CVPR 2014 Submission #0562. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Supplemental Materials for

Adaptive Partial Differential Equation Learning for Visual Saliency Detection

Anonymous CVPR submissionPaper ID 0562Definition 4 A see
The following ineq
and point $\mathbf{q} \in \mathcal{V}/$ LESD: $f(\mathcal{A} \cup \mathbf{c})$ div $(\mathbf{K}_{\mathbf{p}} \nabla f(\mathbf{p})) + \lambda(f(\mathbf{p}) - g(\mathbf{p})) = 0,$ (1)Definition 4 A see
the following ineq
and point $\mathbf{q} \in \mathcal{V}/$ LESD: $f(\mathcal{A} \cup \mathbf{c})$ div $(\mathbf{K}_{\mathbf{p}} \nabla f(\mathbf{p})) + \lambda(f(\mathbf{p}) - g(\mathbf{p})) = 0,$ (1)Definition 5 A see

$$s.t. f(\mathbf{g}) = 0, \ f(\mathbf{p}) = s_{\mathbf{p}}, \ \mathbf{p} \in \mathcal{S},$$

where $\lambda \ge 0$.

Discretization:

$$f(\mathbf{p}) = \frac{1}{d_{\mathbf{p}} + \lambda} \left(\sum_{\mathbf{q} \in \mathcal{N}(\mathbf{p})} \mathbf{K}_{\mathbf{p}}(\mathbf{q}) f(\mathbf{q}) + \lambda g(\mathbf{p}) \right), \quad (2)$$

where $d_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{N}(\mathbf{p})} \mathbf{K}_{\mathbf{p}}(\mathbf{q}), \mathbf{K}_{\mathbf{p}}(\mathbf{q}) \ge 0$ and $g(\mathbf{p}) \ge 0$.

Then the main theoretical results (Theorem 1 in Section 2 and Corollary 2 in Section 3) in our manuscript are listed.

Theorem 1 Let $f(\mathbf{p}; S)$ be the visual attention score for image element \mathbf{p} and the sources $\{s_{\mathbf{p}} \ge 0\}$ are attached to saliency seed set S, i.e., $f(\mathbf{p}) = s_{\mathbf{p}}$ for all $\mathbf{p} \in S$. Then fis a monotone submodular function with respect to $S \subset V$.

Define L and \hat{L} as

$$L(\mathcal{S}) = \sum_{\mathbf{p} \in \mathcal{V}} f(\mathbf{p}; \mathcal{S}), \text{ and } \hat{L}(\mathcal{S}) = L(\mathcal{S}) - \sum_{\mathbf{p} \in \mathcal{S}} w(\mathbf{p}),$$

where $f(\mathbf{p}; S)$ is the solution to LESD and $w(\mathbf{p}) \ge 0$ is a function on \mathcal{F}_c . Then we have

Corollary 2 Both L(S) and $\hat{L}(S)$ are submodular functions. Furthermore, L(S) is monotone with respect to S.

We also state some necessary definitions and lemmas¹.

Definition 3 A set function $f : 2^{\mathcal{V}} \to \mathbb{R}$ is monotone if for all subsets $\mathcal{A} \subset \mathcal{B} \subset \mathcal{V}$, $f(\mathcal{A}) \leq f(\mathcal{B})$.

Definition 4 A set function $f : 2^{\mathcal{V}} \to \mathbb{R}$ is submodular if the following inequality holds for all subsets $\mathcal{A} \subset \mathcal{B} \subset \mathcal{V}$ and point $\mathbf{q} \in \mathcal{V}/\mathcal{B}$

$$f(\mathcal{A} \cup \mathbf{q}) - f(\mathcal{A}) \ge f(\mathcal{B} \cup \mathbf{q}) - f(\mathcal{B}).$$
(3)

Definition 5 A set function $f : 2^{\mathcal{V}} \to \mathbb{R}$ is modular if the following equality holds for any subsets $\mathcal{A}, \mathcal{B} \subset \mathcal{V}$

$$f(\mathcal{A}) + f(\mathcal{B}) = f(\mathcal{A} \cup \mathcal{B}) + f(\mathcal{A} \cap \mathcal{B}).$$
(4)

Lemma 6 Let f_1, f_2, \dots, f_n be submodular functions on \mathcal{V} and $\alpha_1, \alpha_2, \dots, \alpha_n$ be non-negative constants. Then the function $f = \sum_{i=1}^{n} \alpha_i f_i$ is submodular.

Lemma 7 Let f_1 and f_2 be a submodular and a modular function on \mathcal{V} , respectively. Then the function $f = f_1 - f_2$ is submodular.

2. Proofs

Proof (of Theorem 1) ² First, by energy conservation law in physics, the temperature of a diffusion system is always higher with more heat sources [2]. So we have that the visual attention score f is monotone with respect to the saliency seed set S.

Then we use a inductive way to prove the submodularity of f with respect to S. The proof consists of two steps: base and induction. Specifically, let $d(\mathbf{p}, \mathbf{q})$ be the distance between \mathbf{p} and \mathbf{q} . Then we prove the submodularity of f by induction on $d(\mathbf{p}, \mathbf{q})$.

Base Step: For **p** with $d(\mathbf{p}, \mathbf{q}) = 0$ (i.e., $\mathbf{p} = \mathbf{q}$), we have $f(\mathbf{p}; \mathcal{A} \cup {\mathbf{q}}) - f(\mathbf{p}; \mathcal{A}) \ge f(\mathbf{p}; \mathcal{B} \cup {\mathbf{q}}) - f(\mathbf{p}; \mathcal{B})$. This is because $f(\mathbf{p}; \mathcal{A} \cup {\mathbf{q}}) = f(\mathbf{p}; \mathcal{B} \cup {\mathbf{q}}) = s_{\mathbf{q}}$ and $f(\mathbf{p}; \mathcal{A}) \le f(\mathbf{p}; \mathcal{B})$ since f is monotone on \mathcal{V} .

Induction Step: Suppose inequality (3) holds for all \mathbf{p} with $d(\mathbf{p}, \mathbf{q}) \leq r$ (for any r > 0). We prove that (3) holds for all \mathbf{p}' with $d(\mathbf{p}', \mathbf{q}) = r + \delta r$ in which $\delta r > 0$ is a small

¹Please refer to [1] for all the definitions and lemmas in this material.

²This proof is only for discrete case and it is not difficult to draw the same conclusion for the continuous case.

108	perturbation. Specifically, the neighborhood set $\mathcal{N}_{\mathbf{p}'}$ can be
109	separated into two subsets $\mathcal{X} = \{\mathbf{x} \mathbf{x} \in \mathcal{N}_{\mathbf{p}'}, d(\mathbf{x}, \mathbf{q}) \leq r\}$
110	and $\mathcal{Y} = \{\mathbf{y} \mathbf{y} \in \mathcal{N}_{\mathbf{p}'}, d(\mathbf{y}, \mathbf{q}) > r\}$. Based on the induc-
111	tion hypotheses, we have (i) $f(\mathbf{x}; \mathcal{A} \cup {\mathbf{q}}) - f(\mathbf{x}; \mathcal{A}) \geq$
112	$f(\mathbf{x}; \mathcal{B} \cup \{\mathbf{q}\}) - f(\mathbf{x}; \mathcal{B})$ for any \mathbf{x} in \mathcal{X} and (ii) $f(\mathbf{y}; \mathcal{A} \cup \{\mathbf{q}\})$
113	$\mathbf{q} = f(\mathbf{y}; \mathcal{A})$ and $f(\mathbf{y}; \mathcal{B} \cup \mathbf{q}) = f(\mathbf{y}; \mathcal{B})$ for any \mathbf{y} in \mathcal{Y} . By
114	(i) = f(y, A) and $f(y, B) = f(y, B)$ for any y in y. By combining (i), (ii) and discrete formulation (2) together, we
115	
116	have $f(\mathbf{p}'; \mathcal{A} \cup \{\mathbf{q}\}) - f(\mathbf{p}'; \mathcal{A}) \ge f(\mathbf{p}'; \mathcal{B} \cup \{\mathbf{q}\}) - f(\mathbf{p}'; \mathcal{B}),$
117	which concludes the proof.

Proof (of Corollary 2) It is easy to check that W(S) = $\sum_{\mathbf{p}\in\mathcal{S}} w(\mathbf{p})$ is a monotone function with respect to \mathcal{S} . Then the conclusions in Corollary 2 can be directly proved by Theorem 1, Lemma 6 and Lemma 7.

References

- [1] S. Fujishige. Submodular functions and optimization, vol-ume 58. Elsevier, 2005. 1
- [2] J. Rice and B. Budiansky. Conservation laws and energy-release rates. Journal of applied mechanics, 40:201-203, 1973. <mark>1</mark>