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In this document, we prove Proposition 2 and Proposition 3 in detail.
To prove Proposition 2, we first provide two lemmas:

Lemma S.1 [1]: Given a subspace S spanned by a set of orthogonal basis [u1, . . . ,ur] (ui ∈ Rn×1) and its orthogonal
complement S⊥, for any matrix M ∈ Rn×k, ∀k, there exist a unique pair M1 ∈ S and M2 ∈ S⊥ such that

M = M1 +M2. (1)

Lemma S.2: Let A and B be matrices of the same size. If ABT = 0 and ATB = 0, then ∥A+B∥∗ = ∥A∥∗ + ∥B∥∗.

Proof : Note the singular value decompositions (SVDs) of A and B as:

A = UAΣAV
T
A , B = UBΣBV

T
B , (2)

where UA and UB are left-invertible; and VA and VB are right-invertible. From the condition ABT = 0, we get V T
A VB = 0.

Similarly, ATB = 0 implies UT
AUB = 0. Hence,

A+B =
[
UA UB

] [ ΣA

ΣB

] [
VA VB

]T (3)

is a valid SVD of A+B. It is easy to check that ∥A+B∥∗ = ∥A∥∗ + ∥B∥∗. �
Proposition 2: The LRR problem (4) [2] has a unique optimal solution.

min
Z

f(Z) = α∥X −XZ∥2F + ∥Z∥∗. (4)

Proof : Note the SVD of X as X = UΣV T with U ∈ Rd×r, Σ = diag(s) (si > 0,∀1 ≤ i ≤ r) and V ∈ Rn×r. Note S as
the subspace spanned by columns of V , and S⊥ as the orthogonal complement of S.

Suppose Z∗ is an optimal solution of problem (4). According to Lemma S.1, there exist a unique pair Z∗
1 ∈ S and

Z∗
2 ∈ S⊥ that Z∗ = Z∗

1 + Z∗
2 . Next we prove that Z∗

2 must equal 0.
Suppose Z∗

2 ̸= 0. We have ∥Z∗
2∥∗ > 0. The condition Z∗

2 ∈ S⊥ implies XZ∗
2 = UΣV TZ∗

2 = 0. Then

f(Z∗) = α||X −XZ∗||2F + ||Z||∗
= α||X −X(Z∗

1 + Z∗
2 )||2F + ||Z∗

1 + Z∗
2 ||∗

= α||X −XZ∗
1 ||2F + ||Z∗

1 ||∗ + ||Z∗
2 ||∗

> f(Z∗
1 )

(5)

Equation (5) indicates Z∗
1 is a better solution of problem (4) than Z∗, which is a contradiction. Hence Z∗

2 = 0 is proved.
As a result, we have Z∗ = Z∗

1 .
The condition Z∗

1 ∈ S indicates that there exists a unique matrix W ∈ Rr×n that

Z∗
1 = VW. (6)
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Substituting equation (6) into problem (4), we get a new optimization about W as

min
W

g(W ) = α∥X −XVW∥2F + ∥VW∥∗ = α∥X − UΣW∥2F + ∥W∥∗. (7)

It is easy to verify that the Hessian matrix of the first term

H1 = I ⊗ ΣUTUΣ = I ⊗ Σ2 ≻ 0, (8)

where I ∈ Rn×n is the identity matrix, and ⊗ is the Kronecker product operator. According to equation (8), problem (7)
is strictly convex and it has a unique solution W ∗. This implies that the solution of problem (4), Z∗, is also unique, and
Z∗ = VW ∗. �

Next we prove Proposition 3. Recall the optimization problem for self-representation based methods as (9).

min
Z

f(Z) = α∥X −A(X)Z∥l +Ω(X,Z),

s.t. Z ∈ C,
(9)

Proposition 3: Problems (9) with the following Ω(Z) and C have grouping effect:

(1) Ω(Z) =
n∑

j=1

(
n∑

i=1

|Zij |p
)q

, p > 1, q ≥ 0, C = ∅.

(2) Ω(Z) = tr((ZHZT )p),H ≻ 0, p ≥ 1/2, C = ∅.
(3) Ω(Z) = tr((ZTHZ)p),H ≻ 0, p ≥ 1/2, C = ∅.

Proof : (1) It is easy to verify that EGE conditions (1) and (3) are satisfied.

Noting that the regularity term Ω(Z) =
n∑

j=1

(
n∑

i=1

|Zij |p
)q

=
n∑

j=1

∥Zj∥pqp , where ∥Zj∥p =

(
n∑

i=1

|Zij |p
)1/p

is the ℓp

vector-norm, we have Ω(Z) is strictly convex w.r.t Z. As a result, problem (9) has a unique solution. According to Proposition
1 in the paper, the grouping effect of this solution is also guaranteed.

(2) Regarding H defined by X = [x1, . . . ,xn] with H(XP ) = PTH(X)P , we can verify that Ω(Z) = tr((ZHZT )p)
satisfy EGE conditions (1) and (3).

When p > 1/2, Ω(Z) = tr((ZHZT )p) is strictly convex w.r.t Z, and thus problem (9) has a unique solution. In the
following, we will prove that when p = 1/2, problem (9) also has a unique solution

Since H ≻ 0, we can find an invertible matrix L ∈ Rn×n such that H = LLT . Substituting Z = Y L−1 into f(Z), we
have

f(Z) = h(Y ) = α∥X −XY L−1∥2F + tr((Y Y T )1/2). (10)

Noting that ∥Y ∥∗ = tr((Y Y T )1/2), similar as the proof of Proposition 2, we conclude that Y ∗ = VW ∈ S and thus an
optimization problem w.r.t W is obtained as

min
W

g(W ) = α∥X −XVWL−1∥2F + ∥VW∥∗ = α∥X − UΣWL−1∥2F + ∥W∥∗. (11)

The Hessian matrix of the first term of g(W ) is

H1 = (LLT )−T ⊗ Σ2 = H−T ⊗ Σ2. (12)

Since H ≻ 0 and Σ2 ≻ 0, we get H1 ≻ 0, which indicates the uniqueness of the solution of problem (11). Hence,
Problem (9) with Ω(Z) = tr((ZHZT )1/2),H ≻ 0, C = ∅ also has a unique solution.

According to Proposition 1, the grouping effect is proved.

(3) When p > 1/2, the uniqueness and grouping effect of the solution can be easily proved.
In the following, we prove the proposition with p = 1/2. There exists a decomposition H = LLT , L ∈ Rn×n. Substitut-

ing Z = L−TY into f(Z), we get

f(Z) = h(Y ) = α∥X −XL−TY ∥2F + ∥Y ∥∗. (13)

Note UΣV T as the SVD of XL−T and S as the subspace spanned by the columns of XL−T . Similarly as the proof of
Proposition 2, we have Y ∗ ∈ S and it is unique, which also implies the uniqueness of Z∗. As a result, Z∗ has grouping
effect. �
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