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Abstract

Partial Differential Equations (PDEs) have been suc-
cessful in solving many low-level vision tasks. However,
it is a challenging task to directly utilize PDEs for visual
saliency detection due to the difficulty in incorporating hu-
man perception and high-level priors to a PDE system. In-
stead of designing PDEs with fixed formulation and bound-
ary condition, this paper proposes a novel framework for
adaptively learning a PDE system from an image for visual
saliency detection. We assume that the saliency of image el-
ements can be carried out from the relevances to the salien-
cy seeds (i.e., the most representative salient elements). In
this view, a general Linear Elliptic System with Dirichlet
boundary (LESD) is introduced to model the diffusion from
seeds to other relevant points. For a given image, we first
learn a guidance map to fuse human prior knowledge to the
diffusion system. Then by optimizing a discrete submodular
function constrained with this LESD and a uniform matroid,
the saliency seeds (i.e., boundary conditions) can be learn-
t for this image, thus achieving an optimal PDE system to
model the evolution of visual saliency. Experimental results
on various challenging image sets show the superiority of
our proposed learning-based PDEs for visual saliency de-
tection.

1. Introduction
As an important component for many computer vision

problems (e.g., image editing [9], segmentation [18], com-
pression [12], object detection and recognition [32]), salien-
cy detection gains much attention in recent years and nu-
merous saliency detectors have been proposed in the litera-
ture. According to their mechanisms of representing image
saliency, existing work can be roughly divided into two cat-
egories: bottom-up and top-down approaches. The bottom-
up methods [13, 7, 38, 36, 39, 34, 22, 15] are data-driven
and focus more on detecting saliency from image features,
such as contrast, location and texture. As one of the earli-
est work, Itti et al. [13] consider local contrast and define

image saliency using center-surround differences of image
features. Cheng et al. [7] also investigate the global con-
trast prior. Location is another important prior for mod-
eling salient regions. The convex hull of interest points
is employed in [38] to estimate the foreground location.
The work in [39, 36] considers the image boundary as a
background prior. Inspired by recent advances in machine
learning, compressive sensing [34, 22] and operations re-
search [15] are also utilized to detect salient image features.
The work in [34, 22] assumes that a natural image can al-
ways be decomposed into a distinctive salient foreground
and a homogenous background. So one can utilize low-rank
and sparse matrix decomposition methods and their exten-
sions for saliency detection. Very recently, Jiang et al. [15]
formulate saliency detection as a semi-supervised clustering
problem and use the well-studied facility location model to
extract cluster centers for salient regions.

In contrast, the top-down approaches [26, 40] are of-
ten task-driven and incorporate more human perceptions for
saliency detection. For example, Liu et al. [26] propose a
supervised approach to learn to detect a salient region in an
image. Yang et al. [40] use dictionary learning to extract
region features and CRF to generate a saliency map.

In the past decades, Partial Differential Equations
(PDEs) have shown their power of solving many low-level
computer vision problems, such as restoration, smoothing,
inpainting, and multiscale representation (see [5] for a brief
review). This is mainly because theoretical analysis on
these problems has already been accomplished in areas such
as mathematical physics and biological vision. For exam-
ple, scale space theory [23] proves that the multiscale rep-
resentation of images are indeed solutions of heat equation
with different time parameters.

Unfortunately, the existing PDE designing methodology
(i.e., define PDE with fixed formulation and boundary con-
dition from general intuitive considerations) is not suitable
for complex vision tasks, such as visual saliency detection.
This is because saliency is a kind of intrinsic information
contained in the image and its description strongly depends
on human perception. From the bottom-up view (i.e., lo-
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Figure 1. The pipeline of our learning-based LESD for saliency detection on an example image. The orange region illustrates the core
components (i.e., guidance map and saliency seeds) of our PDE saliency detector, which will be formally introduced in Section 2. The blue
region shows how to incorporate both bottom-up and top-down prior knowledge into our PDE system. The details of this PDE learning
process will be presented in Section 3. The bottom row shows the ground truth (GT for short) salient region and saliency maps computed
by some state-of-the-art saliency detection methods.

cal image structure), it is challenging to exactly define a
PDE system with fixed formulation and boundary condi-
tions to describe all types of saliency due to the complexity
of salient regions in real world images. From the top-down
view (i.e., object-level structure), high-level human percep-
tions (e.g., color [34], center [31], and semantic informa-
tion [16]) are important for saliency detection. But it is
hard to automatically incorporate these priors into conven-
tional PDEs. Moreover, the boundary conditions in most
existing PDE systems are simply defined by some gener-
al understandings on the problem (e.g., well-posed guaran-
tees [5] and initial values [23]), thus cannot handle complex
(e.g., driven by both data and priors) vision tasks. Overall,
traditional PDEs with fixed form and boundary conditions
cannot efficiently describe complex visual saliency patterns
quantitatively, thus may fail to solve the saliency detection
problem.

1.1. Paper Contributions

In this paper, we provide a diffusion viewpoint to under-
stand the mechanism and investigate the physical nature of
saliency detection. Firstly, an adaptive PDE system, named
Linear Elliptic System with Dirichlet boundary (LESD), is
proposed to describe the saliency diffusion. Then we devel-
op efficient techniques to incorporate both bottom-up and
top-down information into saliency diffusion and learn the
specific formulation and boundary condition of LESD from
the given image,. Fig. 1 shows the pipeline of our learning-

based PDE detector with comparisons on an example im-
age. To our best knowledge, this is the first work that in-
corporates learning strategy into PDE technique for visual
saliency detection. We summarize the contributions of this
paper as follows:

• A novel PDE system is learnt to describe the evolution
of visual attention in saliency diffusion. We prove that
visual attention in our system is a monotone submod-
ular function with respect to saliency seeds.

• We develop an efficient method to incorporate both
bottom-up and top-down prior knowledge into the
LESD formulation for saliency diffusion.

• We derive a discrete optimization model with PDE and
matroid constrains to extract saliency seeds for LESD.
By further proving the submodularity of the proposed
model, the performance can be guaranteed.

1.2. Notations

Hereafter, we use lowercase bold letters (e.g., p) to rep-
resent vector points and capital calligraphic ones (e.g., S)
to denote sets of points. |S| is the cardinality of S. 1 is
the all one vector. We denote the neighborhood set of p on
a graph as Np. ‖ · ‖ denotes the `2 norm. Suppose f is a
real-value function on V . For a given point p with neighbor
Np, we denote ∇f as the gradient of f and discretize it as
∇f = [f(p)− f(q1), · · · , f(p)− f(q|Np|)]. Similarly, let
v be a vector field on V and denote vp as the vector at p.



We denote the divergence of v as div(v) and discretize it at
p as div(vp) = 1

2

∑
q∈Np

(vp(q) − vq(p)), where vp(q)

is the vector element corresponding to q1.

2. Saliency Diffusion Using PDE System
This section proposes a diffusion viewpoint to under-

stand visual saliency and establishes a PDE system to model
saliency diffusion on an image. Numerical and theoretical
analysis on our system is also presented accordingly.

2.1. Visual Attention Evolution

For a given visual scene, saliency detection is to find the
regions which are most likely to capture human’s attention.
This paper tackles this task from a diffusion point of view.
That is, we assume that our attention is firstly attracted by
the most representative salient image elements (this paper
names them as saliency seeds) and then the visual attention
will be propagated to all salient regions.

Specifically, let V be the discrete image domain, i.e., a
set of points corresponding to all image elements (e.g., pix-
els or superpixels). Then we define a real-value visual atten-
tion score function f(p) : V → R to measure the saliency
of p ∈ V . Suppose we have known a set of saliency seeds
(denoted as S) and its corresponding scores (i.e., f(p) = sp
for p ∈ S). We can mathematically formulate saliency d-
iffusion as an evolutionary PDE with Dirichelet boundary
condition:

∂f(p, t)

∂t
= F (f,∇f), f(g) = 0, f(p) = sp, p ∈ S,

where g is an environment point with 0 score (outside V)
and F is a function of f and ∇f .

As the purpose of above PDE is to propagate visual at-
tention from saliency seeds to other image elements, we
adopt a linear diffusion term div(Kp∇f(p)) for the score
function, in which Kp is an inhomogeneous metric tensor
to control the local diffusivity at p. To incorporate our per-
ception and/or high-level prior into the diffusion process,
we further introduce a regularization term which is formu-
lated as the difference between f(p) and a guidance map
g(p) (will be discussed in Section 3), leading to the follow-
ing form:

F (f,∇f) = div(Kp∇f(p)) + λ(f(p)− g(p)),

where λ ≥ 0 is a balance parameter.

2.2. Linear Elliptic System with Dirichlet Boundary

For saliency detection purpose, we only consider the sit-
uation when the saliency evolution is stable (i.e., no saliency

1Similar discretization scheme is also used for nonlocal total variation
image processing [8].

attention can be further propagated). At this state, we omit
the time t in our notation and only seek the solution to the
following PDE:

F (f,∇f) = 0, f(g) = 0, f(p) = sp, p ∈ S, (1)

which is a Linear Elliptic System with Dirichlet boundary
(LESD). Thus given an image, the saliency detection task
reduces to the problem of solving an LESD.

Till now, we have established a general PDE system
for saliency diffusion. Fig. 1 shows that our LESD (with
properly learnt g and S) can successfully incorporate im-
age structure and high-level knowledge to model the salien-
cy diffusion, thus achieves better saliency detection results
than state-of-the-art approaches. Therefore, the main prob-
lem left for LESD is to develop an efficient learning frame-
work to incorporate bottom-up image structure information
and top-down human prior knowledge into (1). Before dis-
cussing this issue in Section 3, we first provide necessary
numerical and theoretical analysis on LESD, which will sig-
nificantly reduce the complexity of the learning process.

2.3. Discretization

Suppose Np = {q1, · · · ,q|Np|−1,g} is the neighbor-
hood set of p. Here the first |Np|−1 nodes are in the image
domain V and will be specified in Section 3. The environ-
ment point g is connected to each node [37]. To measure
the variance between p and its neighborhood Np, we de-
fine an inhomogeneous metric tensor Kp as the following
diagonal matrix2:

Kp = diag(k(p,q1), · · · , k(p,q|Np|−1), zg), (2)

where k(p,q) = exp(−β‖h(p)− h(q)‖2) is the Gaussian
similarity (with a strength parameter β) between the fea-
tures of nodes, h(p) is a feature vector at node p, and zg is
a small constant to measure the dissipation conductance at
p. Then we can approximately discretize the LESD formu-
lation as

f(p) =
1

dp + λ
(
∑
q∈Np

Kp(q)f(q) + λg(p)), (3)

where Kp(q) is the diagonal element of Kp correspond-
ing to q and dp =

∑
q∈Np

Kp(q). Based on this discrete
scheme, our LESD can be reformulated as a linear system,
thus can be easily solved.

2.4. Theoretical Analysis

It should be emphasized that the visual attention score f
is indeed a set function on V , i.e., f(S) : 2V → R as f

2By anisotropic diffusion theory [37], Kp can also be chosen as a more
general symmetric semi-positive definite matrix, which may lead to a more
complex discretization scheme.



is the solution to (1) with respect to the saliency seed set
S. This implies that the solution to our LESD is inherently
combinatorial, thus much more difficult to be handled than
the PDEs in conventional low-level computer vision3. This
is because the optimization of a combinatorial f without
knowing any further properties can be extremely difficult
(e.g., trivially worse-case exponential time and moreover i-
napproximable [21]). Fortunately, by proving the follow-
ing theorem we can exploit some good properties, such as
monotonicity (i.e., non-decreasing) and submodularity, of
the solution to LESD. As shown in Section 3, these results
provide good guarantees for our saliency detector.

Theorem 1 4 Let f(p;S) be the visual attention score of
image element p. Suppose the sources {sp ≥ 0} are at-
tached to saliency seed set S, i.e., f(p) = sp for all p ∈ S.
Then f is a monotone submodular function with respect to
S ⊂ V .

3. Learning LESD for Saliency Detection
This section discusses how to adaptively learn a specif-

ic LESD for saliency diffusion on a given image. For the
given image, we first construct an undirected graph in the
image feature space to model the neighborhood connection-
s among image elements. Then we incorporate different
types of human priors to establish the diffusion formulation
(i.e., guidance map g). Based on the submodularity of the
system, we also provide a discrete optimization model for
boundary condition (i.e., saliency seeds S) learning.

3.1. Feature Extraction and Graph Construction

For a given image, we generate superpixels to build the
image elements set V = {p1, · · · ,p|V|}. Here any edge-
preserving superpixel methods can be used and SLIC algo-
rithm [3] is adopted in this paper. Then we define feature
vectors {h(p),p ∈ V} as the means of the superpixels in
the CIE LAB color space.

The image structure information is extracted as follows.
Suppose the image domain V consists of two parts: the
candidate foreground Fc (salient regions, may also con-
tain some promiscuous image elements) and the pure back-
ground Bc (non-salient regions). We utilize a shift convex
hull strategy to approximately estimate these two subsets
from the input image. Specifically, we use Harris operator
[35] to roughly detect the corners and contour points and es-
timate a convex hull C based on these points [38]. Then Fc
can be obtained by collecting nodes inside C. To further i-
dentify pure background nodes, we define an expended hull
C′ by adding adjacent nodes to C. Then Bc is obtained by

3In general, the solutions to PDEs with fixed formulation and boundary
condition are continuous functions of space and/or time variables only, thus
they are much easier to be handled.

4See supplemental materials for all proofs in this paper.

(a) (b) (c)
Figure 2. Illustration of the shift convex hull strategy in (a) and
connection relationship in (b)-(c). The red and yellow polygons in
(a) denote C and C′, respectively. The red and yellow regions in
(b)-(c) represent Fc and Bc, respectively. Lines in (c) indicate that
all nodes in Bc are connected to each other.

collecting all nodes outside C′. Please see Fig. 2 (a) for an
example of C and C′.

Now we construct an undirected graph G = (V, E) to
reveal the connection relationships (i.e., Np for each p) in
the image domain, where E is a set of undirected edges cor-
responding to the nodes set V5. We first define a k-regular
graph structure to exploit local spatial relationship (Fig. 2
(b)). Then all the nodes in Bc are connected to each other to
enforce the smoothness of background (Fig. 2 (c)). As there
may exist promiscuous image elements, we do not further
connect nodes in Fc. Finally, all the nodes are connected to
an environment node g.

3.2. Learning Guidance Map Using Priors

This subsection shows how to incorporate different types
of prior knowledge into the PDE system. For a given im-
age, we first define a background diffusion to estimate the
background prior. That is, we assume that the distribution
of background is significantly different from that of fore-
ground. Thus we perform a simplified LESD with λ = 0 to
compute a background diffusion score fb, i.e.,

div(Kp∇fb(p)) = 0, s.t. fb(g) = 0, fb(p) = 1, p ∈ Bc.

Here the boundary condition is defined by considering Bc
as the background seed set with score 1 and adding an en-
vironment point g with score 0. It is easy to check that the
solution to the background diffusion is a harmonic function,
thus fb(p) ∈ [0, 1]6. So the elements in fb can be viewed as
probabilities of nodes belonging to the background. In this
view, we have the probability of a node belonging to the
foreground as ff (p) = 1−fb(p). By further incorporating
high level prior knowledge (e.g., the color prior map fc and
the center prior map fl7, we define guidance map g(p) as

g(p) = ff (p)× fc(p)× fl(p), (4)

and its value is normalized. To provide good boundary con-
ditions for LESD, we also use g to define the scores of
saliency seeds, i.e., sp = g(p), for p ∈ S.

5As discussed in Section 2.3, the discretization of LESD is based on
this connection relationship.

6Based on the maximum/minimum principles of harmonic functions.
7Please refer to [34] for detailed analysis on these two prior maps.



(a) (b) (c) (d) (e)
Figure 3. Saliency diffusion with different guidance maps. (a) in-
put image and GT salient region. (b)-(e) center prior fl, color prior
fc, background diffusion prior ff , final guidance map g (top) and
their corresponding saliency maps (bottom), respectively.

(a) (b) (c) (d) (e) (f)
Figure 4. Saliency diffusion with different seeds. (a) input image
and GT salient region. (b) Fc (inside red polygon) and g. (c)-(e)
diffusion results using one candidate seed in Fc: (c) background
(L = 10.6175), (d) bad foreground (L = 1.6818) and (e) good
foreground (L = 31.7404). (f) optimal seeds (L = 43.8589) and
final saliency map. Here we report L values using the original
saliency maps but normalize them for visual comparison.

3.3. Optimizing Saliency Seeds via Submodularity

Due to the following two reasons, we cannot choose all
nodes in Fc as seeds for saliency diffusion. First, the con-
vex hull may not adequately suppress background nodes in
Fc (Fig. 4 (c)). Second and more importantly, it is observed
that the seed with extremely high local contrast to its neigh-
bors (e.g., nodes near object boundary and bright or dark
nodes on the object) may also lead to a bad saliency map
(Fig. 4 (d)). Therefore, it is necessary to search for the most
representative foreground nodes in Fc to define boundary
conditions for LESD. Note that the goal of LESD is to prop-
agate the visual attention scores of seeds S to the whole im-
age domain V . So we would like to maximize the sum of
scores f with respect to all image elements in V when the
saliency diffusion is stable, that is, we solve the following
discrete optimization problem:

max
S∈Mn

L(S),

s.t.

{
f(p) = 1

dp+λ
(
∑

q∈N (p) Kp(q)f(q) + λg(p)),

f(g) = 0, f(p) = sp, p ∈ S,
(5)

where L(S) =
∑

p∈V f(p;S) and Mn = {S|S ⊂
Fc, |S| ≤ n} is a uniform matroid [4] to enforce that the

cardinality of S is no more than n. As visual attention s-
cores can be considered as the relevances between nodes
and the seeds, the above maximum criterion naturally tend-
s to choose seeds in relatively larger connected subgraph
(thus is more representative). Therefore, the nodes in Fc
with high local contrast (i.e., less connections and paths to
other nodes) will be removed from S. One may concern that
background nodes will also have a large L as they may con-
nect to nodes outside Fc. Fortunately, by learning a proper
guidance map g, we can enforce very small saliency scores
(in most case near zero) in background regions (g in Fig. 4
(b)). So background nodes in Fc still have a relatively small
L value and cannot be included in S (Fig. 4 (c)).

In general, the performance of (5) is dependent on the
maximum number of saliency seeds n (Fig. 5 (a)). Here
we provide an adaptive way to identify n and further sup-
press background nodes in Fc. We first define a back-
ground confidence function w(p) = 1/(1 + g(p)2) on Fc,
in which larger w(p) implies that p has a higher proba-
bility of belonging to the background and should be sup-
pressed. Therefore, we maximize another cost function
L̂(S) = L(S) −

∑
p∈S w(p) in (5). Based on Theorem 1,

we can prove the following corollary for L and L̂.

Corollary 2 Both L(S) and L̂(S) are submodular func-
tions. Furthermore, L(S) is monotone with respect to S.

The monotonicity and submodularity of L together with the
uniform matroid constraint in (5) imply that using a greedy
algorithm to solve (5) yields a (1−1/e)-approximation [29].
Due to the non-monotone nature, we cannot have the same
theoretical guarantee for L̂. But in practice, by adding the
stopping criterion L̂(S ∪ {p}) ≤ L̂(S), the maximization
process for L̂ can be automatically stopped and then the
optimal seed set is obtained accordingly. We have exper-
imentally found that a greedy algorithm with this stopping
criterion is efficient for maximizing L̂ in our saliency detec-
tor.

At the end of this section, we summarize the details for
the learning-based LESD in Algorithm 1. The complete
pipeline of our saliency detector on a test image is also il-
lustrated in Fig. 1.

4. Discussions
In this section, we would like to discuss and highlight

some aspects of our proposed PDE-based saliency detector.

4.1. Comparison to Existing Learning-Based PDE

Recently, Liu et al. [24, 25] utilize an optimal control
technique to train PDEs for image processing. Although
both [24, 25] and our work aim at learning PDEs for image
analysis, the learning strategy in our work is different from
theirs. In [24, 25], they adopt a nonlinear PDE formulation



Algorithm 1 Learning LESD for Saliency Detection
Input: Given an image I and necessary parameters.
Output: Saliency map for the given image.
1: Construct an image graph G on superpixels of I .
2: Calculate guidance map g using (4).
3: Initialize saliency seed set S ← ∅.
4: while |S| ≤ n do
5: for p ∈ Fc/S do
6: Solve (3) with saliency seeds S ∪ {p} for f .
7: Obtain the gain ∆L(p) = L(S ∪ {p})− L(S),

or ∆L̂(p) = L̂(S ∪ {p})− L̂(S).
8: end for
9: p∗ = arg max

p∈Fc/S
∆L(p) or arg max

p∈Fc/S
∆L̂(p).

10: if L̂(S ∪ {p∗}) ≤ L̂(S) (only for L̂) then
11: Break.
12: end if
13: S ← S ∪ {p∗}.
14: end while
15: Solve (3) with optimal g∗ and S∗ to obtain f∗.
16: Construct the final saliency map from f∗.

and learn the combination coefficients (i.e., the PDE for-
m) from training image pairs (collected by hands). While
our framework considers a linear elliptic system and learns
both the PDE form and its boundary conditions to incorpo-
rate both bottom-up image structure and top-down human
perception into our PDE system. Therefore, we can suc-
cessfully handle the more complex saliency detection task.

4.2. Submodularity in Previous Vision Models

Submodularity is an important property for discrete set
functions and has farreaching applications in operations re-
search and machine learning [20]. It has also been ap-
plied to computer vision problems [19, 17, 15]. Although
the work in [15] mentioned submodularity in their salien-
cy detector, the mechanism of our work is very different
from theirs. Specifically, the submodular optimization mod-
el in [15] is used to extract cluster centers8 and graph clus-
tering and saliency map computation steps are required in
their framework. In contrast, we design a submodular op-
timization model to learn the Dirichlet boundary condition
of the PDE system and directly extract the saliency map by
solving the learnt PDE system (no further postprocessing
is needed). Experimental results in the following section
also show that our method achieves more accurate salient
regions than [15].

8Similar clustering-based idea is also used in [17].

5. Experimental Results
Experiments are performed on three image sets which

are generated from two databases, i.e., MSRA [26] and
Berkeley [28]. Firstly, we use a subset of MSRA with 1000
images provided by [2] (MRSA-1000). Then the compari-
son is performed on the whole MSRA database with 5000
images (MSRA-5000). Finally, we test algorithms on 300
more challenging images in the Berkeley image set. We
set the number of superpixels as 200 for all the test im-
ages. We compare our methods (denoted as “PDE” in the
comparisons) with seventeen state-of-the-art saliency detec-
tors, such as IT [13], AC [1], CA [9], CB [14], FT [2],
GB [10], GS [36], LC [41], LR [34], MZ [27], RC [7], S-
ER [33], SF [30], SR [11], SM [15], SVO [6], and XIE [38].
For quantitative comparison, we report the precision, recall
and F-measure values for the three image sets, respective-
ly. We also present ground truth (GT) salient regions and
the saliency maps for compared methods. For our method,
we experimentally set β = 10 in the Gaussian similarity
k(p,q) and λ = 0.01 in F for all test images.

5.1. Quantitative Comparisons

The quantitative comparisons between our method and
other state-of-the-art approaches are performed on MSRA-
1000, MSRA-5000, and Berkeley, respectively. The aver-
age precision, recall, and F-measure values are computed in
the same way as in [2, 7, 38, 15].

We first compare the performance of our two objective
functions (i.e., L and L̂) on the MSRA-1000 image set
and show the results in Fig. 5 (a). It can be seen that
the L̂-strategy performs well (red curve) because this non-
monotonic model can adaptively determine the optimal S.
When we properly define a seed number (n = 10 in this
case) for L, this monotone model can also achieve good
performance (black curve). But it can be seen that the re-
sults of L-based strategy are dependent on the number of
saliency seeds (blue and green curves). This is because a
too small n may lead to insufficient diffusion, while a too
large nmay introduce incorrect nodes to the seed set. Based
on this observation, we always utilize the L̂-strategy in the
following experiments.

The precision-recall curves of all seventeen methods on
MSRA-1000 are presented in Fig. 5 (b) and (c). The aver-
age precision, recall and F-measure values using an adap-
tive threshold [2] are shown in Fig. 5 (d). We also perfor-
m experiments on all 5000 images in the MSRA database.
To achieve more reasonable comparison results, here we
use accurate human-labeled masks rather than the bound-
ing boxes used in the previous work to evaluate the salien-
cy detection results. The results are presented in Fig. 6.
The Berkeley image set is more challenging than MSRA as
many images in this set contain multiple foreground objects
with different sizes and locations. We report the comparison
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Figure 5. Results on the MSRA-1000 image set. (a) Precision-recall curves of our method with different design options. (b)-(c) Precision-
recall curves of all test methods. (d) Average precision, recall, and F-measure values.

results in Fig. 7.
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Figure 6. Results on the MSRA-5000 image set. (a) Precision-
recall curves. (b) Average precision, recall, and F-measure values.
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Figure 7. Results on the Berkeley image set. (a) Precision-recall
curves. (b) Average precision, recall, and F-measure values.

The center-surround contrast based methods, such as
IT [13], GB [10] and CA [9], can only detect parts of bound-
aries of salient objects. Using superpixels, recent approach-
es, such as CB [14] and RC [7], are capable of detecting
salient objects. But they usually fail to suppress background
regions and also lead to lower precision-recall curves. In
Fig. 5 (b), we observe that GS [36] shares a similar preci-
sion with ours when the recall is larger than 0.96. However,
the geodesic distance to boundary strategy in that method
tends to recognize background parts as salient regions when
their colors are significantly different from the boundary.
So in most cases, their precision is much lower than ours at
the same recall level. It can be seen that overall our PDE
saliency detector achieves the best performance on all the
three challenging image sets. These results also verify that

the proposed learning strategy can successfully incorporate
both bottom-up and top-down information into saliency d-
iffusion.

5.2. Qualitative Comparisons

We show example saliency maps computed by some typ-
ical saliency detectors in Fig. 8. As an eye fixation pre-
diction based method, IT [13] can only identify center-
surround differences but misses most of the object infor-
mation. The simple low-rank assumption in LR [34] may
be invalid when images contain complex structures. RC [7]
explores superpixels to highlight the object more uniformly,
but the complex background always challenges such meth-
ods [9, 10, 7]. In SM [15], regions inside a salient ob-
ject which share a similar color with the background will
be regarded as part of the background. As a result, they
may share the same saliency value with the background re-
gion. In contrast, our method can successfully highlight the
salient regions and preserve the boundaries of objects, thus
producing results that are much closer to the ground truth.

6. Conclusions
This paper develops a PDE system for saliency detection.

We define a Linear Elliptic System with Dirichlet bound-
ary (LESD) to model the saliency diffusion on an image
and prove the submodularity of its solution. We then solve
a submodular maximization model to optimize the bound-
ary condition and incorporate high-level priors to learn the
PDE formulation. We evaluate our PDE on various chal-
lenging image sets and compare with many state-of-the-art
techniques to show its superiority in saliency detection. In
the future, we plan to extend the submodular PDE learn-
ing technique to incorporate more complex human percep-
tion and high-level priors for other challenging problems in
computer vision.
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