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1. General Statements
Before proving theoretical results, we first state our PDE

system and its discretization as follows.
LESD:

div(Kp∇f(p)) + λ(f(p)− g(p)) = 0,
s.t. f(g) = 0, f(p) = sp, p ∈ S,

(1)

where λ ≥ 0.
Discretization:

f(p) =
1

dp + λ

 ∑
q∈N (p)

Kp(q)f(q) + λg(p)

 , (2)

where dp =
∑

q∈N (p)

Kp(q), Kp(q) ≥ 0 and g(p) ≥ 0.

Then the main theoretical results (Theorem 1 in Section
2 and Corollary 2 in Section 3) in our manuscript are listed.

Theorem 1 Let f(p;S) be the visual attention score for
image element p and the sources {sp ≥ 0} are attached to
saliency seed set S, i.e., f(p) = sp for all p ∈ S. Then f
is a monotone submodular function with respect to S ⊂ V .

Define L and L̂ as

L(S) =
∑
p∈V

f(p;S), and L̂(S) = L(S)−
∑
p∈S

w(p),

where f(p;S) is the solution to LESD and w(p) ≥ 0 is a
function on Fc. Then we have

Corollary 2 Both L(S) and L̂(S) are submodular func-
tions. Furthermore, L(S) is monotone with respect to S.

We also state some necessary definitions and lemmas1.

Definition 3 A set function f : 2V → R is monotone if for
all subsets A ⊂ B ⊂ V , f(A) ≤ f(B).

1Please refer to [1] for all the definitions and lemmas in this material.

Definition 4 A set function f : 2V → R is submodular if
the following inequality holds for all subsets A ⊂ B ⊂ V
and point q ∈ V/B

f(A ∪ q)− f(A) ≥ f(B ∪ q)− f(B). (3)

Definition 5 A set function f : 2V → R is modular if the
following equality holds for any subsets A,B ⊂ V

f(A) + f(B) = f(A ∪ B) + f(A ∩ B). (4)

Lemma 6 Let f1, f2, · · · , fn be submodular functions on
V and α1, α2, · · · , αn be non-negative constants. Then the

function f =
n∑

i=1

αifi is submodular.

Lemma 7 Let f1 and f2 be a submodular and a modular
function on V , respectively. Then the function f = f1 − f2
is submodular.

2. Proofs
Proof (of Theorem 1) 2 First, by energy conservation law
in physics, the temperature of a diffusion system is always
higher with more heat sources [2]. So we have that the visu-
al attention score f is monotone with respect to the saliency
seed set S.

Then we use a inductive way to prove the submodularity
of f with respect to S. The proof consists of two steps:
base and induction. Specifically, let d(p,q) be the distance
between p and q. Then we prove the submodularity of f by
induction on d(p,q).

Base Step: For p with d(p,q) = 0 (i.e., p = q), we
have f(p;A∪{q})−f(p;A) ≥ f(p;B∪{q})−f(p;B).
This is because f(p;A ∪ {q}) = f(p;B ∪ {q}) = sq and
f(p;A) ≤ f(p;B) since f is monotone on V .

Induction Step: Suppose inequality (3) holds for all p
with d(p,q) ≤ r (for any r > 0). We prove that (3) holds
for all p′ with d(p′,q) = r+ δr in which δr > 0 is a small

2This proof is only for discrete case and it is not difficult to draw the
same conclusion for the continuous case.
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perturbation. Specifically, the neighborhood set Np′ can be
separated into two subsets X = {x|x ∈ Np′ , d(x,q) ≤ r}
and Y = {y|y ∈ Np′ , d(y,q) > r}. Based on the induc-
tion hypotheses, we have (i) f(x;A ∪ {q}) − f(x;A) ≥
f(x;B ∪ {q}) − f(x;B) for any x in X and (ii) f(y;A ∪
q) = f(y;A) and f(y;B∪q) = f(y;B) for any y inY . By
combining (i), (ii) and discrete formulation (2) together, we
have f(p′;A∪{q})−f(p′;A) ≥ f(p′;B∪{q})−f(p′;B),
which concludes the proof.

Proof (of Corollary 2) It is easy to check that W (S) =∑
p∈S w(p) is a monotone function with respect to S. Then

the conclusions in Corollary 2 can be directly proved by
Theorem 1, Lemma 6 and Lemma 7.
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