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Abstract—Subspace clustering groups a set of samples (vec-
tors) into clusters by approximating this set with a mixture of
several linear subspaces, so that the samples in the same cluster
are drawn from the same linear subspace. In majority of existing
works on subspace clustering, samples are simply regarded as
being independent and identically distributed, that is, arbitrarily
ordering samples when necessary. However, this setting ignores
sample correlations in their original spatial structure. To address
this issue, we propose a tensor low-rank representation (TLRR)
for subspace clustering by keeping available spatial information
of data. TLRR seeks a lowest-rank representation over all the
candidates while maintaining the inherent spatial structures a-
mong samples, and the affinity matrix used for spectral clustering
is built from the combination of similarities along all data spatial
directions. TLRR better captures the global structures of data and
provides a robust subspace segmentation from corrupted data.
Experimental results on both synthetic and real-world datasets
show that TLRR outperforms several established state-of-the-art
methods.

I. INTRODUCTION

Due to rapid development of storage, sensing, networking,
and communication technologies, recent years have witnessed
a gigantic increase in the availability of multidimensional
data. These massive multidimensional data are often high-
dimensional with a large amount of redundancy. This prompts
the development of finding a low-dimensional representation
that best fits a set of samples from a high-dimensional space.
Linear subspace learning is a kind of traditional dimensionali-
ty reduction techniques that finds an optimal linear mapping to
a lower dimensional space. For example, Principle Component
Analysis (PCA) [1] is essentially based on the hypothesis that
the data are drawn from a low-dimensional subspace. However,
a data set is not often well described by a single subspace in
practice. Therefore, it is more reasonable to consider data lying
on a mixture of multiple low-dimensional subspaces, with each
subspace fitting a subgroup of data. The objective of subspace
clustering is to assign data to their relevant subspace clusters
based on, for example, a low-dimensional representation for
each high-dimensional sample. In the last decade, subspace
clustering (SC) has been widely applied to many real-world
applications, including motion segmentation [2], [3], social
community identification [4], and image clustering [5]. A fa-
mous survey on subspace clustering [6] classifies most existing
SC algorithms into three categories: statistical methods [7] ,
algebraic methods [8] and spectral clustering-based methods
[3], [8].
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In SC algorithms, a given high dimensional data set is
represented by a matrix X = [x1,x2, . . . ,xN ], with each
sample xi (1 ≤ i ≤ N) denoted by a column vector.
In many applications, samples may have multi-dimensional
spatial structure forms as shown in Fig. 1 (a 2-dimension/mode
scene image and a 3-dimension/mode silhouette sequence). In
the 2-dimensional scene case, one wishes to cluster all the
pixels, each of which is represented as a feature vector such
as RGB features. For example, an image of size 32 × 32
is considered as a matrix of size R

3×1024 by rearranging
the pixels into a list of vectors along row/column direction.
The necessity of such “unfolding” process is due to the
fact that most of the current SC algorithms can only be
applied to vectorial data, which breaks the inherent structure
and correlations in the original data (the scene in the above
case). Take Fig.2 as an example, two samples x11: and x21:

are close in the 2-dimension structure, so they are highly
possible from the same subspace. However, in a traditional
SC algorithm, this closeness information is simply ignored as
all the pixels are simply regarded as a group of features. Fig.
2(a) shows an example in which the pixels/features are re-
arranged into a matrix by row-by-row order. Clearly in the
row ordering, above two samples are not adjacent in the new
sample sequence. A specific order may have some impact over
the results from a clustering algorithm. Fortunately, tensor is
a suitable representation for such multi-dimensional data like
image scenes, with a format of a multi-way array. The order
of a tensor is the number of dimensions, also known as ways
or modes. Thus, a set of sample vectors with an (N − 1)-
dimension spatial structure (2D structure for an image scene
and 3D structure for a silhouette sequence) is denoted by an N -
mode tensor X ∈ R

I1×I2×···×IN , with mode-i (1 ≤ i ≤ N −1
) denoting sample’s position along its direction, and the mode-
N denoting the sample feature direction, e.g. RGB features in
image scenes. Take a 3-mode tensor as an example, mode-1
and mode-2 denote the spatial row and column information of
samples, the sample vectors/features are listed among mode-3
as shown in Fig. 2(b).

Therefore, we propose a novel subspace clustering method
where the input data are represented in their original structural
form as a tensor. Our model finds a lowest-rank representation
for the input tensor, which can be further used to build an
affinity matrix. The affinity matrix used for spectral clustering
records pairwise similarity along all the spatial modes. For a
3-mode tensor, the affinity matrix evaluates their similarities
from both row and column directions as shown in Fig. 2(b).
In summary, the contribution of our work is twofold:

• We propose a tensor low-rank representation for sub-
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Fig. 1: Illustration of real-world data with multi-dimensional spatial structure information.
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Fig. 2: Traditional subspace clustering paradigm vs. the proposed TLRR paradigm.

space clustering (TLRR). Unlike previous work treat-
ing each individual sample as an independent and
identically distributed (i.i.d.) one, our model takes
sample spatial structure and correlations into account.
Specifically, our method directly seeks for a low-rank
representation to samples’ natural structural form —
a high-order tensor.

• The new SC algorithm based on our model is robust,
capable to handle noise in the data and segments all
samples into their respective subspaces simultaneous-
ly.

II. RELATED WORK

The author of [6] classifies existing SC algorithms into
three categories: statistical methods, algebraic methods and

spectral clustering-based methods.

Statistical models assume that mixed data are formed by
a set of independent samples from a mixture of a certain
distribution such as Gaussian. Each Gaussian distribution can
be considered as a single subspace, then subspace clustering
is transformed to be a mixture of Gaussian model estimation
problem. This estimation can be obtained by Expectation
Maximization (EM) algorithm in Mixture of Probabilistic
PCA [9], or serial subspace searching in Random Sample
Consensus (RANSAC) [10]. Unfortunately, these solutions are
sensitive to noises and outliers. Some efforts have been made
to improve algorithm robustness. For example, Agglomerative
Lossy Compression (ALC) [11] finds the optimal segmentation
that minimizes the overall coding length of the segmented data,
subject to each subspace is modeled as a degenerate Gaussian.



However, optimization difficulty is still the bottleneck to solve
this problem.

General Principle Component Analysis (GPCA) [12] is an
algebraic based method to estimate a mixture of linear sub-
spaces from sample data. It factors a homogeneous polynomial
whose degree is the number of subspaces and whose factors
(roots) represent normal vectors to each subspace. GPCA has
no restriction on subspaces, and works well under certain
condition. Nevertheless, the performance of algebraic based
methods in the presence of noise deteriorates as the number
of subspaces increases. Robust Algebraic Segmentation (RAS)
[8] is proposed to improve robustness performance, but the
complexity issue still exists.Iterative methods improve the
performance of algebraic based algorithms to handle noisy
data in a repeated refinement. The k-subspace method [7],
[13] extends the k-means clustering algorithm from data dis-
tributed around cluster centers to data drawn from subspaces
of any dimensions. It alternates between assigning samples
to subspaces and re-estimating subspaces. The k-subspace
method can converge to a local optimum in a finite number
of iterations. Nevertheless, the final solution depends on good
initialization and is sensitive to outliers.

Both [3], [8] and [14] are representatives of spectral
clustering-based methods. They aim to find a linear represen-
tation Z for all the samples in terms of all other samples,
which is solved by finding the optimal solution of the following
objective function:

min
Z

‖ E ‖q + ‖ Z ‖b
s.t. X = XZ+E

(1)

where ‖ · ‖q and ‖ · ‖b denote the norms for error and the
new representation matrix Z respectively. Using the resulting
matrix Z, an affinity matrix |Z|+|ZT | is built and used for
spectral clustering. The Sparse Subspace Clustering (SSC) [3]
uses the l1 norm ‖ Z ‖l1 in favor of a sparse representation,
with an expectation that the within-cluster affinities are sparse
(but not zero) and the between-cluster affinities shrink to zero.
However, this method is inaccurate at capturing the global
structure of data and is not robust to noises in data. The Low-
Rank Representation (LRR) [14] employs the nuclear norm
‖ Z ‖∗ to guarantee a low-rank structure, and the l2,1 norm is
used in error term to make it robust to outliers.

III. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

Before formulating the subspace clustering problem, we
first introduce some tensor fundamentals and notations.

Definition 1 (Tensor Matricization): Matricization is the
operation of rearranging the entries of a tensor so that it can
be represented as a matrix. Let X ∈ R

I1×...×IN be a tensor
of order-N, the mode-n matricization of X reorders the mode-
n vectors to be columns of the resulting matrix, denoted by
X(n) ∈ R

In×(In+1In+2...INI1I2...In−1).

Definition 2 (The n-mode Product): The n-mode product
of a tensor X ∈ R

I1×...×IN by a matrix U ∈ R
J×In , denoted

as X ×n U, is a tensor with entries:

(X ×n U)i1,...,in−1,jn,in+1,...,iN =

In∑
in=1

xi1i2...iNujin (2)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in terms
of tensor matricization as well:

Y = X ×n U ⇔ Y(n) = UX(n) (3)

Definition 3 (Tucker Decomposition): Given an N-way
tensor X , its Tucker decomposition is an approximated tensor
defined by,

X̂ ≡ �G;U1, ...,UN � = G ×1 U1 ×2 . . .×N UN

=

R1∑
r1=1

R2∑
r2=1

. . .

RN∑
rN=1

gr1r2...rNur1 ◦ ur2 . . . ◦ urN (4)

where G ∈ R
R1×R2×... RN is called a core tensor and U(i) ∈

R
Ii×Ri(1 ≤ i ≤ N) are the factor matrices at each mode. The

symbol ◦ represents the vector outer product.

B. Problem Formulation

Given an N-mode tensor X ∈ R
I1×I2×···×IN , we consider

a data set of all the IN dimensional vectors/features along
X ’s N -mode (also called N -mode fibres). The size of data
set is (I1 × I2 × · · · × IN−1). Assume that these samples are

drawn from a union of k independent subspaces {Si}ki=1 of

unknown dimensions, i.e.,
∑k

i=1 Si =
⊕k

i=1 Si, where
⊕

is
the direct sum. Our purpose is to cluster all the IN -dimensional
vectors from the tensor X into k subspaces by incorporating
their relevant spatial information in the tensor.

IV. SUBSPACE CLUSTERING VIA TENSOR LOW-RANK

REPRESENTATION

A. Tensor Low-Rank Representation

The new approach Low-Rank Representation (LRR) [14]
is very successful in subspace clustering for even highly
corrupted data, outliers or missing entries. LRR is more robust
than Sparse Subspace Clustering [3].

Inspired by the idea used in LRR, we consider a model
of low-rank representation for an input tensor X similar to
problem (1). Specifically, we decompose the input tensor X
into a Tucker decomposition in which the core tensor G is the
input tensor itself along with a factor matrix Un at each mode
n ≤ N . That is, the proposed data representation model is

X = X ×1 U1 ×2 U2 × . . .×N UN + E . (5)

Here we are particularly interested in the case where UN = I
(identity matrix of order IN ). If we define Z = U1 ⊗ U2 ⊗
· · · ⊗UN−1, where ⊗ denotes the Kronecker product [15] of
matrices, then based on the above multiple linear model, we
may interpret the entries of Z as the similarities between the
pairs of all the vectors along the N -mode of the data tensor
X . These similarities are calculated based on the similarities
along all the N − 1 modes through the factor matrices Un

(n = 1, ..., N − 1), each of which measures the similarity at
the n-mode.

As in LRR, model (5) uses the data to represent itself,
therefore we can expect low-rank factor matrices Un. It is well
known that it is very hard to solve an optimization problem



with matrix rank constraints. A common practice is to relax
the rank constraint by replacing it with the nuclear norm [16]
as suggested by matrix completion methods [17], [18]. Thus,
we finally formulate our model as follows,

min
U1,...,UN−1

λ

2
‖ E ‖2F +

N−1∑
n=1

‖ Un ‖∗
s.t. X = X ×1 U1 ×2 U2 · · · ×(N−1) UN−1 ×N I+ E

(6)
where ‖ · ‖∗ denotes the nuclear norm of a matrix, defined as
the sum of singular values of the matrix, ‖ · ‖F denotes the
Frobenius norm of a tensor, i.e. the square root of the sum of
the squares of all its elements, and λ > 0 is a parameter to
balance the two terms, which can be tuned empirically. That
is, TLRR seeks optimal low-rank solutions Un(1 ≤ n < N)
of the structured data X using itself as a dictionary.

B. Solving the Optimization Problem

1) Block Coordinate Descent Algorithm: We employ an
iterative algorithm called the Block Coordinate Descen-
t (BCD) [19] to solve the optimization problem (6) by
fixing all the other modes variables to solve for one
variable at a time alternatively. For instance, TLRR fixes
U1, . . . ,Un−1,Un+1, . . . ,UN−1 to minimize the variable
Un(n = 1, 2, . . . , N), which is equivalent to solve the fol-
lowing optimization subproblem:

min
Un

λ

2
‖ E ‖2 + ‖ Un ‖∗

s.t. X = X ×1 U1 ×2 U2 · · · ×(N−1) UN−1 ×N I+ E
(7)

Using tensorial matricization, problem (7) can be rewritten
in terms of matrices as follows:

min
Un

λ

2
‖ E(n) ‖2F + ‖ Un ‖∗

s.t. X(n) = UnB(n) +E(n)

(8)

where B(n) = X(n)(UN−1⊗· · ·Un+1⊗Un−1⊗· · ·⊗U1)
T .

Based on Eq.(8), each matrix Un(1 ≤ n < N) is
optimized individually, while the other matrices are held fixed.
All the matrices update iteratively until the change in fit drops
below a threshold or when the number of iterations reaches a
maximum, whichever comes first. The general process of BCD
is illustrated by Algorithm 1.

Algorithm 1 Solving Problem (6) by BCD

Require: data tensor X , parameters λ
Ensure: factor matrices Un (n = 1, 2, . . . , N − 1)

1: randomly initialize Un ∈ R
In×Rn for n = 1, . . . , N − 1

2: for n = 1, . . . , N − 1 do
3: X(n) ← the mode-n matricization of the tensor X
4: end for
5: while reach maximum iterations or converge to stop do
6: for n = 1, . . . , N − 1 do
7: B(n) ← X(n)(UN ⊗ · · ·Un+1 ⊗Un−1 ⊗ · · · ⊗U1)

T

8: Un ← solve the subproblem (8)
9: end for

10: end while

Remark 1: Using the Frobenius norm means we are dealing
with Gaussian noises in the tensor data. If based on some

domain knowledge, we know some noise patterns along a
particular mode, for example, in multispectral imaging data,
noises in some spectral bands are significant, we may adapt
the so-called robust noise models like l2,1-norm [20] instead.

Remark 2: There is a clear link between LRR and TLRR.
If we consider the mode-N matricization in (6), we will see
that it can be converted to an LRR model with Z = U1⊗U2⊗
· · · ⊗UN−1. However, in the standard LRR, such an explicit
Kronecker structure in Z has been ignored, so the number of
unknown parameters in Z is (I1 × I2 × · · · IN−1)

2. This will
cause difficulty in LRR algorithm doing SVD. However, TLRR
exploits the Kronecker structure with number of unknown
parameter reduced to I21 + I22 + · · ·+ I2N−1. Our experiments
demonstrate TLRR is much faster than LRR.

2) Augmented Lagrange Multiplier: In this subsection, we
consider how to solve the subproblem (8).

We use the Augmented Lagrange Multiplier (ALM) method
[21] to solve the constrained optimization problem (8). The
reason we choose ALM to solve this optimization problem is
threefold: (1) Superior convergence property of ALM makes
it very attractive; (2) Parameter tuning is much easier than
the iterative thresholding algorithm; and (3) It converges to an
exact optimal solution.

First of all, the augmented Lagrange problem of (8) can be
written as

L(E(n),Un,Yn) =
λ

2
‖ E(n) ‖2F + ‖ Un ‖∗

+ tr[YT
n (X(n) −UnB(n) −E(n))]

+
μn

2
‖ X(n) −UnB(n) −E(n) ‖2F .

(9)

The problem (9) can be solved by updating one variable
at a time with all the other variables fixed. More specifically,
the iterations of ALM go as follows

1) Fix all others to update E(n) by

min
E(n)

λ

μn
‖E(n)‖2F+‖E(n)−(X(n)−UnB(n)+

Yn

μn
)‖2F
(10)

which is equivalent to a least square problem. The
solution is given by

En =
λ

λ+ μn

(
X(n) −UnB(n) +

Yn

μn

)
(11)

2) Fix all others to update Un by

min
Un

‖Un‖∗ − tr[YT
nUnB(n)]

+
μn

2
‖ (X(n) −E(n))−UnB(n) ‖2F (12)

3) Fix all others to update Yn by

Yn ← Yn + μn(X(n) −UnB(n) −E(n)) (13)

However, there is no closed-form solution to problem (12)
because of the coefficient B(n) in the third term. We propose
to use the linearized approximation with an added proximal
term to approximate the objective in (12) as described in [22].
Suppose that Uk

(n) is the current approximated solution to (12)



and the sum of the last two terms is denoted by L, then the
first order Taylor expansion at Uk

(n) plus a proximal term is

given by

L ≈μn〈(Uk
nB(n) +En −X(n) − Yn

μn
)BT

(n),Un −Uk
n〉

+
μnηn
2

‖Un −Uk
n‖2F + consts

Thus, solving (12) can be converted to iteratively solve the
following problem

min
Un

‖Un‖∗ + μnηn
2

‖Un −Uk
n +Pn‖2F

where Pn = 1
ηn

(Uk
nB(n)+En−X(n)− Yn

μn
)BT

(n). The above

problem can be solved by applying the SVD thresholding
operator to Mn = Uk

n− 1
ηn

(Uk
nB(n)+En−X(n)− Yn

μn
)BT

(n).

Take SVD for Mn = WnΣnV
T
n . Then the new iteration is

given by

Uk+1
n = WnΣn(ηnμn)V

T
n (14)

where Σn(ηnμn) is diagonal with elements Σn(ηnμn)ii =
max{0, (Σn)ii − 1

ηnμn
}, see [23].

Algorithm 2 Solving Problem (8) by ALM

Require: matrices X(n)and B(n), parameter λ
Ensure: : factor matrices Un

1: initialize: Un = 0,E(n) = 0,Yn = 0, μn = 10−6,maxu =
1010, ρ = 1.1, ε = 10−8 and ηn = ‖B(n)‖2.

2: while ‖ X(n) −UnB(n) −E(n) ‖∞≥ ε do
3: E(n) ← the solution (11) to the subproblem (10);
4: Un ← the iterative solution by (14) by for example five

iterations;
5: Yn ← Yn + μn(X(n) −UnB(n) −E(n))
6: μn ← min(ρμn,maxu)
7: end while

C. The Complete Subspace Clustering Algorithm

After finding a low-rank representation given by Ui(i =
1, 2, . . . , N − 1)) for the data X , we can create a similarity
matrix Z = U1⊗U2⊗· · ·⊗UN−1. The affinity matrix is then
defined by |Z|+|ZT |. Each element of the affinity matrix is the
joint similarity between a pair of mode-N vectorial samples
across all the N − 1 modes/directions. Finally, we employ the
Normalized Cuts clustering method [24] to divide the samples
into their respective subspaces. Algorithm 3 outlines the whole
subspace clustering method of TLRR.

Algorithm 3 Subspace Clustering by TLRR

Require: structured data: tensor X , number of subspaces k
Ensure: : the cluster indicator vector l with terms of all samples

1: lowest-rank representation Un(n = 1, 2, . . . , N − 1) ← solve
the problem (6)

2: Z ← U1 ⊗U2 ⊗ · · · ⊗UN−1

3: l ← NormalizedCuts(|Z|+ |ZT |)

V. EXPERIMENTS AND RESULTS

A. Synthetic Datasets

In this section, we evaluate TLRR against state-of-the-
art subspace clustering methods on synthetic datasets. We

use a synthetic data set containing 3 subspaces, each of
which is formed by Ni samples of 5 dimensions, where
i ∈ {1, 2, 3}, N1 = 30, N2 = 24, and N3 = 10. The generation
process is as follows: 1) Select 3 cluster center points ci ∈ R

5

for above subspaces respectively, which are far from each
other. 2) Generate a matrix Ci ∈ R

5×Ni , each column of
which is drawn from a Gaussian distribution N (·|ci,Σi),
where Σi ∈ R

5×5 is a diagonal matrix with Σi
ii = 0.01, and

1s in all other diagonal positions. This setting guarantees the
low-rank property in each subspace. 3) Combine samples in
each subspace to form an entire data set X = ∪Ci.

1) Performance with high order tensorial data: To show
TLRR’s advantage of handling high order tensorial data over
other baseline methods, we create other 5 synthetic datasets
from the above data X by reshaping it into higher j-mode
tensor (3 ≤ j ≤ 7). A j-mode tensor X j ∈ R

I1×I2···×Ij−1×5 is
generated by rearranging the column vectors of X into higher
spatial spaces RI1×I2···×Ij−1 subject to I1×I2 · · ·×Ij−1 = 64.
Since all other baseline methods conduct subspace clustering
on an input matrix, i.e. a 2-mode tensor, we use X on all these
baseline methods for the purpose of fair comparisons. Fig.
3(a) reports the results on all the baseline methods, including
GPCA, Local Subspace Analysis (LSA) [25], RANSAC, SSC
and LRR.

As we can see, our model TLRR performs much better than
other methods in the higher mode of tensor. This observation
suggests that incorporating data structure information into
subspace clustering can boost clustering performance. While
other methods’ performances always stay still because these
methods treat each sample independently, ignoring inherent
data spatial structure information. As the order of tensor
increases, the running time of TLRR is significantly reduced
compared with LRR, as shown in Fig. 3(b), which suggests that
the structure information has important impact on speeding up
the subspace clustering process.

2) Performance with different portions of noisy samples:
Consider the case when there exists noisy samples in the data.
We randomly choose 0%, 10%,. . . , 100% of the samples of
above Ci respectively, and add Gaussian noises N (·|ci, 0.3Σi)
to these samples. Then a noisy data set X

′
is generated by

combining the corrupted Ci to one. For fair comparisons, we
implement two versions of SSC, i.e., SSC1 is a l1-norm
version and SSC2,1 is a l2,1-norm version. The performances
on SSC2,1, SSC1, LRR and TLRR are listed in Fig. 3(c).
Obviously, low-rank representation based subspace clustering
methods TLRR and LRR maintain their accuracies even though
70% of samples are corrupted by noise. Moreover, TLRR
and LRR significantly outperform both SSC2,1 and SSC1, as
shown in Fig. 3(c), which suggests that low-rank representation
is good at handling noisy data, while sparse representation
is not because noise is unnecessary to decrease the sparsity.
For low-rank based methods, LRR method is inferior to the
structure based TLRR. This is mainly because TLRR integrates
data spatial information into subspace clustering, it maintains
good performance even 90% of data are corrupted .

B. Indianpines Dataset

We evaluate our model on the Indianpines dataset [26]. This
dataset is gathered by AVIRIS sensor over the Indian Pines
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Fig. 3: Comparison on the synthetic datasets. (a) Accuracy comparisons w.r.t. different orders of a tensor. (b) Run time
comparisons w.r.t. different orders of a tensor. (c) Accuracy comparisons w.r.t. different potions of noisy samples.

TABLE I: Subspace clustering results on the Indianpines
Dataset

GPCA LSA RANSAC SSC LLR TLRR
Accuracy 0.476 0.583 0.532 0.698 0.776 0.786
Time (min.) 6.87 177.84 5.90 745.73 380.07 51.23

test site in North-western Indiana, and consists of 145 × 145
pixels and 224 spectral reflectance bands in the wavelength
range 0.4-2.5 × 10(−6) meters. The whole data set is formed
by 16 different classes having an available ground truth. In our
experiments, 24 bands covering the region of water absorption
are discarded. The task is to group pixels into clusters ac-
cording to their spectral reflectance bands information. Table.
I shows the results of all baseline methods on Indianpines.

Clearly our method TLRR has the highest accuracy among
the other five baselines on this dataset. The advantage of TLRR
mainly comes from its ability of incorporating 2 dimensional
data structure information into the low-rank representation. G-
PCA and RANSAC do not work well because their accuracies
deteriorate quickly as the number of subspaces increases (
i.e. 16 subspaces on Indianpine). The performance of LSA
is marginally better than RANSAC and GPCA as LSA fits
a subspace locally around each projected point, while GPCA
uses the gradients of a polynomial that is globally fit to the
projected data. However, LSA has the problem that selected
neighbor is near the intersection of two subspaces, which may
result in poor performance. Although TLRR costs more com-
putational time than GPCA and RANSAC methods due to its
optimization procedure needs more iterations to converge, the
accuracy of TLRR is superior to them. The results regarding
time cost on TLRR and LRR are consistent with Remark 2
in section IV-B, which shows that TLRR significantly reduces
time cost by exploiting the Kronecker structure along each
space dimension.

We further study the performance of our proposed method
with different values of parameter λ. The parameter λ > 0 is
used to balance the effects of the two parts in problem (6).
Generally speaking, the choice of this parameter depends on

 

Fig. 4: The influences of the parameter λ of TLRR. These
results are collected from the Indianpines data set and the

Pavia University data set.

the prior knowledge of the error level of data. When the errors
are slight, a relatively large λ should be used; while the error
are heavy, we should set a small value. The blue curve in
Fig. 4 is the evaluation results on Indianpines data set. Wile
λ ranges from 0.04 to 0.2, the clustering accuracy slightly
varies from 80.34 % to 81.98 %. This phenomenon is mainly
because TLRR employs LRR representation to explore data
structure information. It has been proved that LRR works well
on clean data (the indianpines is a clean data set), and there
is an “invariance” in LRR that implies that it can be partially
stable while λ is varying (For the proof of this property see
Theorem 4.3 in [14]).

C. Slightly Corrupted Data set Pavia University

In this section, we evaluate TLRR on the Pavia University
database [27]. The database is acquired by the ROSIS sensor
with a geometric resolution of 1.3 meters, during a flight
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Fig. 5: Recovery Results of Pavia University for spectral band 7 (in the first row) and band 101 (in the second row).

campaign over Pavia, northern Italy. Pavia University consists
of 610*340 pixels, each of which has 103 spectral bands
covering 0.43 to 0.86 μm. The data set contains 9 different
classes with available groundtruths. We examine the noise
robustness of the proposed model by adding Guassian white
noises with an intensity of 60 to the spectral band 7-10 and
band 101-103.

Table II details the clustering performance on all the
baselines. The performance of SSC is inferior to all LRR
based methods, which shows that sparse representation is not
good at handling corrupted data like LRR. Other baselines like
GPCA, LSA and RANSAC do not work very well when the
data is contaminated with noise. Our model TLRR performs
best among all the methods on the corrupted data set. This
is because TLRR explores data spatial correlation information
with a low-rank representation, which guarantees accurately
clustering data into different subgroups.

About the parameter λ, the red curve in Fig. 4 shows the
performance of TLRRSC on Pavia University dataset, when
the parameter λ varies from 0.04 to 0.2. Notice that TLRRSC
is more sensitive to λ on this data set than on Indianpines.
This is because the samples in Indianpines are clean, whereas
Pavia University contains some corrupted information.

TABLE II: Subspace clustering results on the Pavia
University Dataset

Subspace clustering accuracy(%)
GPCA LSA RANSAC SSC LRR TLRR

Mean 31.9 52.5 48.9 60.8 73.6 76.6
Std. 13.23 11.98 7.98 7.56 6.38 4.12
Max 61.2 69.0 72.0 79.8 82.8 85.2
Time (hr.) 1.04 27.01 0.89 98.18 47.02 7.2

To visualize TLRR’s effectiveness in noise correction,
we reconstruct the data X̃ with the learnt dictionary, sparse
representation and the spatial factors. Fig. 5 shows the recovery
results on spectral band 7 and band 101. Clearly, our model
TLRRSC can extract the noise from the corrupted band, which
proves that LRR is robust to noise.

VI. CONCLUSIONS

We propose a tensor based low-rank representation (TLRR)
for subspace clustering in this paper. Unlike existing subspace
clustering methods work on an unfolded matrix, TLRR builds a
model on data original structure form (i.e. tensor) and explores
data similarities along all spatial dimensions. On the synthetic
higher mode tensorial datasets, we show that our model



considering data structure keeps good performance. Moreover,
the experimental results with different noise rates show our
model maintains good performance on highly corrupted data.
On the real-world dataset, our method shows promising results
and significant computation gains. Moreover, our model is
robust to noises, and capable of recovering corrupted data.
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