix) and so there are in total
156 datasets of different properties, including the number
of subspaces, the data dimension, and the number of data
samples. Although the outliers in the data have been
manually removed and the overall error level is low, some
sequences (about 10 sequences) are grossly corrupted and
have notable error levels. Table 1 summarizes some
information about Hopkins155. For a sequence represented
as a data matrix X, its error level is estimated by its rank-r
approximation: kX � Ur�rV

T
r kF=kXkF , where �r contains

the largest r singular values of X, and Ur (respectively, Vr)
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is formed by taking the top r left (respectively, right)
singular vectors. Here, we set r ¼ 4k (k is the subspace
number of the sequence) due to the fact that the rank of
each subspace in motion data is at most 4.

6.1.2 Yale-Caltech

To test LRR’s effectiveness in the presence of outliers and
corruptions, we create a dataset by combining the Extended
Yale Database B [47] and Caltech101 [48]. For Extended Yale
Database B, we remove the images pictured under extreme
light conditions. Namely, we only use the images with view
directions smaller than 45 degrees and light source direc-
tions smaller than 60 degrees, resulting in 1,204 authentic
samples approximately drawn from a union of 38 low-rank
subspaces (each face class corresponds to a subspace). For
Caltech101, we only select the classes containing no more
than 40 images, resulting in 609 nonface outliers. Fig. 7
shows some examples of this dataset.

6.2 Baselines and Evaluation Metrics

Due to the close connections between PCA and LRR, we
choose PCA and RPCA methods as the baselines. Moreover,
some previous subspace segmentation methods are also
considered.

6.2.1 PCA (i.e., SIM)

The PCA method is widely used for dimension reduction.
Actually, it can also be applied to subspace segmentation
and outlier detection as follows: First, we use SVD to obtain
the rank-r (r is a parameter) approximation of the data
matrix X, denoted as X 	 Ur�rV

T
r ; second, we utilize VrV

T
r ,

which is an estimation of the true SIM V0V
T

0 , for subspace
segmentation in a similar way as Algorithm 2 (the only
difference is the estimation of SIM); finally, we computeEr ¼
X � Ur�rV

T
r and use Er to detect outliers according to (14).

6.2.2 Robust PCA

As an improvement over PCA, the robust PCA methods can
also do subspace segmentation and outlier detection. In this
paper, we consider two RPCA methods introduced in [7],
[16], and [42] which are based on minimizing

min
D;E
kDk� þ �kEk‘; s:t: X ¼ DþE:

In [7], the ‘1 norm is used to characterize random corruptions,
so referred to as “RPCA1.” In [16] and[42], the ‘2;1 norm is
adopted for detecting outliers, so referred to as “RPCA2;1.”
The detailed procedures for subspace segmentation and
outlier detection are almost the same as the PCA case above.
The only difference is that Vr is formed from the skinny SVD
of D� (not X), which is obtained by solving the above
optimization problem. Note here that the value of r is
determined by the parameter �, and thus one only needs to
select �.

6.2.3 Sparse Representation

LRR has similar appearance as SR, which has been applied
to subspace segmentation [13]. For fair comparison, in this
paper, we implement an ‘2;1-norm-based SR method that
computes an affinity matrix by minimizing

min
Z;E

Zk k1þ�kEk2;1; s:t: X ¼ XZ þ E; ½Z�ii ¼ 0:

Here, SR needs to enforce ½Z�ii ¼ 0 to avoid the trivial
solution Z ¼ I. After obtaining a minimizer ðZ�; E�Þ, we use
W ¼ jZ�j þ jðZ�ÞT j as the affinity matrix to do subspace
segmentation. The procedure of using E� to perform outlier
detection is the same as LRR.

6.2.4 Some other Methods

We also consider for comparison some previous subspace
segmentation methods, including Random Sample Consen-
sus [10], Generalized PCA (GPCA) [24], Local Subspace
Analysis (LSA) [2], Agglomerative Lossy Compression
(ALC) [3], Sparse Subspace Clustering [13], Spectral Cluster-
ing [31], Spectral Curvature Clustering [27], Multi Stage
Learning (MSL) [49], Locally Linear Manifold Clustering
(LLMC) [50], Local Best-fit Flats (LBF) [29], and Spectral LBF
(SLBF) [29].

6.2.5 Evaluation Metrics

Segmentation accuracy (error) is used to measure the
performance of segmentation. The areas under the Receiver
Operator Characteristic (ROC) curve, known as AUC, are
used for evaluating the quality of outlier detection. For
more details about these two evaluation metrics, please
refer to the Appendix, which is available in the online
supplemental material.

6.3 Results on Hopkins155

6.3.1 Choosing the Parameter �

The parameter � > 0 is used to balance the effects of the
two parts in (9). In general, the choice of this parameter
depends on the prior knowledge of the error level of data.
When the errors are slight, we should use relatively large �;
when the errors are heavy, we should set � to be relatively
small.

Fig. 8a shows the evaluation results over all 156 sequences
in Hopkins155: While � ranges from 1 to 6, the segmentation
error only varies from 1.69 to 2.81 percent; while � ranges
from 3 to 5, the segmentation error almost remains
unchanged, slightly varying from 1.69 to 1.87 percent. This
phenomenon is mainly due to two reasons: First, on most
sequences (about 80 percent) which are almost clean and
easy to segment, LRR could work well by choosing �
arbitrarily, as exemplified in Fig. 8b. Second, there is an
“invariance” in LRR. Namely, Theorem 4.3 implies that the
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TABLE 1
Some Information about Hopkins155

Fig. 7. Examples of the images in the Yale-Caltech dataset.



minimizer to (9) always satisfies Z� 2 spanðXT Þ. This
implies that the solution of LRR can be partially stable
while � is varying.

The analysis above does not deny the importance of
model selection. As shown in Fig. 8c, the parameter � can
largely affect the segmentation performance on some
sequences. Actually, if we turn � to the best for each
sequence, the overall error rate is only 0.07 percent. Although
this number is achieved in an “impractical” way, it verifies
the significance of selecting the parameter �, especially when
the data is corrupted. For the experiments below, we choose
� ¼ 4 for LRR.

6.3.2 Segmentation Performance

In this section, we show LRR’s performance in subspace
segmentation with the subspace number given. For compar-
ison, we also list the results of PCA, RPCA1, RPCA2;1, and SR
(these methods are introduced in Section 6.2). Table 2
illustrates that LRR performs better than PCA and RPCA.
Here, the advantages of LRR are mainly due to its
methodology. More precisely, LRR directly targets on
recovering the row space V0V

T
0 , which provably determines

the segmentation results. In contrast, PCA and RPCA
methods are designed for recovering the column space
U0U

T
0 , which is designed for dimension reduction. One may

have noticed that RPCA2;1 outperforms PCA and RPCA1. If
we use instead the ‘1 norm to regularize E in (9), the
segmentation error is 2.03 percent (� ¼ 0:6, optimally
determined). These illustrate that the errors in this database
tend to be sample-specific.

Besides the superiorities in segmentation accuracy,
another advantage of LRR is that it can work well under a
wide range of parameter settings, as shown in Fig. 8, whereas
RPCA methods are sensitive to the parameter �. Taking
RPCA2;1 for example, it achieves an error rate of 3.26 percent
by choosing � ¼ 0:32. However, the error rate increases to
4.5 percent at � ¼ 0:34 and 3.7 percent at � ¼ 0:3.

The efficiency (in terms of running time) of LRR is
comparable to PCA and RPCA methods. Theoretically, the
computational complexity (with regard to d and n) of LRR
is the same as RPCA methods. LRR costs more computa-
tional time because its optimization procedure needs more
iterations than RPCA to converge.

6.3.3 Performance of Estimating Subspace Number

Since there are 156 sequences in total, this database also
provides a good benchmark for evaluating the effectiveness
of Algorithm 3, which is to estimate the number of subspaces
underlying a collection of data samples. Table 3 shows the
results. By choosing 	 ¼ 0:08, LRR correctly predicts the true
subspace number of 121 sequences. The absolute error (i.e.,
jk̂� kj) averaged over all sequences is 0.25. These results
illustrate that it is hopeful to resolve the problem of
estimating the subspace number, which is a challenging
model estimation problem.

6.3.4 Comparing to State-of-the-Art Methods

Notice that previous methods only report the results for
155 sequences. After discarding the degenerate sequence,
the error rate of LRR is 1.59 percent, which is comparable to
the state-of-the-art methods, as shown in Table 4. The
performance of LRR can be further improved by refining (9),
which uses the observed data matrix X itself as the
dictionary. When the data is corrupted by dense noise (this
is usually true in reality), this certainly is not the best choice.
In [51] and [42], a nonconvex formulation is adopted to learn
the original data X0 and its row space V0V

T
0 simultaneously:

min
D;Z;E

kZk� þ �kEk1; s:t: X ¼ Dþ E;D ¼ DZ;

where the unknown variable D is used as the dictionary.
This method can achieve an error rate of 1.22 percent. In
[4], it is explained that the issues of choosing dictionary can
be relieved by considering the unobserved, hidden data.
Furthermore, it is deduced that the effects of hidden data
can be approximately modeled by the following convex
formulation:
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Fig. 8. The influences of the parameter � of LRR. (a) On all
156 sequences of Hopkins155, the overall segmentation performance
is equally good while 3 � � � 5. (b) On the 43rd sequence,
the segmentation error is always 0 for 0:001 � � � 1; 000. (c) On the
62nd sequence, the segmentation performance is good only when
0:8 � � � 1:6.

TABLE 2
Segmentation Results (on Hopkins155)

of PCA, RPCA1, RPCA2;1, SR, and LRR

TABLE 3
Results (on Hopkins155) of Estimating the Subspace Number

TABLE 4
Segmentation Errors (Percent) on Hopkins155

(155 Sequences)



min
Z;L;E

kZk� þ kLk� þ �kEk1; s:t: X ¼ XZ þ LX þE;

which intuitively integrates subspace segmentation and
feature extraction into a unified framework. This method
can achieve an error rate of 0.85 percent, which outperforms
other subspace segmentation algorithms.

While several methods have achieved an error rate
below 3 percent on Hopkins155, the subspace segmentation
problem is till far from being solved. A long term difficulty
is how to solve the model selection problems, e.g.,
estimating the parameter � of LRR. Also, it would not be
trivial to handle more complicated datasets that contain
more noise, outliers, and corruption.

6.4 Results on Yale-Caltech

The goal of this test is to identify 609 nonface outliers and
segment the remaining 1,204 face images into 38 clusters. The
performance of segmentation and outlier detection is
evaluated by segmentation accuracy (ACC) and AUC,
respectively. While investigating segmentation perfor-
mance, the affinity matrix is computed from all images,
including both the face images and nonface outliers.
However, for the convenience of evaluation, the outliers
and the corresponding affinities are removed (according to
the ground truth) before using NCut to obtain the segmenta-
tion results.

We resize all images into 20� 20 pixels and form a data
matrix of size 400� 1; 813. Table 5 shows the results of PCA,
RPCA, SR, and LRR. It can be seen that LRR is better than the
PCA and RPCA methods in terms of both subspace
segmentation and outlier detection. These experimental
results are consistent with Theorem 5.2, which shows that
LRR has a stronger guarantee than RPCA methods in
performance. Notice that SR is behind the others.6 This is
because the presence or absence of outliers is unnecessary to
notably alert the sparsity of the reconstruction coefficients,
and thus it is hard for SR to handle the data contaminated by
outliers well.

Fig. 9 shows the performance of LRR while the parameter�
varies from 0.06 to 0.22. Notice that LRR is more sensitive to �
on this dataset than on Hopkins155. This is because the error
level of Hopkins155 is quite low (see Table 1), whereas, the
Yale-Caltach dataset contains outliers and corrupted images
(see Fig. 7).

To visualize LRR’s effectiveness in error correction, we
create another data matrix with size 8; 064� 1; 813 by
resizing all images into 96� 84. Fig. 10 shows some results
produced by LRR. It is worth noting that the “error” term E�

can contain “useful” information, e.g., the eyes and salient
objects. Here, the principle is to decompose the data matrix
into a low-rank part and a sparse part, with the low-rank

part (XZ�) corresponding to the principal features of the
whole dataset and the sparse part (E�) corresponding to the
rare features which cannot be modeled by low-rank
subspaces. This implies that it is possible to use LRR to
extract the discriminative features and salient regions, as
done in face recognition [4] and saliency detection [19].

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed low-rank representation to
identify the subspace structures from corrupted data.
Namely, our goal is to segment the samples into their
respective subspaces and correct the possible errors simul-
taneously. LRR is a generalization of the recently established
RPCA methods [7], [16], extending the recovery of
corrupted data from single subspace to multiple subspaces.
Also, LRR generalizes the approach of Shape Interaction
Matrix, giving a way to define an SIM between two different
matrices (see Theorem 4.1), and providing a mechanism to
recover the true SIM (or row space) from corrupted data.
Both theoretical and experimental results show the effec-
tiveness of LRR. However, there still remain several
problems for future work.

. It may achieve significant improvements by learning
a dictionary A, which partially determines the
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6. The results (for outlier detection) in Table 5 are obtained by using the
strategy of (14). While using the strategy of checking the affinity degree, the
results produced by SR are even worse, only achieving an AUC of 0.81 by
using the best parameters.

TABLE 5
Segmentation Accuracy (ACC) and AUC Comparison

on the Yale-Caltech Data Set

Fig. 9. The influences of the parameter � of LRR. These results are
collected from the Yale-Caltech dataset. All images are resized to 20�
20 pixels.

Fig. 10. Some examples of using LRR to correct the errors in the Yale-
Caltech dataset. Left: The original data matrix X; middle: the corrected
data XZ�; right: the error E�.



solution of LRR. In order to exactly recover the row
space V0, Theorem 4.3 illustrates that the dictionaryA
must satisfy the condition of V0 2 spanðAT Þ. When
the data is only contaminated by outliers, this
condition can be obeyed by simply choosing A ¼ X.
However, this choice cannot ensure the validity of
V0 2 spanðAT Þ while the data contains other types of
errors, e.g., dense noise.

. The proofs of Theorem 5.2 are specific to the case of
A ¼ X. As a future direction, it is interesting to see
whether the technique presented can be extended to
general dictionary matrices other than X.

. A critical issue in LRR is how to estimate or select the
parameter �. For the data contaminated by various
errors such as noise, outliers, and corruptions, the
estimation of � is quite challenging.

. The subspace segmentation should not be the only
application of LRR. Actually, it has been successfully
used in the applications other than segmentation,
e.g., saliency detection [19]. In general, the presented
LRR method can be extended to solve various
applications well.
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