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Abstract

This paper proposes the Proximal Iteratively
REweighted (PIRE) algorithm for solving a general
problem, which involves a large body of nonconvex
sparse and structured sparse related problems. Compar-
ing with previous iterative solvers for nonconvex sparse
problem, PIRE is much more general and efficient. The
computational cost of PIRE in each iteration is usually
as low as the state-of-the-art convex solvers. We further
propose the PIRE algorithm with Parallel Splitting
(PIRE-PS) and PIRE algorithm with Alternative
Updating (PIRE-AU) to handle the multi-variable prob-
lems. In theory, we prove that our proposed methods
converge and any limit solution is a stationary point.
Extensive experiments on both synthesis and real data
sets demonstrate that our methods achieve comparative
learning performance, but are much more efficient, by
comparing with previous nonconvex solvers.

Introduction
This paper aims to solve the following general problem

min F(x) = \f(g(x) + () ()
where A > 0 is a parameter, and the functions in the above
formulation satisfy the following conditions:

C1 f(y) is nonnegative, concave and increasing.

C2 g(x) : R® — R< is a nonnegative multi-dimensional
function, such that the following problem
@)

. 1
min A(w, g(x)) + 5 |x — I3,

x€ER™
is convex and can be cheaply solved for any given non-
negative w € R%.
C3 h(x) is a smooth function of type C'+1, i.e., continuously
differentiable with the Lipschitz continuous gradient

IVh(x) = Vh(y)[| < L(h)|[x —y|| forany x,y € R;‘,
3)
L(h) > 01is called the Lipschitz constant of Vh.
C4 \f(g(x)) + h(x) = o0 iff ||x]||2 — o0.
*Corresponding author.
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Note that problem (1) can be convex or nonconvex.
Though f(y) is concave, f(g(x)) can be convex w.r.t x.
Also f(y) and g(x) are not necessarily smooth, and h(x)
is not necessarily convex.

Based on different choices of f, g, and h, the general
problem (1) involves many sparse representation models,
which have many important applications in machine learn-
ing and computer vision (Wright et al. 2009; Beck and
Teboulle 2009; Jacob, Obozinski, and Vert 2009; Gong, Ye,
and Zhang 2012b). For the choice of h, the least square and
logistic loss functions are two most widely used ones which
satisfy (C3):

1 I

h(x) = §||Ax—b||§,0r - Z;log(l—i—exp(—bia;frx)), (4)
where A = [aT;-..:;al] € R"*4 and b € R™. As for
the choice of g(x), |x| (absolute value of x element-wise)
and x? (square of x element-wise) are widely used. One
may also use g(X) = ||x;||2 (x; denotes the i-th column
of X) when pursuing column sparsity of a matrix X. As for
the choice of f, almost all the existing nonconvex surrogate
functions of the £y-norm are concave on (0, o). In element-
wise, they include £,-norm 3” (0 < p < 1) (Knight and
Fu 2000), logarithm function log(y) (Candes, Wakin, and
Boyd 2008), smoothly clipped absolute deviation (Fan and
Li 2001), and minimax concave penalty (Zhang 2010).

The above nonconvex penalties can be further extended to
define structured sparsity (Jacob, Obozinski, and Vert 2009).
For example, let x = [x1; - ;X¢|. By taking g(x)
[[x1]l2;-- - 5 [Ixcll2] and f(y) = >, fi(y:), with f; be-
ing any of the above concave functions, then f(g(x)) is the
nonconvex group Lasso ). fi(||x;||2). By taking f(y) =
> vis f(g(x)) = >, |[xi][2 is the group Lasso.

Problem (1) contains only one variable. We will show that
our proposed model can be naturally used for handling prob-
lem with several variables (which we mean a group of vari-
ables that can be updated simultaneously due to the separa-
bility structure of the problem). An example for multi-task
learning can be found in (Gong, Ye, and Zhang 2012b).

Related Works
If the condition (C3) holds and

. 1
min \f(g(x)) + 5/ — bl

&)



can be cheaply computed, then problem (1) can be solved
by iteratively solving a series of problem (5) (Gong et al.
2013). Such an updating procedure is the same as the ISTA
algorithm (Beck and Teboulle 2009), which is originally
for convex optimization. It can be proved that any accumu-
lation point of {x*} is a stationary point of problem (1).
If f(g(x)) and h(x) are convex, the Fast ISTA algorithm
(FISTA) (Beck and Teboulle 2009) converges to the glob-
ally optimal solution with a convergence rate O(1/T2) (T is
the iteration number). But for nonconvex optimization, it is
usually very difficult to get the globally optimal solution to
problem (5). Sometimes, it is also not easy even if f(g(x))
is convex.

The multi-stage algorithm in (Zhang 2008) solves prob-
lem (1) by solving a series of convex problem.

min M(w", g(x)) + h(x). (6)
However, solving such a convex problem requires other iter-
ative solvers which is not efficient. It also fails when h(x) is
nonconvex.

More specially, the Iteratively Reweighted L1 (IRL1)
(Chen and Zhou ) and Iteratively Reweighted Least Squares
(IRLS) (Lai, Xu, and Yin 2013) algorithms are special cases
of the multi-stage algorithm. They aim to solve the follow-
ing £,-regularization problem

. 1
min A[[x[[} + 5 ||Ax — b[3. )
The above problem is NP-hard. IRL1 instead considers the
following relaxed problem

n 1
minAY (joil + ) + 5 [[Ax =B, ®)
i=1

with 0 < € < 1. IRLI updates x**! by solving

n 1
S argmin)\zwf|xi| + §HAX —~blj3, )

i=1

with w¥ = p/(|z¥| + €)1 7P. Problem (8) is a special case
of (1) by letting f(y) = 3,(yi + €)* (0 < p < 1) and
g(x) = |x|. However, IRLI is not efficient since it has to
solve a number of nonsmooth problem (9) by using some
other convex optimization methods, e.g. FISTA.

The other method, IRLS, smooths problem (7) as

T !
mmAZ}(w? +6)f +5llAx—D[E,  (10)
and updates x**1 by solving
ADiag(w")x + AT(Ax — b) = 0, (11)

with wf = p/((zF)? + e)lfg. Problem (10) is also a spe-

cial case of (1) by taking f(y) = >, (i + €)% and g(x) =
x2. However, the obtained solution by IRLS may not be
naturally sparse, or it may require a lot of iterations to get
a sparse solution. One may perform thresholding appropri-
ately to achieve a sparse solution, but there is no theoreti-
cally sound rule to suggest a correct threshold.
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Another related work is (Lu 2012) which aims to solve

min A Y " (Jzi| + €)F + h(x). (12)
i=1
In each iteration, x is efficiently updated by solving a series
of problem
min Aw?, [x]) + 5 x — b3 (13)
But their solver is only for problem (12) which is a special
case of (1). The convergence proofs also depend on the spe-
cial property of the £,-norm, thus is not general.
Furthermore, previous iterative algorithms can only solve
the problem with only one variable. They cannot be naively
generalized to solve multi-variable problems. However,
there are many problems involving two or more variables,
e.g. stable robust principle component analysis (Zhou et al.
2010) and robust multi-task feature learning (Gong, Ye, and
Zhang 2012b). So it is desirable to extend the iteratively
reweighted algorithms for the multi-variable case.

Contributions

In this work, we propose a novel method to solve the general
problem (1), and address the scalablity and multi-variable
issues. In each iteration we only need to solve problem
(2), whose computational cost is usually the same as previ-
ous state-of-the-art first-order convex methods. This method
is named as Proximal Iteratively REweighted (PIRE) al-
gorithm. We further propose two multiple splitting ver-
sions of PIRE: PIRE with Parallel Splitting (PIRE-PS) and
PIRE with Alternative Updating (PIRE-AU) to handle the
multi-variable problem. Parallel splitting makes the algo-
rithm highly parallelizable, making PIRE-PS suitable for
distributed computing. This is important for large scale ap-
plications. PIRE-AU may converge faster than PIRE-PS. In
theory, we prove that any sequences generated by PIRE,
PIRE-PS and PIRE-AU are bounded and any accumulation
point is a stationary point. To the best of our knowledge,
PIRE-PS and PIRE-AU are the first two algorithms for prob-
lem (1) with multi-variables. If problem (1) is convex, the
obtained solution is globally optimal.

Proximal Iteratively Reweighted Algorithm

In this section, we show how to solve problem (1) by our
Proximal Iteratively Reweighted (PIRE) algorithm. Instead
of minimizing F(x) in (1) directly, we update x**! by min-
imizing the sum of two surrogate functions, which corre-
spond to two terms of F'(x), respectively.

First, note that f(y) is concave, — f(y) is convex. By the
definition of subgradient of the convex function, we have

~fg(x)) > —f(g(x")) + (-w*, g(x) — g(x")), (14)
where —w* is the subgradient of —f(y) aty = g(x*), i.e.

—wh € 0 (~f(g(x"))) orw € ~0 (~f(g(x")). (15)
Eqn (14) is equivalent to

fg(x) < flg(x")) + (W', g(x) —g(x")).  (16)



Algorithm 1 Solving problem (1) by PIRE

Input: ;o > L(zh) , where L (h) is the Lipschitz constant of h(x).

Initialize: k = 0, w”.

Output: x*.
while not converge do

1. Update xk+1 by solving the following problem
. o X 1 2
x**t1 = arg min A(wk,g(x)) + 5 Hx — (xk - 7Vh(xk)> H .
x I3
2. Update the weight w* 1! by

Wt e —o (—f(g(x" 1)) .

end while

Then f(g(x*)) + (w", g(x) — g(x*)) is used as a surrogate
function of f(g(x))

The loss function h(x), which has Lipschitz continuous
gradient, owns the following property (Bertsekas 1999)

L(h)
2
Lety = x*, h(x*) + (VA(x"),x — x*) + Z0 ||x — x*|[3

is used as a surrogate function of h(x).

Combining (16) and (17), we update x
the sum of these two surrogate functions

k+1

h(x) < h(y) + (Vh(y),x —y) + Ix =yl (17)

k+1 by minimizing
x
=argmin f(g(x")) + (w*, g(x) - g(x"))

() 4 (Th(xE), x = %) + = x3

o o)

2

2,
(13)

= arg min Mw", g(x)) + %

where w* is also called the weight corresponding to g(x*).
For the choice of i in (18), our theoretical analysis shows
that p > L(h)/2 guarantees the convergence of the pro-
posed algorithm. Note that f is concave and increasing, this
guarantees that w” in (15) is nonnegative. Usually problem
(18) can be cheaply computed based on the condition (C2).
For example, if g(x) = |x|, solving problem (18) costs only
O(n). Such computational cost is the same as the state-of-
the-art convex solvers for ¢;-minimization. This idea leads
to the Proximal Iteratively REweighted (PIRE) algorithm, as
shown in Algorithm 1. In the next section, we will prove that
the sequence generated by PIRE is bounded and any accu-
mulation point is a stationary point of problem (1).

Convergence Analysis of PIRE

Theorem 1. Let D = F(x!), and pn > @, where L(h)
is the Lipschitz constant of h(x). The sequence {x*} gener-

ated in Algorithm 1 satisfies the following properties:
(1) F(x*) is monotonically decreasing. Indeed,

L(h)> ka _ Xk+1||2,

Pit) = Pt > (- 2
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(2) The sequence {x*} is bounded;

o0
(3) 2 1" =% <

2D .
LR In particular, we have

lim (x¥ —xF+1) = 0.
k—o0
Proof. Since x**! is the globally optimal solution to
problem (18), the zero vector is contained in the sub-
gradient with respect to x. That is, there exists v¥*! ¢
O(w¥ g(x**1)) such that

MWL L Vh(xF) + p(x —xF) =o0.

A dot-product with x*+1

(19)
— x* on both sides of (19) gives

A (VT xFHE xR 4 (Wh(xF), <P — xF)

k+1 Xk||2 =0. (20)

+ plx

Recalling the definition of the subgradient of the convex
function, we have

(wh, g(x") —g(x""1)) = (vFHLxP — XM o@D
Combining (20) and (21) gives
k N k+1
Aw*, g(x") — g(x")) 2

> — (Vh(xF),xF — xF1) 4 pf|xm T — xF| %,
Since f is concave, similar to (16), we get

Flg(x?) = flg(x"1) > (w*, g(x") — g(x"*1)). (23)
By the condition (C3), we have

h(x*) — h(x"*1)
> <Vh(xk)7xk _ Xk+1> _ @kaﬁ-l — xk|2, (24)
Now, combining (22)(23) and (24), we have
F(x*) = F(xM)

CAF(g(H)) — A (g )) + hixt) — hx )
(u— Lg’”) I+ = b2 > 0.

Hence F'(x*) is monotonically decreasing. Summing all the
above inequalities for £ > 1, it follows that

D=F(x') > (u - L(2h)> DI —XF|P. (26
k=1

(25)
>

This implies that klim (xF+ — xk) 0. Also {x*} is
e deel
bounded due to the condition (C4). |

Theorem 2. Let {x*} be the sequence generated in Algo-
rithm 1. Then any accumulation point of {x*} is a stationary
point X* of problem (1). Furthermore, for every n > 1, we

have
F(x!) - F(x*
min ka+1 7Xk||§ § (X ) (X )
_ L(h))
2

1<k<n n ( 27)



Please refer to the Supplementary Material for the proof.
We conclude this section with the following remarks:

(1) When proving the convergence of IRL1 for solving
problem (8) or (12) in (Chen and Zhou ; Lu 2012), they
use the Young’s inequality which is a special property
of the function y? (0 < p < 1)

n

(e + 0 = (e +07 = Yk (
=1

=1

k
Z;

k+1
Z; ‘) ’

(28)
where w¥ = p/(|z¥| + €)1 ~P. Eqn (28) is a special case
of (23). But (23) is obtained by using the concavity of
f(y), which is much more general.

In Eqn (27), [|x¥*! — x¥||5 is used to measure the
convergence rate of the algorithm. The reason is that
||x**1 — x*||3 — 0 is a necessary optimality condition
as shown in the Theorem 1.

PIRE requires that ;o > L(h)/2. But sometimes the
Lipschitz constant L(h) is not known, or it is not com-
putable for large scale problems. One may use the back-
tracking rule to estimate p in each iteration (Beck and
Teboulle 2009). PIRE with multiple splitting shown in
the next section also eases this problem.

2

3)

PIRE with Multiple Splitting

In this section, we will show that PIRE can also solve multi-
variable problem as follows

S
min  F(x) =AY fa(ge(xs)) + h(x1,- -+ ,Xs), (29)

X1, ", X3
s=1
where f; and g, holds the same assumptions as f and g in
problem (1), respectively. Problem (29) is similar to problem

(1), but splits x into x = [x1;- - ;xg] € R", where x5 €
R™=, and Zle ng =n.
Based on different assumptions of h(xi,- - ,xg), we

have two splitting versions of the PIRE algorithm. They use
different updating orders of the variables.

PIRE with Parallel Splitting

If we still assume that (C3) holds, i.e. h(x1, - ,Xg) has a
Lipschitz continuous gradient, with Lipschitz constant L(h),
PIRE is naturally parallelizable. In each iteration, we paral-
lelly update x**1 by

X’;‘*‘l =arg rr}lcin A(WI;, 8s(xs))

1 2
X5 — <x]: - ;Vsh (xlf,-n ,xlg))

)

(30)

I
+2

where the notion V,h (x1,---,xg) denotes the gradient
w.rt xg, ¢ > L(h)/2, and w* is the weight vector corre-
sponding to g(x*), which can be computed by

wh e -0 (—fs(gs(xh)), s=1,-- (31)

When updating x; in the (k + 1)-th iteration, only the vari-
ables in the k-th iteration are used. Thus the variables x*+1

S s

, 9.
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s = 1,---,5, can be updated in parallel. This is known
as Jacobi iteration in numerical algebra (Liu, Lin, and Su
2013). This algorithm is named as PIRE with Parallel Split-
ting (PIRE-PS). Actually the updating rule of PIRE-PS is
the same as PIRE, but in parallel. It is easy to check that the
proofs in Theorem 1 and 2 also hold for PIRE-PS.

For some special cases of h(xy,---,Xg), we can use
different 1, usually smaller than y, for updating x*+!.
This may lead to faster convergence (Zuo and Lin 2011).

If h(x1, - ,X5) = %HzleAst —b’
X§+1 by

2
, we can update
2

x T =argmin A(wh, g (x.))

2 (32)

b

2

i
Ty

X5 — (x’sC - LAST(AXI“ - b)

S

where 115 > Ls(h)/2 and Lg(h) = ||A]|3 is the Lipschitz
constant of V h(xy, - ,xg). If the size of A is very large,
L(h) = ||Al|3 may not be computable. We can split it to
Ay, Ag], and compute each Lg(h) = ||A4][3
instead. Similar convergence results in Theorem 1 and 2 also
hold by updating x**! in (32). For detailed proofs, please
refer to the Supplementary Material. A main difference of

the convergence poof is that we use the Pythagoras relation

la—cll3—[b—cll3 = |la=bl3+2(a~b,b—c), 33)

for the squared loss h(x1,--- ,Xg). This property is much
tighter than the property (17) of function with Lipschitz con-
tinuous gradient.

The result that using the squared loss leads to smaller Lip-
schitz constants by PIRE-PS is very interesting and useful.
Intuitively, it results to minimize a tighter upper bounded
surrogate function. Our experiments show that this will lead
to a faster convergence of the PIRE-PS algorithm.

PIRE with Alternative Updating

In this section, we propose another splitting method to
solve problem (29) based on the assumption that each
Vsh(x1, -+ ,%xg) is Lipschitz continuous with constant
L4(h). Different from PIRE-PS, which updates each x*+!
based on xf, s =1,---,85, we instead update xf“ based
on all the latest x,. This is the known Gauss-Sidel iteration
in numerical algebra. We name this method as PIRE with
Alternative Updating (PIRE-AU).

Since Vi h(x1,- -+ ,Xg) is Lipschitz continuous, similar
to (17), we have
k+1 k+1 k k
h(X1+ [ 7Xsi_17XS7Xs+17"' aXS)
k+1 k+1 _k k
Sh(XIJr [ 7Xsirlvxs"" >XS)+
k+1 k+1 _k k k 34
<v5h(xlJr >"'7Xsi1aXs""7XS)’XS_Xs> ( )
Ls(h) k(2
+ =2, — x|,

The hand right part of (34) is used as a surrogate function
of h(xh1 ... xFt! ,xk), which is tighter

k
B 5 s—lyxsvxs-i,-la"'
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Figure 1: Recovery performance comparison with a different
number of measurement A € R™*190: (@) ;m = 200; (b)
m = 300; and (c) m = 400.

than (17) in PIRE. Then we update x**! by

k1 = arg min Awh, g.(x,)) + 5 Ix, —x4]3.
+ (Vsh(xlfﬂ, T 7X§irllvva T ’Xg)vxs - X];>a
(35)

where s > Lg(h)/2 and w” is defined in (31).

The updating rule in PIRE-AU by (35) and (31) also leads
to converge. Any accumulation point of {x*} is a stationary
point. See the detailed proofs in the Supplementary Material.

Both PIRE-PS and PIRE-AU can solve the multi-variable
problems. The advantage of PIRE-PS is that it is naturally
parallelizable, while PIRE-AU may converge with less iter-
ations due to smaller Lipschitz constants. If the squared loss
function is used, PIRE-PS use the same small Lipschitz con-
stants as PIRE-AU.

Experiments

We present several numerical experiments to demonstrate
the effectiveness of the proposed PIRE algorithm and its
splitting versions. All the algorithms are implemented by
Matlab, and are tested on a PC with 8 GB of RAM and Intel
Core 2 Quad CPU Q9550.

¢p-Minimization
We compare our proposed PIRE, PIRE-PS and PIRE-
AU algorithms with IRLS and IRL1 for solving the /-
minimization problem (7). For fair comparison, we try to
use the same settings of all the completed algorithms. We
use the solution to the ¢;-minimization problem as the ini-
tialization. We find that this will accelerate the conver-
gence of the iteratively reweighted algorithms, and also en-
hance the recovery performance. The choice of e in (8)
and (10) plays an important role for sparse signal recov-
ery, but theoretical support has not been carried out so far.
Several different decreasing rules have been tested before
(Candes, Wakin, and Boyd 2008; Mohan and Fazel 2012;
Lai, Xu, and Yin 2013), but none of them dominates others.
Since the sparsity of sparse signal is usually unknown, we
empirically set "1 = € /p, with ¥ = 0.01, and p = 1.1
(Mohan and Fazel 2012). The algorithms are stopped when
[ — 3L /][] < 105,

IRL1 requires solving (9) as inner loop. FISTA is em-
ployed to solve (9) with warm start, i.e. using x* as initial-
ization to obtain x**!. This trick greatly reduces the inner
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Table 1: Comparison of iteration number, running time (in sec-
onds), objective function value and relative recovery error of dif-
ferent iterative reweighted methods.

Size (m, n, t) Methods Tter. Time Obj;z Recover)ieefror
(second). (x10™ <) (X107 °)
PIRE 116 0.70 5.238 2.529
PIRE-PS 58 048 5.239 2.632
(100,500,50) PIRE-AU 56 0.63 5.239 2.632
IRLS 168 81.82 5.506 2.393
IRL1 56 3.43 5.239 2.546
PIRE 119 1.48 16.923 2.246
PIRE-PS 37 0.82 16.919 2.192
(200,800,100) PIRE-AU 36 0.88 16.919 2.192
IRLS 169 474.19 17.784 2.142
IRL1 81 13.53 16.924 2.248
PIRE 151 4.63 42.840 2.118
PIRE-PS 29 1.38 42.815 1.978
(300,1000,200) PIRE-AU 28 1.34 42.815 1.977
IRLS 171 1298.70 44.937 2.015
IRL1 79 35.59 42.844 2.124
PIRE 159 8.88 64.769 2.010
PIRE-PS 26 227 64.718 1.814
(500,1500,200) PIRE-AU 25 220 64.718 1.814
IRLS 171 3451.79 67.996 1.923
IRL1 89 80.89 64.772 2.013
PIRE 140 14.99 87.616 1.894
PIRE-PS 33 5.15 87.533 1.648
( 800,2000,200) PIRE-AU 32 497 87.533 1.648
IRLS 177 7211.2 91.251 1.851
IRL1 112 173.26 87.617 1.895

loop iteration, which is the main cost for IRL1. For PIRE-PS
and PIRE-AU algorithms, we solve problem (29) by setting
S = 20.

Sparse Signal Recovery The first experiment is to ex-
amine the recovery performance of sparse signals by using
the proposed methods. The setup for each trial is as fol-
lows. The dictionary A € R™*"™ is a Gaussian random ma-
trix generated by Matlab command randn, with the sizes
m = 200,300,400, and n = 1000. The sparse signal x
is randomly generated with sparsity ||x||o = 20. The re-
sponse b Ax + 0.0le, where e is Gaussian random
vector. Given A and b, we can recover X by solving the
£,-minimization problem by different methods. The param-
eter is set to A = 10~%. We use the relative recovery error
[|x—x[|2/]|x||2 to measure the recovery performance. Based
on the above settings and generated data, we find that the re-
covery performances are stable. We run 20 trials and report
the mean relative error for comparison.

Figure 1 plots the relative recovery errors v.s. different p
values (p = 0.1,---,0.9, 1) on three data sets with different
numbers of measurements. The result for p = 1 is obtained
by FISTA for ¢;-minimization. We can see that all the iter-
atively reweighted algorithms achieve better recovery per-
formance with p < 1 than /;-minimization. Also a smaller
value of p leads to better recovery performance, though the
{,-minimization problem is nonconvex and a globally opti-
mal solution is not available. In most cases, PIRE is com-
parative with IRLS and IRL1. A surprising result is that
PIRE-PS and PIRE-AU outperform the other methods when
0.5 < p < 1. They use a smaller Lipschitz constant than
PIRE, and thus may converge faster. But none of these iter-
atively reweighted methods is guaranteed to be optimal.

Running Time Comparison The second experiment is to
show the advantage in running time of the proposed meth-
ods. We implement all the completed methods in matrix
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Figure 2: Running time v.s. objective function value on three
synthesis data sets with size (m,n,t): (a) (1000,3000,500); (b)
(1000,5000,1000); (c) (1000,10000,1000).

form for solving the following £,-minimization problem

min A|[X][[F +
XERnxt

where A € R™*" and B € R™*?, X5 = Eij | X517,
and p is set to 0.5 in this test. A, B and X are generated by
the same procedure as the above section, and the same set-
tings of algorithm parameters are followed. Each column of
X is with sparsity n x 2%. We test on several different sizes
of data sets, parameterized as (m, n,t). The iteration num-
ber, running time, objective function value and the relative
recovery error are tabulated in Table 1. It can be seen that
the proposed methods are much more efficient than IRLS
and IRL1. PIRE-PS and PIRE-AU converge with less itera-
tion and less running time. In our test, IRL1 is more efficient
than IRLS. The reasons lie in: (1) initialization as a sparse
solution to ¢1-minimization is a good choice for IRLI1, but
not for IRLS; (2) For each iteration in IRLS, solving ¢ equa-
tions (11) in a loop by Matlab is not efficient; (3) IRL1 con-
verges with less inner loop iterations due to warm start.

We also plot the running time v.s. objective function value
on three larger data sets in Figure 2. The algorithms are
stopped within 500 seconds in this test. IRLS costs much
more time, and thus it is not plotted. IRL1 is not plotted for
the case n = 10, 000. It can be seen that PIRE-PS and PIRE-
AU decreases the objective function value faster than PIRE.

1
5/[AX = BJ[%, (36)

Multi-Task Feature Learning

In this experiment, we use our methods to solve the multi-
task learning problem. Assume we are given m learning
tasks associated with {(X1,y1), -, (Xm,¥m)}, where
X; € R™*? is the data matrix of the i-th task with each
row a sample, y; € R™ is the label of the ¢-th task, n; is the
number of samples for the i-th task, and d is the data dimen-
sion. Our goal is to find a matrix Z = [zy, - - - , Z,,] € R¥*X™
such that y; ~ X,;z;. The capped-¢; norm is used to regu-
larize Z (Gong, Ye, and Zhang 2012a)

d
“%“Zlmin<||zj|\1,e>+h<2>,
=

(37

where h(Z) = Y | ||X;z; — y;|[3/mn; is the loss func-
tion, # > 0 is the thresholding parameter, and z’ is the j-th
row of Z. The above problem can be solved by our proposed
PIRE, PIRE-PS and PIRE-AU algorithms, by letting f(y) =

d . m
> j—1 min(y;, 0), and g(Z) = [||z"[|1; - ;|12 [[1].
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Figure 3: Comparison of (a) mean squared error (MSE) and run-
ning time on the Isolet data set for multi-task feature learning.

The Isolet (Bache and Lichman 2013) data set is used in
our test. 150 subjects spoke the name of each letter of the
alphabet twice. Hence, we have 52 training examples from
each speaker. The speakers are grouped into 5 subsets of 30
speakers each. Thus, we have 5 tasks with each task corre-
sponding to a subset. There are 1560, 1560, 1560, 1558, and
1559 samples of 5 tasks, respectively. The data dimension is
617, and the response is the English letter label (1-26). We
randomly select the training samples from each task with
different training ratios (0.1, 0.2 and 0.3) and use the rest of
samples to form the test set. We compare our PIRE, PIRE-PS
and PIRE-AU (we set S = m = 5 in PIRE-PS and PIRE-
AU) with the Multi-Stage algorithm (Zhang 2008). We re-
port the Mean Squared Error (MSE) on the test set and the
running time for solving (37) on the training set. The results
are averaged over 10 random splittings. As shown in Figure
3, it can be seen that all these methods achieve compara-
tive performance, but our PIRE, PIRE-PS and PIRE-AU are
much more efficient than the Multi-Stage algorithm.

Conclusions

This paper proposes the PIRE algorithm for solving the gen-
eral problem (1). PIRE solves a series of problem (2), whose
computational cost is usually very cheap. We further pro-
pose two splitting versions of PIRE to handle the multi-
variable problems. In theory, we prove that PIRE (also its
splitting versions) converges and any limit point is a station-
ary point. We test our methods to solve the £,,-minimization
problem and multi-task feature learning problem. Experi-
mental results on both synthesis and real data sets show that
our methods are with comparative learning performance, but
much more efficient, by comparing with IRLS and IRLI
or multi-stage algorithms. It would be interesting to apply
PIRE for structured sparsity optimization, and also the non-
convex low rank regularized minimization problems (Lu et
al. 2014).
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