Supplementary Material of Smooth Representation Clustering

Anonymous CVPR submission

Paper ID 1242

In this document, we prove Proposition 2 and Proposition 3 in detail.
To prove Proposition 2, we first provide two lemmas:
Lemma S. 1 [1]: Given a subspace S spanned by a set of orthogonal basis $\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]\left(\mathbf{u}_{i} \in \mathbb{R}^{n \times 1}\right)$ and its orthogonal complement S_{\perp}, for any matrix $M \in \mathbb{R}^{n \times k}, \forall k$, there exist a unique pair $M_{1} \in S$ and $M_{2} \in S_{\perp}$ such that

$$
\begin{equation*}
M=M_{1}+M_{2} \tag{1}
\end{equation*}
$$

Lemma S.2: Let A and B be matrices of the same size. If $A B^{T}=0$ and $A^{T} B=0$, then $\|A+B\|_{*}=\|A\|_{*}+\|B\|_{*}$.
Proof: Note the singular value decompositions (SVDs) of A and B as:

$$
\begin{equation*}
A=U_{A} \Sigma_{A} V_{A}^{T}, B=U_{B} \Sigma_{B} V_{B}^{T} \tag{2}
\end{equation*}
$$

where U_{A} and U_{B} are left-invertible; and V_{A} and V_{B} are right-invertible. From the condition $A B^{T}=0$, we get $V_{A}^{T} V_{B}=0$. Similarly, $A^{T} B=0$ implies $U_{A}^{T} U_{B}=0$. Hence,

$$
A+B=\left[\begin{array}{ll}
U_{A} & U_{B}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{A} & \tag{3}\\
& \Sigma_{B}
\end{array}\right]\left[\begin{array}{ll}
V_{A} & V_{B}
\end{array}\right]^{T}
$$

is a valid SVD of $A+B$. It is easy to check that $\|A+B\|_{*}=\|A\|_{*}+\|B\|_{*}$.
Proposition 2: The LRR problem (4) [2] has a unique optimal solution.

$$
\begin{equation*}
\min _{Z} f(Z)=\alpha\|X-X Z\|_{F}^{2}+\|Z\|_{*} \tag{4}
\end{equation*}
$$

Proof: Note the SVD of X as $X=U \Sigma V^{T}$ with $U \in \mathbb{R}^{d \times r}, \Sigma=\operatorname{diag}(\mathbf{s})\left(\mathbf{s}_{i}>0, \forall 1 \leq i \leq r\right)$ and $V \in \mathbb{R}^{n \times r}$. Note S as the subspace spanned by columns of V, and S_{\perp} as the orthogonal complement of S.

Suppose Z^{*} is an optimal solution of problem (4). According to Lemma S.1, there exist a unique pair $Z_{1}^{*} \in S$ and $Z_{2}^{*} \in S_{\perp}$ that $Z^{*}=Z_{1}^{*}+Z_{2}^{*}$. Next we prove that Z_{2}^{*} must equal 0 .

Suppose $Z_{2}^{*} \neq 0$. We have $\left\|Z_{2}^{*}\right\|_{*}>0$. The condition $\mathbf{Z}_{2}^{*} \in S_{\perp}$ implies $X Z_{2}^{*}=U \Sigma V^{T} Z_{2}^{*}=0$. Then

$$
\begin{align*}
f\left(Z^{*}\right) & =\alpha\left\|X-X Z^{*}\right\|_{F}^{2}+\|Z\|_{*} \\
& =\alpha\left\|X-X\left(Z_{1}^{*}+Z_{2}^{*}\right)\right\|_{F}^{2}+\left\|Z_{1}^{*}+Z_{2}^{*}\right\|_{*} \tag{5}\\
& =\alpha\left\|X-X Z_{1}^{*}\right\|_{F}^{2}+\left\|Z_{1}^{*}\right\|_{*}+\left\|Z_{2}^{*}\right\|_{*} \\
& >f\left(Z_{1}^{*}\right)
\end{align*}
$$

Equation (5) indicates Z_{1}^{*} is a better solution of problem (4) than Z^{*}, which is a contradiction. Hence $Z_{2}^{*}=0$ is proved. As a result, we have $Z^{*}=Z_{1}^{*}$.

The condition $Z_{1}^{*} \in S$ indicates that there exists a unique matrix $W \in \mathbb{R}^{r \times n}$ that

$$
\begin{equation*}
Z_{1}^{*}=V W \tag{6}
\end{equation*}
$$

Substituting equation (6) into problem (4), we get a new optimization about W as

$$
\begin{equation*}
\min _{W} g(W)=\alpha\|X-X V W\|_{F}^{2}+\|V W\|_{*}=\alpha\|X-U \Sigma W\|_{F}^{2}+\|W\|_{*} \tag{7}
\end{equation*}
$$

It is easy to verify that the Hessian matrix of the first term

$$
\begin{equation*}
H_{1}=I \otimes \Sigma U^{T} U \Sigma=I \otimes \Sigma^{2} \succ 0 \tag{8}
\end{equation*}
$$

where $I \in \mathbb{R}^{n \times n}$ is the identity matrix, and \otimes is the Kronecker product operator. According to equation (8), problem (7) is strictly convex and it has a unique solution W^{*}. This implies that the solution of problem (4), Z^{*}, is also unique, and $Z^{*}=V W^{*}$.

Next we prove Proposition 3. Recall the optimization problem for self-representation based methods as (9).

$$
\begin{array}{cl}
\min _{Z} & f(Z)=\alpha\|X-A(X) Z\|_{l}+\Omega(X, Z) \tag{9}\\
\text { s.t. } & Z \in \mathcal{C}
\end{array}
$$

Proposition 3: Problems (9) with the following $\Omega(Z)$ and \mathcal{C} have grouping effect:
(1) $\Omega(Z)=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left|Z_{i j}\right|^{p}\right)^{q}, p>1, q \geq 0, \mathcal{C}=\emptyset$.
(2) $\Omega(Z)=\operatorname{tr}\left(\left(Z H Z^{T}\right)^{p}\right), H \succ 0, p \geq 1 / 2, \mathcal{C}=\emptyset$.
(3) $\Omega(Z)=\operatorname{tr}\left(\left(Z^{T} H Z\right)^{p}\right), H \succ 0, p \geq 1 / 2, \mathcal{C}=\emptyset$.

Proof: (1) It is easy to verify that EGE conditions (1) and (3) are satisfied.
Noting that the regularity term $\Omega(Z)=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left|Z_{i j}\right|^{p}\right)^{q}=\sum_{j=1}^{n}\left\|Z_{j}\right\|_{p}^{p q}$, where $\left\|Z_{j}\right\|_{p}=\left(\sum_{i=1}^{n}\left|Z_{i j}\right|^{p}\right)^{1 / p}$ is the ℓ_{p} vector-norm, we have $\Omega(Z)$ is strictly convex w.r.t Z. As a result, problem (9) has a unique solution. According to Proposition 1 in the paper, the grouping effect of this solution is also guaranteed.
(2) Regarding H defined by $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$ with $H(X P)=P^{T} H(X) P$, we can verify that $\Omega(Z)=\operatorname{tr}\left(\left(Z H Z^{T}\right)^{p}\right)$ satisfy EGE conditions (1) and (3).

When $p>1 / 2, \Omega(Z)=\operatorname{tr}\left(\left(Z H Z^{T}\right)^{p}\right)$ is strictly convex w.r.t Z, and thus problem (9) has a unique solution. In the following, we will prove that when $p=1 / 2$, problem (9) also has a unique solution

Since $H \succ 0$, we can find an invertible matrix $L \in \mathbb{R}^{n \times n}$ such that $H=L L^{T}$. Substituting $Z=Y L^{-1}$ into $f(Z)$, we have

$$
\begin{equation*}
f(Z)=h(Y)=\alpha\left\|X-X Y L^{-1}\right\|_{F}^{2}+\operatorname{tr}\left(\left(Y Y^{T}\right)^{1 / 2}\right) \tag{10}
\end{equation*}
$$

Noting that $\|Y\|_{*}=\operatorname{tr}\left(\left(Y Y^{T}\right)^{1 / 2}\right)$, similar as the proof of Proposition 2, we conclude that $Y^{*}=V W \in S$ and thus an optimization problem w.r.t W is obtained as

$$
\begin{equation*}
\min _{W} g(W)=\alpha\left\|X-X V W L^{-1}\right\|_{F}^{2}+\|V W\|_{*}=\alpha\left\|X-U \Sigma W L^{-1}\right\|_{F}^{2}+\|W\|_{*} . \tag{11}
\end{equation*}
$$

The Hessian matrix of the first term of $g(W)$ is

$$
\begin{equation*}
H_{1}=\left(L L^{T}\right)^{-T} \otimes \Sigma^{2}=H^{-T} \otimes \Sigma^{2} \tag{12}
\end{equation*}
$$

Since $H \succ 0$ and $\Sigma^{2} \succ 0$, we get $H_{1} \succ 0$, which indicates the uniqueness of the solution of problem (11). Hence, Problem (9) with $\Omega(Z)=\operatorname{tr}\left(\left(Z H Z^{T}\right)^{1 / 2}\right), H \succ 0, \mathcal{C}=\emptyset$ also has a unique solution.

According to Proposition 1, the grouping effect is proved.
(3) When $p>1 / 2$, the uniqueness and grouping effect of the solution can be easily proved.

In the following, we prove the proposition with $p=1 / 2$. There exists a decomposition $H=L L^{T}, L \in \mathbb{R}^{n \times n}$. Substituting $Z=L^{-T} Y$ into $f(Z)$, we get

$$
\begin{equation*}
f(Z)=h(Y)=\alpha\left\|X-X L^{-T} Y\right\|_{F}^{2}+\|Y\|_{*} \tag{13}
\end{equation*}
$$

Note $U \Sigma V^{T}$ as the SVD of $X L^{-T}$ and S as the subspace spanned by the columns of $X L^{-T}$. Similarly as the proof of Proposition 2, we have $Y^{*} \in S$ and it is unique, which also implies the uniqueness of Z^{*}. As a result, Z^{*} has grouping effect.
216 217
References 270 271218
[1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2007. 1
[1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2007. 1 [1] R. A. Horn and C. R. Johnon. Marnix Analysis. Cambridge University Press, 2007. 1 272
[2] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, pages 663-670, 2010. 1 273

