Supplementary Material of Smooth Representation Clustering

Anonymous CVPR submission

Paper ID 1242

In this document, we prove Proposition 2 and Proposition 3 in detail. To prove Proposition 2, we first provide two lemmas:

Lemma S.1 [1]: Given a subspace S spanned by a set of orthogonal basis $[\mathbf{u}_1, \ldots, \mathbf{u}_r]$ ($\mathbf{u}_i \in \mathbb{R}^{n \times 1}$) and its orthogonal complement S_{\perp} , for any matrix $M \in \mathbb{R}^{n \times k}$, $\forall k$, there exist a unique pair $M_1 \in S$ and $M_2 \in S_{\perp}$ such that

$$M = M_1 + M_2. (1)$$

Lemma S.2: Let A and B be matrices of the same size. If $AB^T = 0$ and $A^TB = 0$, then $||A + B||_* = ||A||_* + ||B||_*$.

Proof: Note the singular value decompositions (SVDs) of A and B as:

$$A = U_A \Sigma_A V_A^T, \ B = U_B \Sigma_B V_B^T, \tag{2}$$

where U_A and U_B are left-invertible; and V_A and V_B are right-invertible. From the condition $AB^T = 0$, we get $V_A^T V_B = 0$. Similarly, $A^T B = 0$ implies $U_A^T U_B = 0$. Hence,

$$A + B = \begin{bmatrix} U_A & U_B \end{bmatrix} \begin{bmatrix} \Sigma_A & \\ & \Sigma_B \end{bmatrix} \begin{bmatrix} V_A & V_B \end{bmatrix}^T$$
(3)

is a valid SVD of A + B. It is easy to check that $||A + B||_* = ||A||_* + ||B||_*$.

Proposition 2: The LRR problem (4) [2] has a unique optimal solution.

$$\min_{Z} f(Z) = \alpha \|X - XZ\|_{F}^{2} + \|Z\|_{*}.$$
(4)

Proof: Note the SVD of X as $X = U\Sigma V^T$ with $U \in \mathbb{R}^{d \times r}$, $\Sigma = \text{diag}(\mathbf{s})$ ($\mathbf{s}_i > 0, \forall 1 \le i \le r$) and $V \in \mathbb{R}^{n \times r}$. Note S as the subspace spanned by columns of V, and S_{\perp} as the orthogonal complement of S.

Suppose Z^* is an optimal solution of problem (4). According to Lemma S.1, there exist a unique pair $Z_1^* \in S$ and $Z_2^* \in S_{\perp}$ that $Z^* = Z_1^* + Z_2^*$. Next we prove that Z_2^* must equal 0.

Suppose $Z_2^* \neq 0$. We have $||Z_2^*||_* > 0$. The condition $\mathbf{Z}_2^* \in S_{\perp}$ implies $XZ_2^* = U\Sigma V^T Z_2^* = 0$. Then

$$f(Z^*) = \alpha ||X - XZ^*||_F^2 + ||Z||_* = \alpha ||X - X(Z_1^* + Z_2^*)||_F^2 + ||Z_1^* + Z_2^*||_* = \alpha ||X - XZ_1^*||_F^2 + ||Z_1^*||_* + ||Z_2^*||_* > f(Z_1^*)$$
(5)

Equation (5) indicates
$$Z_1^*$$
 is a better solution of problem (4) than Z^* , which is a contradiction. Hence $Z_2^* = 0$ is proved.
As a result, we have $Z^* = Z_1^*$.

The condition $Z_1^* \in S$ indicates that there exists a unique matrix $W \in \mathbb{R}^{r \times n}$ that

$$Z_1^* = VW. (6)$$

(2 (CVPR #1242

CVPR 2014 Submission #1242. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

$$\min_{W} g(W) = \alpha \|X - XVW\|_{F}^{2} + \|VW\|_{*} = \alpha \|X - U\Sigma W\|_{F}^{2} + \|W\|_{*}.$$
(7)

It is easy to verify that the Hessian matrix of the first term

$$H_1 = I \otimes \Sigma U^T U \Sigma = I \otimes \Sigma^2 \succ 0, \tag{8}$$

where $I \in \mathbb{R}^{n \times n}$ is the identity matrix, and \otimes is the Kronecker product operator. According to equation (8), problem (7) is strictly convex and it has a unique solution W^* . This implies that the solution of problem (4), Z^* , is also unique, and $Z^* = VW^*$.

Next we prove Proposition 3. Recall the optimization problem for self-representation based methods as (9).

$$\min_{\substack{Z\\s.t.}} f(Z) = \alpha \|X - A(X)Z\|_l + \Omega(X, Z),$$
(9)

Proposition 3: Problems (9) with the following $\Omega(Z)$ and C have grouping effect:

Substituting equation (6) into problem (4), we get a new optimization about W as

(1)
$$\Omega(Z) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |Z_{ij}|^p \right)^q, p > 1, q \ge 0, C = \emptyset.$$

(2)
$$\Omega(Z) = tr((ZHZ^T)^p), H \succ 0, p \ge 1/2, C = \emptyset.$$

(3)
$$\Omega(Z) = tr((Z^T H Z)^p), H \succ 0, p \ge 1/2, C = \emptyset$$

Proof: (1) It is easy to verify that EGE conditions (1) and (3) are satisfied.

Noting that the regularity term
$$\Omega(Z) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |Z_{ij}|^p \right)^q = \sum_{j=1}^{n} ||Z_j||_p^{pq}$$
, where $||Z_j||_p = \left(\sum_{i=1}^{n} |Z_{ij}|^p \right)^{1/p}$ is the ℓ_p vector-norm, we have $\Omega(Z)$ is strictly convex w.r.t Z. As a result, problem (9) has a unique solution. According to Proposition

vector-norm, we have $\Omega(Z)$ is strictly convex w.r.t Z. As a result, problem (9) has a unique solution. According to Proposition 1 in the paper, the grouping effect of this solution is also guaranteed.

(2) Regarding H defined by $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ with $H(XP) = P^T H(X)P$, we can verify that $\Omega(Z) = tr((ZHZ^T)^p)$ satisfy EGE conditions (1) and (3).

When p > 1/2, $\Omega(Z) = tr((ZHZ^T)^p)$ is strictly convex w.r.t Z, and thus problem (9) has a unique solution. In the following, we will prove that when p = 1/2, problem (9) also has a unique solution

Since $H \succ 0$, we can find an invertible matrix $L \in \mathbb{R}^{n \times n}$ such that $H = LL^T$. Substituting $Z = YL^{-1}$ into f(Z), we have

$$f(Z) = h(Y) = \alpha ||X - XYL^{-1}||_F^2 + \operatorname{tr}((YY^T)^{1/2}).$$
(10)

Noting that $||Y||_* = tr((YY^T)^{1/2})$, similar as the proof of Proposition 2, we conclude that $Y^* = VW \in S$ and thus an optimization problem w.r.t W is obtained as

$$\min_{W} g(W) = \alpha \|X - XVWL^{-1}\|_{F}^{2} + \|VW\|_{*} = \alpha \|X - U\Sigma WL^{-1}\|_{F}^{2} + \|W\|_{*}.$$
(11)

The Hessian matrix of the first term of g(W) is

$$H_1 = (LL^T)^{-T} \otimes \Sigma^2 = H^{-T} \otimes \Sigma^2.$$
(12)

Since $H \succ 0$ and $\Sigma^2 \succ 0$, we get $H_1 \succ 0$, which indicates the uniqueness of the solution of problem (11). Hence, Problem (9) with $\Omega(Z) = tr((ZHZ^T)^{1/2}), H \succ 0, C = \emptyset$ also has a unique solution. According to Proposition 1, the grouping effect is proved.

(3) When p > 1/2, the uniqueness and grouping effect of the solution can be easily proved.

In the following, we prove the proposition with p = 1/2. There exists a decomposition $H = LL^T, L \in \mathbb{R}^{n \times n}$. Substituting $Z = L^{-T}Y$ into f(Z), we get

$$f(Z) = h(Y) = \alpha \|X - XL^{-T}Y\|_F^2 + \|Y\|_*.$$
(13)

Note $U\Sigma V^T$ as the SVD of XL^{-T} and S as the subspace spanned by the columns of XL^{-T} . Similarly as the proof of Proposition 2, we have $Y^* \in S$ and it is unique, which also implies the uniqueness of Z^* . As a result, Z^* has grouping effect.

216	References	270
217		271
218	[1] R. A. Horn and C. R. Johnson. <i>Matrix Analysis</i> . Cambridge University Press, 2007. 1	272
219	[2] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In <i>ICML</i> , pages 663–670, 2010. 1	273
220		274
221		275
222		276
223		277
224		278
225		279
226		280
227		281
228		282
229		283
230		284
231		285
232		286
233		287
234		288
235		289
236		290
237		291
238		292
239		293
240		294
241		295
242		296
243		297
244		298
245		299
246		300
247		301
248		302
249		303
250		304
251		305
252		306
253		307
254		308
255		309
256		310
257		311
258		312
259		313
260		314
261		315
262		316
263		317
264		318
265		319
266		320
267		321
268		322
269		323