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a b s t r a c t

Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and
embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel
MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we
introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace
structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and
the global subspace structure can be learnt from the transition probabilities ofMRW.We prove that under
some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace
structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of
subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning
model based on integrating transition matrix learning and error correction in a unified framework.
Experimental results on both synthetic data and real applications demonstrate that our proposed MRW
learning model and its robust extension outperform the state-of-the-art subspace clustering methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The graph spectral techniques (Chung, 1997; Von Luxburg,
2007) have many applications in machine learning, exploratory
data analysis, computer vision and pattern recognition. Normal-
ized Cut (NCut) (Shi & Malik, 2000), as one of the most successful
spectral clustering methods, views the data set as a graph, whose
nodes represent data points andwhose edges areweighted accord-
ing to the similarity between data samples. The success of such al-
gorithms heavily depends on the choice of the affinity matrix. In
addition to the graph cut interpretations, spectral clustering can
also be understood in a probabilistic manner. The work in Meila
and Shi (2001) views the local pairwise similarities as edge flows
inMarkov RandomWalks (MRW) and studies the properties of the
resulting transition matrix. In this view, the NCut criterion can be
nicely interpreted in a general MRW framework. Along this direc-
tion, the work in Qiu and Hancock (2007) uses the commute time
of a random walk for clustering and embedding. MRW can also be
considered as ametric or a similarity structure over the data space,
which is used by the clustering (Nadler, Lafon, & Coifman, 2005;
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Ng, Jordan, & Weiss, 2001) and embedding (Lafon & Lee, 2006) al-
gorithms.

Themost important problemwith conventional MRWmethods
(e.g., Gaussian kernel MRW) is that they only consider the local
similarity of the data set and there is no global structure constraint
for the data. Thus thesemethodsmight be unsuitable for modeling
data sampled from a mixture subspaces. The main reason is that
the affinity in typical spectral methods is modeled only based
on a characterization of ‘‘locality’’, which may fail to reveal the
global subspace structure. However, in real applications several
types of visual data, such as motion (Rao, Tron, Vidal, & Ma,
2010), face (Geng, Smith-Miles, Zhou, & Wang, 2011; Huang,
Liu, & Metaxas, 2011) and video sequences (Mei & Ling, 2011;
Wang, Tieu, & Grimson, 2010), have been known to be well
characterized by subspaces. Therefore, there is a need to extend
conventional spectral methods to model a mixture of subspaces.
Recent advances in low-rank modeling have led to increasingly
concise descriptions of the subspace structure. For instance, the
work in Candès, Li, Ma, and Wright (2011) showed that the data
points sampled from a single subspace can be exactly recovered
by the rank minimization model. It is also shown in Liu, Lin, and
Yu (2010) that the multiple subspace structure can be revealed by
the ‘‘lowest rank’’ representation coefficients of a given dictionary.
However, as discussed below, the spectrum properties of such
representation matrix cannot be guaranteed. Thus further efforts
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should be made to build upon the connection between the learnt
representation and the affinity matrix used in spectral methods.

In this paper, by considering both the local pairwise similarity
and the global subspace structure at the same time, we provide a
new spectral framework from the MRW viewpoint for subspace
clustering and estimation. Specifically, we learn a transition
matrix by our local/global criteria and estimate a low-dimensional
embedding from this graph. Then data points can be clustered into
different subspaces in this feature space. In the following, we will
review previous work on subspace clustering and then highlight
the contributions of our research.

1.1. Previous work

A number of approaches for subspace clustering have been
proposed in the past twodecades. According to themechanisms for
data structuremodeling, the existingworks can be roughly divided
into four main categories: algebraic, statistical, factorization, and
compressive sensing methods.

Generalized Principal Component Analysis (GPCA) (Vidal, Ma,
& Sastry, 2005) is an algebraic method for subspace clustering. The
idea behind GPCA is that one can fit the data with polynomials. By
representing subspaces with a set of homogeneous polynomials,
subspace clustering is reduced to a problem of fitting data points
with polynomials. This method does not impose any restriction
on the subspaces. But the main drawback of GPCA is that it is
difficult to estimate the polynomial coefficients when the data
contains large noise. Recently, Robust Algebraic Segmentation
(RAS) (Rao, Yang, Sastry, & Ma, 2010) has been proposed to resolve
the robustness issue of GPCA. However, due to the computation
difficulty in fitting large scale polynomials, RAS can only work for
data with low-dimensionality and a small number of subspaces.

Statistical approaches usually model mixed data as a set
of independent samples drawn from a mixture of probabilistic
distributions (e.g., mixture of Gaussian). Then the problem of
clustering is converted to a model estimation problem, which can
be tackled by either Expectation–Maximization (EM) (Gruber &
Weiss, 2004) or estimating the mixture structure by iteratively
finding a min–max estimation (Fischler & Bolles, 1981). The
Bayesian Ying-Yang harmony learning technique presented in Xu
(0000) and Xu (2002) is a unified statistical framework to model
unsupervised learning and recent investigations in Shi, Liu, Tu,
and Xu (2014) show that this theory can be successfully applied
for cluster number selection and determining the dimension for
principal subspace. The main limitation of statistical models is
the optimization difficulty. For example, due to the usage of EM
algorithm, most statistical methods can only converge to a local
minimum, thus are sensitive to initialization. Also, the sensibility
to large errors and outliers is also a bottleneck for these methods.

The idea behind factorization methods (Costeira & Kanade,
1998; Gear, 1998) is to seek clustering from the factorization of the
datamatrix. The factorization can be computed from SVD (Costeira
& Kanade, 1998) or the row echelon canonical form Gear (1998).
However, all these methods are sensitive to noise. The work in
Gruber and Weiss (2004) adds extra regularization terms to the
formulation to reduce the effects of noise. Due to the optimization
difficulty of the modified non-convex problem, this method may
also get stuck at local minimum.

Compressive sensing has proven to be an extremely powerful
tool for signal processing. Recently, there has been a surge ofmeth-
ods (Elhamifar & Vidal, 2009; Favaro, Vidal, & Ravichandran, 2011;
Liu, Lin, De la Torre, & Su, 2012; Liu et al., 2010; Nasihatkon & Hart-
ley, 2011; Ni, Sun, Yuan, Yan, & Cheong, 2010; Yu & Schuurmans,
2011) exploiting the discriminative nature of compact representa-
tion for subspace clustering. One type of methods, such as Sparse
Subspace Clustering (SSC) (Elhamifar & Vidal, 2009; Nasihatkon
& Hartley, 2011), is based on discovering the sparsest represen-
tations (SR) for the data set. According to the theoretical work of
Nasihatkon and Hartley (2011), the within-subspace connectivity
assumption for SSC holds only for 2- and 3-dimensional subspaces.
In this view, it is possible for SSC to over-segment subspaces for
dimension higher than 3. Therefore, extra post-processing stage is
needed to overcome this intrinsic drawback for high dimensional
data set.

Another type of method, such as Low-Rank Representation
(LRR) (Liu et al., 2012, 2013, 2010), is based onminimizing the rank
of the representationmatrix. It has been proven that, under certain
conditions, such non-convex problem can be efficiently solved by
minimizing the nuclear norm (as a measure of 2D sparsity) of the
matrix (Cai, Candès, & Shen, 2010). Theoretical analysis inWei and
Lin (0000) shows that in essence LRR is a kind of factorization
method. Several extensions of this work have been developed. In
Favaro et al. (2011), Favaro et al. extend the standard LRR to learn
both clean dictionary and low-rank representation for subspace
clustering. Indeed, a particular case of this method is equivalent
to PCA (Jolliffe, 2002). Thus this method can also be utilized for
single subspace estimation. A major drawback of this model is
that it may be sensitive to sparse outliers due to the Frobenius
normmeasure for the noise term. The work in Yu and Schuurmans
(2011) also proposes some theoretical analysis on LRR related
optimization problems and proves that under the Simultaneous
Block (SB) and/or Simultaneous Diagonal (SD) assumptions, a class
of rank/norm based subspace clustering models can be solved in
closed forms. However, due to the strict SB and SD assumptions on
the data matrix, it is unclear whether or not their results can be
extended to general problems and applied to real applications.

Overall, although compressive sensing basedmethods (i.e., SSC,
LRR and their variations discussed above) all aim to learn an
affinity matrix for spectral clustering, the spectrum properties
(i.e., symmetric and nonnegative) of the representation matrix has
been bypassed. Without consideration in this aspect, the validity
of the constructed graph is poorly justified.

1.2. Our contribution

In this paper, we propose a novel method, called Low-Rank
Markov Random Walks (LR-MRW), to learn a specific transition
matrix (with low-rank property) to transfer themultiple subspaces
structure from the observed data space to a low-dimensional dis-
criminant feature space for subspaces clustering and estimation.
Our motivations in this work are two-fold: the success of MRW in
understanding spectral clustering and the matrix rank viewpoint
for measuring the subspace structure.

On one hand, the intuition motivating this study is that since
random walks reflect the combined effect of all possible weighted
paths between a pair of nodes, the transition matrix can lead to
a measure of cluster cohesion that is less sensitive than using
edge weight alone, which underpins algorithms such as NCut.
Therefore, it is natural to assume transition probabilities as a
metric or a similarity measure over the data space for clustering.
On the other hand, inspired by recent works on low-rankmodeling
(Liu et al., 2010; Wright, Ganesh, Rao, & Ma, 2009), we utilize
rank as a measure of subspace structure for the transition matrix.
In general, by introducing such local/global criteria, our work
learns specific transition probabilities from the original data set to
characterize both local pairwise relationship and global multiple
linear subspaces structure. For noisy and corrupted data, we
propose a robust extension of LR-MRW,which integrates transition
matrix learning and noise corruption in a unified framework.
Moreover, as a nontrivial byproduct, we propose closed-form
solutions for a general class of nuclear norm regularized lease
square problems. In the following,we highlightmain contributions
of the proposed approach:
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1. Conventional MRW methods (Lafon & Lee, 2006; Meila & Shi,
2001) use a Gaussian kernel to define the transition matrix for
randomwalks, which may fail to reveal the subspace structure.
In contrast, LR-MRW aims at directly learning transition
probabilities by incorporating local/global prior knowledge into
random walks to model the multiple subspaces structure.

2. Another major shortcoming of conventional MRW is its
brittleness to grossly corrupted observations. By integrating
transition matrix learning and noise correction in a unified
framework, the Robust Low-Rank MRW (RLR-MRW) can
successfully recover the corrupted data and reveal the multiple
subspaces structure at the same time.

3. Compared to compressive sensing based methods, in which
the properties of the affinity matrix cannot be gauged and
thus need some extra post-processing, our model advocates to
enforce the symmetric and nonnegative constraints explicitly
in the optimization model. In this way, LR-MRW can directly
learn a valid transition matrix to capture the multiple subspace
structure.

4. We obtain closed form solutions to a general class of nuclear
norm regularized least square problems. Compared to the work
in Ni et al. (2010) and Toh and Yun (2010), our result is more
general and we present an entirely different proof, which can
be extended in a relatively straightforwardway to other nuclear
norm minimization problems.

1.3. Paper organization

The outline of the paper is as follows. In Section 2, we review
NCut and its link to MRW on the graph. Section 3 introduces
our proposed Low-Rank Markov Random Walks (LR-MRW)
framework for subspace clustering and estimation. We discuss the
computational issues related to LR-MRW in Section 4. The robust
extension for LR-MRW is proposed in Section 5. The experimental
results are shown in Section 6. Finally,we provide some concluding
remarks and suggestions for future work in Section 7.

2. Understanding spectral clustering by Markov random walk

In this section,we reviewhow to understand spectral clustering
in the viewpoint of NCut and describe its relationship toMRWon a
graph. The material presented here provides the prerequisites for
our study and is a summary of results in Belkin and Niyogi (2003),
Goh and Vidal (2007), Meila and Shi (2001), Shi and Malik (2000)
and Von Luxburg (2007).

2.1. Notations

Hereafter, bold capital letter denotes a matrix (e.g., X), bold
lower-case letter denotes a columnvector (e.g., x). xi represents the
ith column of X. xij denotes the scalar in the row i and the column j
of X. X ≥ 0 denotes that all xij ≥ 0. 1n is the all-one column vector
of length n. I denotes the identitymatrix. tr(X) =


i xii is the trace

of X. rank(X) is the rank of X. span(X) is the subspace spanned
by the columns of X. diag(x) is a diagonal matrix whose diagonal
entries are x. A variety of norms on vectors and matrices will be
used. ∥x∥2 and ∥x∥1 denote the l2 and l1 norm of x, respectively.
∥X∥F designates the Frobenius norm ofX. ∥X∥∗ is the nuclear norm
of X (the sum of singular values of X). ∥X∥2,1 =


j ∥xj∥2 is the l2,1

norm of X. ∥X∥∞ = maxij(|xij|). The space of n × n symmetric
matrices is denoted by Sn.

2.2. Spectral clustering via normalized cut

Given a set of data points X = [x1, . . . , xn] ∈ Rm×n (each
column is a sample), let G be an undirected weighted graph with
vertex set V = {v1, . . . , vn} and weighted adjacency matrix W =

[wij]n×n, where vertex vi represents the data point xi and wij is the
weight of edge between vi and vj. The degree of a vertex vi ∈ V
is defined as di =


j wij. The degree matrix D is defined as the

diagonalmatrix with degree d1, . . . , dn on the diagonal. For A ⊆ V ,
the set of edges between A and its complement Ā is an edge cut.
The NCut criterion in Shi and Malik (2000) is to find the cut that
minimizes the following cost function:

NCut(A, Ā) =


1

vol(A)
+

1
vol(Ā)

 
i∈A,j∈Ā

wij, (1)

over all cuts between A and Ā, where vol(A) :=


i∈A di. The
algorithm in Shi and Malik (2000) is a continuous approximation
for solving (1) by computing a generalized eigenvalues problem
Lh = λDh, (2)
where L = D − W is the Laplacian matrix.

2.3. A Markov random walk view of NCut

Based on MRW on a graph, we present a simple probabilistic
interpretation that can offer insights and serve as an analysis tool
for NCut. AMRWon a graph is a stochastic processwhich randomly
jumps from vertex to vertex. Therefore, data clustering can be
interpreted as trying to find a partition of the graph such that the
random walks stay long within the same cluster and seldom jump
between clusters. Formally, the transition probability of jumping
in one step of the random walk is proportional to the edge weight
W and is given by P = D−1W.

If the graph is connected and non-bipartite, then we can de-
fine π = [π1, . . . , πn]

T by πi = di/vol(V ). It is easy to verify
that PTπ = π and thus π is a unique stationary distribution of
the Markov chain on the graph. As shown in Chung (1997), many
properties of a graph can be expressed in terms of the correspond-
ing transition matrix P.

For any disjoint subsets A, B ⊆ V , we define P(B|A) := Pr(A →

B|A) as the probability of the random walks transiting from set
A to set B in one step if the current state is in A and the random
walk is started in its stationary distribution π . Then the following
proposition (Von Luxburg, 2007) demonstrates the equivalence
between NCut and MRW:

Proposition 1. Let G be connected and non-bipartite, then we have:

NCut(A, Ā) = P(Ā|A) + P(A|Ā). (3)

Following this proposition, it is easy to understand that when
minimizing NCut, we actually look for a cut on the graph such that
a random walk seldom transitions from A to Ā and vice versa. This
probabilistic interpretation of NCut as MRW not only sheds new
lights on why and how spectral methods work in clustering, but
also offers a principled way of learning the similarity function for
clustering.

3. Modeling multiple subspace via Markov random walks

One of the main challenges in applying MRW for subspace
clustering is how to define a proper transition matrix P to model
the multiple subspace structure. Conventional MRW methods
(Azran & Ghahramani, 2006; Lafon & Lee, 2006; Meila & Shi, 2001)
usually calculate the transition matrix by the distance-based local
similarity (e.g., Gaussian kernel). A deficiency in these methods is
that the intrinsic data structure is only weakly modeled in local
viewpoint, which may fail to reveal the global multiple subspace
structure (Vidal, 2010). To avoid this unnatural bias for subspace
clustering, we introduce a new model that respects both the local
pairwise similarity and the global multiple subspaces structure in
the data.
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3.1. The basic formulation

Given a graph G, we define the following set of probability
matrices

P := {P = [pij]n×n|0 ≤ pij ≤ 1}, (4)

where pij gives the probability of jumping in one step from vi to vj.
To remove meaningless elements in P (e.g., matrix with all zero
or zero within-subspace probabilities), we assume that for each
point there exists at least one nonzero within-subspace jumping
probability (i.e.,∀vi, ∃ at least one point vj such that vi and vj belong
to the same subspace and pij > 0).

Now we consider the problem of subspace clustering and
estimation from the viewpoint of MRW. Specifically, we aim to
learn a transitionmatrix from the probabilitymatrix set P to reveal
the multiple subspace structure. Our criteria consist of two parts:
one is derived from the local similarity of the original data space,
and the other is contributed from the global structure of multiple
subspaces.

3.1.1. Local pairwise measure
Recall that, in a general clustering problem, in order to preserve

the geometric structure of adjacent samples, we need to define
an affinity matrix that encodes the pairwise affinities between
data samples. In MRW view, this means that the adjacent samples
should have higher transition probabilities to jump from one to
another. Consequently, the local pairwise similarity of the data
samples can be revealed by minimizing

J(P) =


ij

pij∥xi − xj∥2
2. (5)

3.1.2. Global structural measure
Nowwe turn tomodel the global subspace structure of the data

set. In compressive sensing theory, we always have that each sam-
ple in a union of subspaces has a linear representation with re-
spect to a dictionary formed by all other data samples (Vidal, 2010).
Different from previous works (e.g., Liu et al., 2012, 2010), which
directly utilize the linear combination coefficients themselves to
reveal subspace relationship, this paper would like to consider the
probabilities behind this linear reconstruction. That is, in global
structure viewpoint, we consider jth column in P as the proba-
bilities of samples appearing in the linear reconstruction for jth
sample (i.e., reconstruction probabilities). Thus based on the ob-
servation that samples should only be written as a linear combina-
tion of other samples from the same subspace,1 we desire that the
reconstruction probabilities to the jth sample should be highwhen
they are in the same subspace while low when they do not. So
in the ideal case we would like to have reconstruction probabili-
ties pij ≈ 1 on pairs of samples belonging to the same subspace
and pij ≈ 0 otherwise and the ‘‘prefect’’ P for subspace clustering
should be an approximation to the following rank k block matrix

P :=


1n11

T
n1 0 0 0

0 1n21
T
n2 0 0

0 0
. . . 0

0 0 0 1nk1
T
nk

 , (6)

where k is the number of subspaces. In practice, however, it is chal-
lenging to achieve such ‘‘prefect’’ probability matrix. Fortunately,
when the sampling of the data set is sufficient, we can observe that

1 This assumption has been verified by previous works (Liu et al., 2012, 2010;
Nasihatkon & Hartley, 2011).
P in (6) is always a low-rank matrix (k ≪ n). So we may adopt a
rank regularizer as a relaxed global structure constraint to P in (5),
namely optimizing the following minimization problem

min
P∈P

J(P) + µ · rank(P), (7)

where µ is a parameter to balance the loss function and the regu-
larizer. Following the common strategy in low-rankmethods (Can-
dès&Recht, 2009; Recht, Fazel, & Parrilo, 2010),we also use the nu-
clear norm as the convex surrogate for matrix rank. Therefore, our
criteria for modeling multiple subspace in the viewpoint of MRW
can be formulated as

min
P∈P

J(P) + µ∥P∥∗. (8)

The theoretical analysis in next section shows that though we can-
not obtain the ideal transitionmatrix in (6), the optimizationmodel
(8) can achieve an approximate block-diagonal matrix, which is
powerful for subspace clustering and estimation.

3.2. Analysis on the proposed criteria

Let {Cj}
k
j=1 be a collection of k subspaces each of which has a

dimension of dCj > 0. Without loss of generality, we suppose
that each Xj is a collection of nj samples from Cj and X =

[X1,X2, . . . ,Xk] (i.e., the indices have been rearranged to satisfy
the label of the data). By putting following assumption on the
observed data and the set of probability matrices, we establish
some theoretical analysis regarding the proposed local and global
criteria.

Assumption. The sampling of X is sufficient but without repeti-
tion, i.e., ∥xi − xj∥l2 > 0 for ∀i ≠ j.

Theorem 2. 2 Let P be a convex feasible solution set. Then there exists
an optimal solution P∗

∈ P to problem (8) with the following block-
diagonal structure:

P∗
=


P∗

1 0 0 0
0 P∗

2 0 0

0 0
. . . 0

0 0 0 P∗

k


n×n

, (9)

where P∗

j is an nj × nj nonnegative matrix.

Theorem 2 actually establishes a theoretical guarantee for the
proposed local and global criteria. Namely, under some suitable
conditions, the minimizer to problem (8) has the nature of high
within-subspace homogeneity and large between-subspace mar-
gin.

The goal of enforcing convex constraint to the feasible set P is to
guarantee that we can obtain a global optimal solution to the prob-
lem. However, in practical implementation the form of the feasi-
ble set should be specified for computation. Therefore, we exploit
some necessary convex constraints to the MRW learning model in
the following subsection.

3.3. The completed MRW learning model

For a given graph, it is natural to consider the transition matrix
as a metric or a similarity structure over the space of vertices. In
this view, we should assume P ∈ Sn. This implies that the rela-
tionship between vi and vj is symmetric. Furthermore, due to the

2 Please see Appendix A for the proof of Theorem 2.
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(a) G-MRW. (b) LR-MRW.

Fig. 1. The transition probabilities of G-MRW (a) and LR-MRW (b) for data sampled from a mixture of subspaces.
properties of random walks, the row sum of probabilities matrix
should be 1. Putting the row normalization, symmetric and non-
negative constraints together, we have the following optimization
model
min
P

J(P) + µ∥P∥∗,

s.t. P1n = 1n, P ∈ Sn, P ≥ 0.
(10)

Although it is generally challenging to exactly specify P for com-
putation, we will show in Section 6 that the convex feasible set
{P ∈ Rn×n

|P1n = 1n, P ∈ Sn, P ≥ 0} yields good performance
with respect to our proposed criteria (e.g., Fig. 1(b) illustrates that
the transitionmatrix obtained by LR-MRWmodel (10) is near block
diagonal in reality). The numerical issues of (10) will be discussed
in Section 4.

3.4. Comparisons with LRR related works

The LRR related works (Liu et al., 2013, 2010) aim to find a
low-rank representation to capture the structure of the data set.
These works are inspired by compressive sensing and proposed by
solving the following sparse-coding-like model
min

Z
∥Z∥∗, s.t. X = XZ. (11)

Nowwewould like to show that LRR can be considered as a spe-
cial case of LR-MRW. Specifically, in the case of data contaminated
by noise, LRR cannot write a data point as an exact linear combi-
nation of other points. Instead, a penalty in the Frobenius norm of
the error should be added to the objective function. Thus the rep-
resentation matrix should be found by solving the problem

min
Z

∥Z∥∗ +
1
µ

∥X − XZ∥2
F = min

Z
∥Z∥∗ +

1
µ
tr(X(I − Z)2XT ), (12)

where µ is a penalty parameter and M = (I − Z)2 is known as it-
erated Laplacian matrix (Belkin & Niyogi, 2003). So although LRR
is built from the viewpoint of compressive sensing (i.e., learning a
representation from the given dictionary), it actually can be refor-
mulated as a special case of the graph-based model (8) with iter-
ated Laplacian matrix.

However, the most important drawback of LRR is that it does
not consider the spectrum properties of Z such that the validity of
the graph constructed by the representation matrix is poorly jus-
tified.3 In contrast, the spectrum properties (i.e., symmetric and

3 Please note that the SSC related works (Elhamifar & Vidal, 2009; Nasihatkon &
Hartley, 2011) also suffer this issue. Although thework in Ni et al. (2010) introduces
the positive semi-definite (PSD) constraint for Z, PSD cannot gauge the spectral
properties of the affinity matrix (in general, affinity matrices are symmetric and
nonnegative, but not necessarily PSD) and the post-processing is still needed.
nonnegative) of the transition matrix are explicitly enforced in LR-
MRW. Therefore, LR-MRW has more transparent connections to
spectral graph clustering and embedding. Moreover, the normal-
ization constraint corresponding to the properties of Markov ran-
domwalks can also further improve the clustering performance for
multiple subspaces (Liu et al., 2012).

3.5. Subspace clustering and estimation

Now we show how to extract discriminant multiple subspaces
structure from the newly built MRW for subspace clustering and
estimation.

It has been shown in Belkin and Niyogi (2003) that the spectral
clustering approaches (e.g., NCut),which utilize the eigenvectors of
the graph Laplacian, can be interpreted in the framework of nonlin-
ear dimensionality reduction. In this sense, the clustering task on
complex data set can be performed by first (nonlinearly) embed-
ding high-dimensional data into a low-dimensional discriminant
feature space and then achieving clustering by some standard cen-
tral clustering techniques. For example, the work in Souvenir and
Pless (2005) combines ISOMAP (Tenenbaum, De Silva, & Langford,
2000) with EM and (Goh & Vidal, 2007) combines LLE (Roweis &
Saul, 2000) with K -means (David, 2003).

Inspired by the above idea, here we would like to develop a
MRW based nonlinear embedding model to extract the member-
ship of multiple subspaces. That is, based on the learnt transition
matrix, we transfer the separable structure ofmixture of subspaces
into a low-dimensional feature space and then cluster data into dif-
ferent subspaces using K -means. Our theoretical analysis in Propo-
sition 3 and Corollary 4 will show that the proposed embedding
based model can exactly identify the subspace memberships for
the data set.

In the following, we first assume that the number of subspaces
is known beforehand in Section 3.5.1 and then provide a spectrum
based strategy for estimating the subspace number in Section 3.5.2.

3.5.1. Clustering and estimation with known subspace number
Let the d × n matrix H = [h1,h2, . . . ,hn] be the discriminant

features of X, where the ith column provides the representation of
the ith sample. As we aim at deriving the intrinsic multiple sub-
spaces structure by the learnt transition matrix P, the embedding
H can be learnt by minimizing the cost function

J(H) =


ij

pij∥hi − hj∥
2
2 = tr(H(D − P)HT ), (13)

where D = diag(P1n). To remove an arbitrary scaling factor in the
embedding, we impose constraintHHT

= I to the problem and the
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optimization model reduces to

min
H

tr(H(D − P)HT ), s.t. HHT
= I. (14)

With the normalization property of P (i.e., P1n = 1n, see problem
(10)) and the constraint HHT

= I, it is easy to see that the above
problem has the following equivalent variation

max
H

tr(HPHT ), s.t. HHT
= I. (15)

It is easy to check that this problem can be solved by the eigen-
decomposition of P: the d-column matrix HT corresponds to the d
eigenvectors associated with the d largest eigenvalues of P.

Now we present the following proposition to infer the connec-
tion between multiple subspaces clustering and our random walk
based embedding.

Proposition 3. Assume that the transition matrix P has the block-
diagonal structure (9) and each subspace is connected. Then there
exists a k-dimensional eigenspace of P with the largest eigenvalue
which admits a basis {vj}kj=1 such that vj corresponds to the jth
subspace:

vj(i) =


1, xi ∈ Cj,
0, otherwise. (16)

Proof. In view of (9) and the connected assumption for each
subspace, we have that P = diag(P1, . . . , Pk), where Pj is an nj×nj
nonnegativematrix for subspaceCj. As a direct consequence of the
row normalization of the transition matrix, we have that 1nj is an
eigenvector of Pj with eigenvalue 1. Therefore, there exists a basis
{vj}kj=1, each vector ofwhich is eigenvector ofPwith the eigenvalue
1, which indicates the membership for Cj, as claimed. Finally, from
the spectral properties of the transition matrix (Vempala, 2005),
we know that 1 is the largest eigenvalue of P, which finishes our
proof. �

Corollary 4. Let H be the optimal solution to (15). With the same
assumptions in Proposition 3, we have that hi =

n
√nj

vj, where i =

1, . . . , n and j = 1, . . . , k, respectively.

Proof. We define matrix MCj = vjvTj /nj. Let Pe be the projection
matrix for the k-dimensional eigenspace of P with respect to the
largest eigenvalue can be written as

Pe =

k
j=1

1
nj
MCj and Pe =

1
n
HHT .

Thus for any i1, i2 ∈ {1, . . . , n}, 1
nh

T
i1
hi2 = (Pe)i1,i2 . In particular, if

there exists j ∈ {1, . . . , k} such that i1, i2 ∈ Cj, then 1
nh

T
i1
hi2 =

1
nj
.

When i1 and i2 belong to separate subspaces, then hT
i1
hi2 = 0. For

i1, i2 ∈ Cj,

hT
i1
hi2

∥hi1∥2∥hi2∥2
=

1/nj

(1/nj)(1/nj)
= 1

giving that hi1 and hi2 are in the same direction. As they have the
same magnitude as well. hi1 and hi2 coincide for any two indices
i1 and i2 belonging to the same subspace. Thus letting wj = nj/n
for j = 1, . . . , k, there are k perpendicular vectors {v1, . . . vk}
corresponding to the k subspace such that hi =

1
√

wj
vTj . �

Proposition 3 implies that the k dimensional eigenspace of
P gives the subspace membership of each samples. However,
there are many possible choices for an orthogonal basis of this
eigenspace. Thus we cannot assume that any particular basis of
the eigenspace will directly provide indicators of the various sub-
spaces. Fortunately, in practice, it is not necessary to compute the
set of basis {vj}kj=1 themselves. This is because Corollary 4 indeed
demonstrates that feature points in the embedded eigenspace ag-
gregate to k distinct centroids located on k corners of a simplex
(also known as the simplex spectral embedding theory). Therefore,
the clustering can be obtained by using K -means on columns of H.

It should be emphasized that the embeddingHused in thiswork
is related to the clustering of the multiple subspaces, but not the
low-dimensional approximation of the data set in general non-
linear dimensionality reduction methods (Roweis & Saul, 2000;
Tenenbaum et al., 2000). Also, based on our analysis in Proposi-
tion 3 and Corollary 4, the dimension of this embedding is theoret-
ically determined by the number of subspace, i.e., d = k−1, where
k is the number of subspaces.4 In contrast, conventional nonlinear
dimensionality reduction methods (Roweis & Saul, 2000; Tenen-
baum et al., 2000), which focus on reconstructing the geometric
structures of the data set in a low-dimensional space, often needs
to estimate a particular feature dimension for the data set.

For samples belonging to one cluster, we can further estimate
the intrinsic dimension and find basis and/or low-dimensional
approximation for the subspace using standard subspace learning
methods. For example, one may perform PCA (Jolliffe, 2002) on
each cluster to find the subspace basis or run Robust PCA (RPCA)
(Candès et al., 2011) to directly achieve the intrinsic low-rank
approximations to the data samples.5 Algorithm 1 summarizes the
whole clustering and estimation algorithm of LR-MRW.

Algorithm 1 Subspace Clustering and Estimation via LR-MRW
Framework

Input: Let X ∈ Rm×n be a set of n data points sampled from k
subspaces.
Step 1: Solve (10) to obtain the transition matrix P.
Step 2: Compute the largest eigenvectors of P to obtain the
estimation of data samples H.
Step 3:Apply K -means to the columns ofH to cluster the original
data points into k different subspaces {Cj}

k
j=1.

Step 4: Apply single subspace learning method (e.g., PCA or
RPCA) to each group to obtain the basis and/or the low-
dimensional approximation for each subspace.

3.5.2. Estimating the subspace number
Now we consider the problem of estimating the number of the

subspaces (i.e., clusters). Actually thismodel selection problem can
be solved by considering the spectrum of our learnt MRW. Specifi-
cally, the proof of Proposition 3 reveals that the top k eigenvectors
have a corresponding eigenvalue ofmagnitude 1 and others do not.
So in principle, the number of subspaces (i.e., clusters) can be found
by simply looking at the eigenvalues: the subspace number is equal
to the number of eigenvalues of magnitude 1. In practice, we use
the following approach to estimate the subspace number k̄

k̄ = n − int


n

i=1

fτ (λi)


, (17)

where {λi}
n
i=1 are the eigenvalues of P, int(·) is the function output

the nearest integer of a real number and fτ (·) is a soft thresholding
operator defined as

fτ (λ) =


1 λ ≤ τ ,

log2


1 +

τ 2

λ2


otherwise.

4 This is because there always exists a constant eigenvector 1n of P with
eigenvalue 1 and we leave out this eigenvector from H to obtain the embedding.
5 As single subspace estimation has been well studied in many papers, we omit

analysis and experimental verification for this step.
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Here 0 < τ < 1 is the thresholding parameter. The whole sub-
spaces number estimation process is summarized in Algorithm 2.

Algorithm 2 Subspace Number Estimation via the Spectrum
Input: Let X ∈ Rm×n be a set of n data points.
Step 1: Solve (10) to obtain the transition matrix P.
Step 2: Compute the subspace number k̄ by (17).

4. Numerical solution

In this section, we present a practical solution to the LR-MRW
problem (10) by applying the alternating direction method (ADM)
(Lin, Chen, Wu, & Ma, 0000). We begin with the definition of a
key building block, namely the eigenvalue thresholding operator,
which can be considered as the extension of the singular value
thresholding operator (Cai et al., 2010) for nuclear norm regular-
ized least square problem with the symmetry constraint.

4.1. Eigenvalue thresholding operator

Consider the eigenvalue decomposition (EVD) of a matrix G ∈

Sn of rank r:

G = UΛ(G)UT , (18)
where U is an n × r matrix with orthonormal columns, λ(G) =

[λ1(G), . . . , λr(G)]T are eigenvalues arranged in nonincreasing
order and Λ(G) = diag(λ(G)). For each µ ≥ 0, we introduce the
eigenvalue thresholding operator Eµ defined as follows:

Eµ(G) := U diag(Tµ(λ(G)))UT , (19)
where

Tµ(λi(G)) =


λi(G) − µ, λi(G) > µ,
λi(G) + µ, λi(G) < −µ,
0, otherwise,

(20)

is the component-wise shrinkage operator. In other words, this
operator simply applies a shrinkage rule to the eigenvalues of G,
effectively shrinking them towards zero.

Theorem 5. 6 For each µ ≥ 0, and each square matrix G ∈ Rn×n.
Let Ḡ = (G + GT )/2. Suppose that UΛ(Ḡ)UT is the eigenvalue
decomposition of Ḡ. Then K∗

= U diag(k∗)UT is an optimal solution
of the problem

min
K

1
2
∥K − G∥

2
F + µ∥K∥∗, s.t. K ∈ Sn, (21)

where k∗ is an optimal solution of the problem

min
k

1
2
∥k − λ(Ḡ)∥2

2 + µ∥k∥1. (22)

Remark. Although the work in Ni et al. (2010) and Toh and Yun
(2010) also consider a similar problem, it can be seen in the follow-
ing corollary that their conclusion is actually a special case of The-
orem 5. Moreover, the proof of this theorem can also be utilized to
understand the connection between nuclear norm regularized and
l1 regularized least square problems and extended in a relatively
straightforward way to other problems.

Corollary 6. Under the same assumption as in Theorem 5, Eµ(Ḡ) is
an optimal solution of the problem

min
K

1
2
∥K − G∥

2
F + µ∥K∥∗, s.t. K ∈ Sn. (23)

6 Please see Appendix B for the proof of Theorem 5.
Proof. It is not hard to observe that problem (22) has closed form
solution Tµ(λ(Ḡ)) (Hale, Yin, & Zhang, 0000). It thus follows from
Theorem 5 that the conclusion holds. �

4.2. Solving LR-MRWmodel by ADM

Now we show how to apply the method of ADM to solve prob-
lem (10). With auxiliary variables Z and Y, problem (10) is equiva-
lent to

min
P,Z,Y

µ∥Z∥∗ − tr(XPXT ),

s.t. P1n = 1n, P = Z, P = Y,

Z ∈ Sn, Y ≥ 0.

(24)

By introducing Lagrange multipliers L1, L2 and L3 to remove the
equality constraints, one has the augmented Lagrangian function
of (24):

LA(P, Z, Y, {Li}3i=1) = µ∥Z∥∗ − tr(XPXT ) + ⟨L1, P1n − 1n⟩

+ ⟨L2, P − Z⟩ + ⟨L3, P − Y⟩

+
β1

2
∥P1n − 1n∥

2
2 +

β2

2
∥P − Z∥2

F

+
β3

2
∥P − Y∥

2
F , (25)

where β1, β2 and β3 are penalty parameters. Then the ADM ap-
proach updates P, Z, Y, L1, L2 and L3 iteratively. It respectively up-
dates P, Z and Y by minimizing LA with respect to P, Z and Y, with
L1, L2 and L3 fixed. Then the amount of violation of the constraints
P1n = 1n,P = Z andP = Y are used to update L1, L2 and L3, respec-
tively. More specifically, the updating schemes can be found to be:

P+
= (XTX − L11T

n − L2 − L3 + β11n1T
n + β2Z + β3Y)A,

Z+
= argmin

Z∈Sn

1
2

Z −


P+

+
L2
β2

2
F
+

µ

β2
∥Z∥∗,

Y+
= P+(P+

+ L3/β3),

L+

1 = L1 + β1(P+1n − 1n),

L+

2 = L2 + β2(P+
− Z+),

L+

3 = L3 + β3(P+
− Y+),

(26)

where superscripts ‘‘+’’ denote that the values are updated and
A = (β11n1T

n + (β2 + β3)I)−1. By applying Sherman–Morrison
formula (Hager, 1989) on (β11n1T

n + (β2 + β3)I)−1, we can have a
numerically easy way to compute A:

A =
I

β2 + β3
−

β11n1T
n

(β2 + β3)(nβ1 + β2 + β3)
.

P+(M) is a matrix

P+(M)ij :=


Mij, Mij ≥ 0,
0, Mij < 0,

which is a projection of the matrix M onto the set of nonnegative
matrices of appropriate size. The solution ofZ+ is by Theorem5and
Corollary 6. The entire procedure is summarized in Algorithm 3.

5. Robust extension for real situations

In real applications, our observations are often noisy, or even
grossly corrupted. In this section, we showhow to extend LR-MRW
to this real situations.
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Algorithm 3 Solving Problem (10) via ADM
Input: Observation matrix X ∈ Rm×n, parameter µ.
Initialize: Set P, Z, Y and {Li}3i=1 to zero matrices of appropriate
sizes, {βi > 0}3i=1 and ε = 10−6.
while not converged do

Step 1: Update (P, Z, Y, {Li}3i=1) by (26).
Step 2: Check the convergence condition:
max{∥P+1n − 1n∥∞, ∥P+

− Z∥∞, ∥P+
− Y∥∞} ≤ ε.

end while
Output: Transition matrix P.

5.1. Robust low-rank MRW

Our approach to robust MRW learning is motivated by the
recent work on matrix recovery (Wright et al., 2009). Specifically,
we assume that the observed data X0 can be decomposed as

X0 = X + E, (27)
whereX is a clean datamatrixwith the column vectors drawn from
a union of subspaces and E is an unknownmatrix of outliers which
can be arbitrary in magnitude, but affecting only a fraction of the
entries.

For data points sampled from multiple subspaces, the rank of
clean data must be less than or equal to the sum of all the intrinsic
subspace dimensions. In most applications, this is usually much
less than the observed dimension. Therefore, we assume that the
clean data X should be of low rank (or small nuclear norm Wright
et al., 2009). For E, as the outliers can be arbitrary inmagnitude, but
affecting only a fraction of the entries, the l2,1 norm (Liu, Ji, & Ye,
2009; Liu et al., 2010) can be employed for this term. Adding the
above two constraints to LR-MRW, we have the following robust
model for MRW learning, named Robust Low-Rank MRW (RLR-
MRW):

min
X,E,P

JR(X, E, P) + µ∥P∥∗,

s.t. X0 = X + E, P1n = 1n, P ∈ Sn, P ≥ 0,
(28)

where JR(X, E, P) = J(P) + η∥X∥∗ + γ ∥E∥2,1.

5.2. Analysis on RLR-MRWmodel

Now we propose a brief analysis on RLR-MRW model. The
optimization problem (28) can be split into the following two
subproblems:

(P.1): min
X,E

tr(X(I − P)XT ) + η∥X∥∗ + γ ∥E∥2,1,

s.t. X0 = X + E.

(P.2): min
P

µ∥P∥∗ − tr(XPXT ),

s.t. P1n = 1n, P ∈ Sn, P ≥ 0.

(29)

Given a transition matrix P, problem (P.1) can be considered as
a randomwalk regularized extension for RPCA. As discussed in Liu
et al. (2013), RPCA cannot handle well the mixture data, since it
hinges on the assumption that the underlying data structure is a
single low-rank subspace. With respect to this method, subprob-
lem (P.1) is a general one that can leverage the power of both RPCA
(outliers detection) and random walk regularization (preserving
multiple subspace structure) for data sampled from a mixture of
subspaces.

5.3. Solving RLR-MRWmodel

Based on the analysis in above subsection, we now propose a
decomposition-based strategy for solving problem (28), in which
each subproblem can be solved by ADM method. Specifically,
we consider the equivalent model (29) and iteratively solve (P.1)
and (P.2) to update X, E, and P. Clearly, subproblem (P.1) can be
reformulated as

min
X,R,E

tr(X(I − P)XT ) + η∥R∥∗ + γ ∥E∥2,1,

s.t. X = R, X0 = X + E.
(30)

By introducing the augmented Lagrangian function

LA(X,R, E) = tr(X(I − P)XT ) + η∥R∥∗

+ γ ∥E∥2,1 + ⟨L1,X − R⟩ + ⟨L2,X0 − X − E⟩

+
β1

2
∥X − R∥

2
F +

β2

2
∥X0 − X − E∥2

F ,

it is not hard to see that problem (P.1) can be solved by the follow-
ing updating schemes:

X+
= (β1R + β2(X0 − E) − L1 + L2)B,

R+
= UT η

β1
(Σ)VT ,

E+
= argmin

E

1
2

E −


X0 − X+

+
L2
β2

2
F
+

γ

β2
∥E∥2,1,

L+

1 = L1 + β1(X+
− R+),

L+

2 = L2 + β2(X0 − X+
− E+),

(31)

whereUΣVT
= X+

+
L1
β1

is the singular value decomposition (SVD)
and B = (2(I − P) + (β1 + β2)I)−1. The solution of E+ is by the
following lemma (Liu et al., 2010).

Lemma 7. Let Q = [q1, . . . , qn] be a given matrix. Then E∗
=

[e∗

1, . . . , e
∗
n] is the optimal solution to the problem

min
E

1
2
∥E − Q∥

2
F + γ ∥E∥2,1, (32)

where the ith column of E∗ is

e∗

i =


∥qi∥2 − γ

∥qi∥2
qi, γ < ∥qi∥2,

0, otherwise.
(33)

The optimization problem (P.2) is the original LR-MRW model
and thus can be efficiently solved by (26). Algorithm 4 summarizes
the whole solution method for RLR-MRW.

Algorithm 4 Iteratively Solving (28) via ADM
Input: Observation matrix X0 ∈ Rm×n, number k of subspaces,
the dimension d of embedding and ε = 10−3.
Initialization: Initialize P by solving (10) with X0.
while not converged do

Step 1: Solve (P.1) in (29) to get solution (X+, E+).
Step 2: Solve (P.2) in (29) to get solution P+.
Step 3: Check the convergence condition:
max{∥X+

− X∥F/∥X∥F , ∥P+
− P∥F/∥P∥F } ≤ ε.

Step 4: Update X = X+, P = P+.
end while
Output: Clean data X and transition matrix P.

6. Experimental results

In this section, we evaluate the performance of our proposed
algorithms on both synthetic data and real vision tasks. Some
previous state-of-the-art methods are also included. For LR-MRW
andRLR-MRW, the transition probabilities are obtained by (10) and
(28), respectively.
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(a) G-MRW. (b) LR-MRW.

Fig. 2. Comparing the embedding and clustering performance of LR-MRW and G-MRW. The color (and the marker symbol) of the points are the true labels. The clustering
accuracy are 48.8% (G-MRW) and 100% (LR-MRW), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
6.1. Synthetic data

In this subsection, we perform subspace clustering on synthetic
data to compare the mechanism of LR-MRW (also RLR-MRW) with
that of Gaussian kernel basedMRW(G-MRW) and demonstrate the
advantages of learning low-rank MRW by our proposed local and
global criteria for multiple subspace data set. Our theoretical anal-
ysis in previous sections can also be verified by these experiments.

For G-MRW, we define the Gaussian kernel W = [wij]n×n as
follows:

wij = exp


−∥xi − xj∥2
2

2σ 2


, (34)

where σ determines the width of the Gaussian kernel. Then the
transition matrix for G-MRW is defined as P = D−1W.

The synthetic data, parameterized as (k, p,m, d), is constructed
as follows: k independent subspaces {Ci}

k
i=1 whose basis {U}

k
i=1 are

computed by Ui+1 = TUi, 1 ≤ i ≤ k − 1, where T is a random
rotation and U1 is a random column orthogonal matrix of dimen-
sion m × d. So each subspace has a rank of d and the data has an
ambient dimension of m. Then we construct a m × kp data matrix
X = [X1, . . . ,Xk] by sampling p data vectors from each subspace
by Xi = UiCi, 1 ≤ i ≤ k, with Ci being a d × pmatrix i.i.d. N (0, 1).

6.1.1. Exactly clustering and estimating clean data
We first generate data set (4, 30, 100, 3) (without noise) to un-

derstand themechanismof LR-MRWandG-MRW formultiple sub-
spaces data modeling. Fig. 1 presents the transition probabilities
learnt from (10) and determined by heat kernel (34), respectively.
One can see that the transition probabilities obtained by LR-MRW
are much higher when the points belong to the same subspace
and much lower when the points belong to different subspaces
(Fig. 1(b)), whereas G-MRW only achieves high transition proba-
bilities between local neighbors (Fig. 1(a)). This confirms our the-
oretical analysis in Section 3.2.

Fig. 2 compares the embedding and clustering results of G-
MRW and LR-MRW on our generated mixture of subspaces. We
can see from Fig. 2 that LR-MRW embedding (Fig. 2(b)) yields dif-
ferent groups of points that are easily identifiable while G-MRW
embedding (Fig. 2(a)) results in points that do not have clear clus-
ters. Therefore, the clustering accuracy of LR-MRW is dramatically
higher than that of G-MRW. This is because the transition prob-
abilities learnt from LR-MRW can successfully recover the intrin-
sic structure of the data set. This confirms the effectiveness of our
proposed local and global criteria for modeling multiple subspace
structures.

Now we discuss the influence of the embedding dimension to
our problem. Specifically, we generate a data set with parameter
Fig. 3. Comparing the clustering accuracies (% averaged over 20 runs) of LR-MRW
with different embedding dimensions. ‘‘Emb1’’ and ‘‘Emb2’’ denote utilizing the
first d and the second to the (d + 1)-th eigenvectors to obtain the embedding,
respectively. The x-axis represents the embedding dimension and the y-axis
represents the clustering accuracy. ‘‘Emb1’’ with dimension 1 only achieves 20%
accuracy because the first eigenvector of P is 1n .

(10, 20, 100, 50) and compute transition matrix P by (10) for this
data. Thenwe learn the embeddingH from (15)with the dimension
m ∈ [1, 10]. Fig. 3 compares the clustering performances for differ-
ent embedding dimensions. It can be seen that the k-dimensional
embedding (here k = 10) with first k eigenvectors (‘‘Emb1’’ at
d = k) and the (k−1)-dimensional embedding with the second to
the kth eigenvectors (‘‘Emb2’’ at d = k − 1) all achieved the best
clustering performance (i.e., 100%). This evaluation result confirms
our theoretical analysis of the optimal dimensionality for embed-
ding in Proposition 3.

6.1.2. Robustness to data corruptions
To further test the performance of G-MRW, LR-MRW and RLR-

MRW on data with noises and outliers, we generate another data
set with quadruple (6, 20, 100, 5) in the same way as in Sec-
tion 6.1.1.

Firstly, we test the robustness of our algorithms for gross cor-
ruptions (i.e., outliers). To do so, some data vectors x are randomly
chosen to be corrupted by Gaussian noise with zero means and
standard deviation 0.2∥x∥2. The results in Fig. 4 show that both LR-
MRW and RLR-MRW can achieve perfect clustering results when
there is no corruption. G-MRW also performs fairly well for this
clean data. However, G-MRW is very sensitive to corruptions and
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Fig. 4. Comparing the clustering accuracies (% averaged over 20 runs) of GMRW,
LR-MRW and RLR-MRW for various percentage of noise.

Fig. 5. Comparing the clustering accuracies (% averaged over 20 runs) of GMRW,
LR-MRW and RLR-MRW at various noise intensities.

the performances of G-MRW will reduce to only 20% when most
of the data points are corrupted (more than 70%). LR-MRW also
cannot work well when most of the data points are corrupted. In
this case, RLR-MRW successfully removes the outliers and still per-
forms well.

Thenwe test the performances of these algorithms on datawith
noises at various intensities. To do so, 50% data points are ran-
domly chosen to be corrupted by adding Gaussian noise with zero
mean and standard deviation σ ∈ [0, 0.5]. Fig. 5 shows that both
LR-MRW and RLR-MRW perform much better than G-MRW. RLR-
MRW is more robust to large noises and thus achieves higher clus-
tering accuracy than LR-MRW.

6.2. Motion segmentation

To verify the clustering performance of our proposedmodels for
realworld problems, nowweutilize LR-MRWand RLR-MRW to ad-
dress themotion segmentation problem,which refers to the task of
separating a video sequence into multiple spatiotemporal regions
corresponding to different rigid-body motions. As shown in Rao,
Tron et al. (2010), the motion segmentation problem can be pre-
ceded by first extracting a set of point trajectories from the video
sequences using standard tracking methods. Then the problem re-
duces to clustering these point trajectories according to different
rigid-body motions in the scene.

6.2.1. Segmentation performance on sequences with small noises
We first evaluate our proposed model on the Hopkins155 mo-

tion database (Tron & Vidal, 2007). This database consists of 156
sequences of two or three motions (see Fig. 6). As the motion
sequences were obtained using an automatic tracker, and errors
in tracking were manually corrected for each sequence, it could
be regarded that these sequences only contain small noises and
there is no attempt to deal with heavily corrupted trajectories.
Therefore, we test LR-MRW on this data set. In order to com-
pare LR-MRW with the state-of-the-art approaches, we also list
the results of GPCA, RandomSample Consensus (RANSAC) (Fischler
& Bolles, 1981), Local Subspace Analysis (LSA) (Yan & Pollefeys,
2006), SR7and LRR.8

As some conventional methods (e.g., GPCA and RANSAC) may
fail to return any results on the raw sequences of Hopkins155
database within a reasonable response time (i.e., 1 day), it is nec-
essary to perform a PCA preprocessing step for these methods (Liu
et al., 2010; Vidal, 2010; Vidal et al., 2005) to reduce the dimension-
ality of the problem for computational efficiency. Moreover, PCA
can also reduce some small dense noises in the raw sequences. In
order to make a fair comparison for all the methods in the experi-
ments, we project the trajectories into a subspace of lower dimen-
sionality (i.e., 5D or 12D), in which the choices of PCA dimension
are respectively suggested by Liu et al. (2010) and Vidal (2010).

For each algorithm and each sequence, we record the classifica-
tion error defined as

classification error :=
# of misclassified points

total # of points
%. (35)

The detailed statistics of the classification errors (i.e., the aver-
age, standard deviation (std.) and maximum (max.) of the results)
are shown in Table 1. As there exists one degenerate sequence in
this database, the results are reported for both 155 (discarding the
degenerate data) and 156 (all) sequences. It can be seen that all the
methods are sensitive to the dimension of the projection. The per-
formances of GPCA, RANSAC, and LR-MRW in 5D space are better
than that in 12D space.While LSA, SR and LRR give better results in
the 12D space. Although LRR is better than other compared meth-
odswhen the dimension of the projection is 12D, our LR-MRWwith
5D PCA projection achieves the best performance among all the al-
gorithms with all the projections. Figs. 7 and 8 further show the
percentage of sequences for which the classification error is below
a given percentage of misclassification (for 5D data set). All these
results demonstrate that LR-MRW significantly outperforms other
methods.

The only parameter in LR-MRW model (10) is µ ≥ 0. This pa-
rameter is used to balance the effects of the local and global mea-
sures in the cost function of LR-MRW. In general, the choice of this
parameter depends on the prior knowledge of the data structure.
That is, when data samples from the same cluster have strict linear
relationships (i.e., can be exactly modeled by subspace), we should
use relatively large µ, while when the data samples tend to have
high local neighborhood similarity, we should setµ to be relatively
small. In the extreme case that the low-rank assumption is invalid
on the data set, we can simply setµ = 0 in ourmodel. As shown in
Fig. 9, when µ ranges from 0 to 0.4, the classification error varies
slightly from 4.6% to 5.8% (for 5D data set).

7 The SR approach solves the representation matrix Z and outliers E by
min ∥Z∥1 + lambda∥E∥1, s.t. X = XZ + E, diag(Z) = 0.
8 The Matlab code of GPCA, RANSAC and LSA is available at http://www.vision.

jhu.edu/data/hopkins155/. The Matlab code of SR and LRR can be downloaded from
https://sites.google.com/site/guangcanliu/.

http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
https://sites.google.com/site/guangcanliu/
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(a) 1R2RC. (b) cars1.

Fig. 6. Example image frames from two motion sequences from the Hopkins155 database.
Table 1
Classification errors (%) on Hopkins155. In the right four columns, we report results on both 155 and 156 sequences.

Dim. Method 2 motions 3 motions All (155/156)
mean std. max. mean std. max. mean std. max.

12D

GPCA 20.6 16.6 50.0 20.0 15.4 62.5 22.7/22.8 16.8/16.8 62.5/62.5
RANSAC 35.0 11.9 49.7 46.9 11.5 64.2 37.7/37.9 12.8/13.0 64.2/66.0
LSA 6.4 13.0 50.0 9.8 15.0 53.8 7.2/7.2 13.5/13.5 53.8/53.8
SR 5.1 9.8 46.3 14.7 15.2 59.7 7.2/7.4 11.9/12.2 59.7/59.7
LRR 3.4 8.6 40.3 9.8 12.0 41.4 4.8/5.0 9.8/9.9 41.4/41.4
LR-MRW 6.3 12.3 48.2 11.7 13.0 44.7 7.6/7.6 12.7/12.7 48.2/48.2

5D

GPCA 9.5 13.6 49.0 22.8 15.6 48.2 12.5/12.7 15.1/15.3 49.0/49.0
RANSAC 5.3 9.4 44.5 17.7 12.8 48.5 8.1/8.3 11.5/11.8 48.5/48.5
LSA 5.0 9.2 49.4 19.5 16.7 55.0 8.3/8.5 12.6/12.6 55.0/55.0
SR 10.4 16.0 49.7 18.9 16.6 49.3 12.3/12.5 15.0/15.0 49.7/49.7
LRR 5.7 10.1 48.6 16.5 14.9 43.8 8.2/8.3 12.7/12.9 48.6/48.6
LR-MRW 2.5 7.2 44.6 11.8 12.9 41.4 4.6/4.7 9.7/9.9 44.6/44.6
Fig. 7. Percentage of sequences (2motions) for which the classification error is less
than or equal to a given percentage of misclassification.

6.2.2. Segmentation performance on sequences with gross corrup-
tions

We further test the robustness of RLR-MRW for motion
sequences with outliers and noise. We first choose two sequences
(‘‘1R2RC’’ and ‘‘cars1’’) from the Hopkins155 database and add 30%
outlying trajectories to the data set of a given motion sequence.
Outlying trajectories were generated by choosing a random initial
point in the first frame and then selecting a random increment
between successive frames.9 We then run 20 trails with different

9 The Matlab code for generating the outlying trajectories can be found at
http://www.vision.jhu.edu/code/.
Fig. 8. Percentage of sequences (3motions) for which the classification error is less
than or equal to a given percentage of misclassification.

randomly generated outlying trajectories and report the average
classification errors for each sequence in Table 2. We also test RLR-
MRW on 16 additional sequences of Hopkins155 database that
contain real corruption (Rao, Tron et al., 2010). Table 2 shows that
RLR-MRW can outperform other state-of-the-art algorithms for
motion segmentation with both simulated and real corruptions.

6.2.3. Estimating the number of subspaces
Now we consider the problem of subspace number estimation

formotion segmentation. As each sequence inHopkins155 consists
of data vectors drawn from two or threemotions, this database can
also be used to evaluate the effectiveness of Algorithm 2. In the

http://www.vision.jhu.edu/code/
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Fig. 9. The influences of the parameter µ in LR-MRW for motion segmentation.

Table 2
Classification errors (%) on corrupted motion sequences, containing simulated
corruption (the top two rows) and real corruption (bottom row).

Data GPCA RANSAC LSA SR LRR RLR-MRW

1R2RC 59.5 61.7 60.1 50 50.2 45.5
cars1 38.6 44.8 38.8 30.2 40.1 29.6
Real 28.1 27.9 35.1 33.1 33.3 27.1

Table 3
Subspaces number estimation on Hopkins155.

τ # predicted sequences Prediction rate (%) Absolute error

0.70 86 55.13 0.46
0.725 113 72.44 0.29
0.75 120 76.92 0.24
0.775 116 74.36 0.27
0.80 98 62.82 0.42

results presented in Table 3, the prediction rate and the absolute
error averaged over m = 156 sequences are respectively defined
as

prediction rate :=
# predicted sequences

m
%,

and

absolute error :=


m
i=1

|ki − k̄i|


m,

where the subscript i denotes the ith sequence. It can be seen that
when τ = 0.75 our spectrum based strategy in Algorithm 2 can
correctly predict the true subspace number k̄ of 120 sequences and
the average absolute error of all 156 sequences is only 0.24.

6.3. Temporal segmentation of video sequence

We consider the problem of partitioning a long video sequence
into multiple short segments corresponding to different scenes.
We assume that all the image frames having the same scene lie in
a low-dimensional subspace, and that different scenes correspond
to different subspaces.We show that both LR-MRW and RLR-MRW
can be applied to solve this problem.

6.3.1. Fox TV video sequence
We first borrow the video sequence from Vidal et al. (2005),

which is about an interview at Fox TV (Fig. 10). It consists of 135
Table 4
Segmentation accuracies (%) on Fox TV video sequences.

Method 5D 6D 7D 8D 9D 10D

GPCA 70.4 96.3 100 63.0 70.4 63.0
RANSAC 55.6 63.0 44.4 66.7 66.7 66.7
LSA 55.6 55.6 85.2 63.0 85.2 74.1
SR 100 100 66.7 85.2 63.0 48.2
LRR 81.5 85.2 85.2 92.6 92.6 88.9
LR-MRW 100 100 100 100 100 100

images of size 294 × 413, each containing either the interviewer
alone, or the interviewee along, or both. Wewould like to segment
these images into three scenes. We also apply PCA to reduce the
dimension of images and then apply all the algorithms to these
image sequence.

Table 4 shows the segmentation accuracy of all algorithms at
different PCA dimensions. One can see that GPCA and SR can han-
dle such problem when choosing proper PCA dimensions. How-
ever, they are sensitive to the dimension. On the contrary, LR-MRW
achieves 100% segmentation accuracy on features at all PCAdimen-
sions.

6.3.2. Variety show video sequence
To further testify the performance of our proposed algorithms

in real situations, in this experiment we test on a more complex
real-world video sequence. We download a variety show video se-
quence10 with length 380 frames (288×352 pixels) fromYouTube.
This video sequence can be divided into 10 different scenes (8
scenes containing different single person, 1 scene containing mul-
tiple persons and 1 scene containing no person, all these scenes
have very similar background). To further test the robustness of
these algorithms, 50% frames of the sequence are randomly cho-
sen to be corrupted by using large Gaussian noise with zero mean
and standard deviation 3.5∥xi∥l2 , where xi is the ith frame.

Table 5 shows the performance of various methods by using
the 5D data produced by PCA. One can see that both LR-MRW and
RLR-MRW perform well on the original video sequences. On the
corrupted data, LR-MRW outperforms other state-of-the-art clus-
tering methods. As expected, RLR-MRW performs better than LR-
MRW for data with large corruptions.

7. Conclusions and future work

This paper proposes a new way to learn Markov random walks
for multiple subspaces clustering and estimation. Unlike conven-
tional spectral clustering algorithmswhich use theGaussian kernel
to generate the transition matrix, LR-MRW aims at directly learn-
ing the transition probabilities under some intuitive criteria to cap-
ture both within-subspace homogeneity and between-subspace
discrimination. Theoretical analysis shows that under some suit-
able conditions, our proposed mechanism can successfully reveal
the multiple subspaces structure. We also propose a robust exten-
sion of LR-MRW (RLR-MRW) to integrate subspace clustering and
estimation and error correction in a unified framework. As a non-
trivial byproduct, we prove a result that establishes the intrinsic
connection between nuclear norm regularized and l1 regularized
least square problems. Our experiments show that LR-MRWand its
robust extension are promising for both symmetric data and real
applications. However, there still remain several problems for fu-
ture work.

First, it is interesting to consider whether the criteria presented
in LR-MRW can be extended to the general graph learning prob-
lems (e.g., spectral clustering and graph embedding) other than

10 The video can be found on http://sites.google.com/site/rsliu0705/fcwr.zip.

http://sites.google.com/site/rsliu0705/fcwr.zip
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Fig. 10. Three scenes of the Fox TV video sequence. The integers in the brackets are the number of frames for the scene.
Table 5
Segmentation accuracies (%) on variety show video sequence. The top row are results on original data and the bottom row are results on data with simulated corruption.

Data GPCA RANSAC LSA SR LRR LR-MRW RLR-MRW

Original 51.32 45.26 38.16 82.63 93.42 97.11 97.51
Corrupted 45.79 39.47 36.32 68.42 80.79 90.17 96.92
MRW. Second, the most expensive computational task required by
ADM based algorithm is to perform EVD or SVD inherent with the
nuclear norm optimization at each iteration, which becomes in-
creasingly costlywhen the data size grows. Recently, by combining
a linearized version of ADMwith an acceleration technique for SVD
computation, the work in Lin, Liu, and Su (2011) proposed a fast
solver for nuclear normminimization. It is attractive to apply sim-
ilar strategy to solve LR-MRW related models for large scale data
set. Third, LR-MRWonly considers the unsupervised clustering and
embedding tasks.Wewould like to apply ourmodel formore prob-
lems, e.g., semi-supervised and supervised learning.
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Appendix A. Proof of Theorem 2

The proof of Theorem 2 is based on the following lemma.

Lemma 8. For any fourmatrixA,B,C and F of compatible dimensions,
the following statements hold:A B

C F


∗

≥

A 0
0 F


∗

= ∥A∥∗ + ∥F∥∗, (A.1a)

rank


A 0
0 F


= rank(A) + rank(F). (A.1b)

Proof of Lemma 8. The proofs of Lemma 3.1 in Liu et al. (2010)
and Lemma 3 inWang and Lu (2009) can directly lead to the above
conclusions. �

Proof of Theorem 2. Let P∗
∈ P be an optimal solution to (8).

Form a block-diagonal matrix P̃ by setting

P̃ij =


P∗

ij, if xi and xj belong to the same subspace,
0, otherwise, (A.2)
and denote C = P∗
− P̃. By the definition and assumption of P, we

have that P̃ ∈ P. Furthermore, we have that

J(P̃) ≤ J(P∗) = J(P̃) + J(C). (A.3)

By (A.1a) in Lemma 8, ∥P̃∥∗ ≤ ∥P∗
∥∗. Therefore, P̃ is also optimal

for (8). As the problem (8) is convex, we have J(P̃) + µ∥P̃∥∗ =

J(P∗) + µ∥P∗
∥∗ and thus J(P̃) ≥ J(P∗). This together with (A.3)

concludes that J(P̃) = J(P∗) and J(C) = 0. By ∥xi − xj∥2 > 0 for
any i ≠ j, we have that C = 0, and so we conclude that P∗

= P̃ has
the block-diagonal structure (9). �

Appendix B. Proof of Theorem 5

The proof of Theorem 5 is based on the following lemma.

Lemma 9 (Horn & Johnson, 2008). For ∀A, B ∈ Sn, the following
inequality holds:

∥A − B∥F ≥ ∥Λ(A) − Λ(B)∥F . (B.1)

Proof of Theorem 5. Since K ∈ Sn, we have ∥K − G∥
2
F = ∥K −

GT
∥
2
F , which suggests the following relation 1

2∥K − G∥
2
F =

1
4∥K −

G∥
2
F +

1
4∥K−GT

∥
2
F =

1
2∥K− Ḡ∥

2
F + C , where Ḡ = (G+GT )/2 ∈ Sn

and C is a constant. Therefore, optimization problem (21) is equal
to the following model:

min
K

1
2
∥K − Ḡ∥

2
F + µ∥K∥∗ s.t. K ∈ Sn. (B.2)

Thus we only need to prove that K∗ is the optimal solution to
the problem (B.6). As K, Ḡ ∈ Sn, we know from Lemma 10 that

∥K − Ḡ∥F ≥ ∥Λ(K) − Λ(Ḡ)∥F . (B.3)

For ∀K ∈ Sn, we also have

∥K∥∗ = ∥Λ(K)∥∗ = ∥λ(K)∥1. (B.4)

Using the relations (B.3) and (B.4), we immediately obtain that

1
2
∥K − Ḡ∥

2
F + µ∥K∥∗

≥
1
2
∥Λ(K) − Λ(Ḡ)∥2

F + µ∥Λ(K)∥∗

=
1
2
∥λ(K) − λ(Ḡ)∥2

2 + µ∥λ(K)∥1, ∀K ∈ Sn,
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which together with diag(λ(K)) ∈ Sn implies that the optimal
value of problem (B.6) is minorized by problem (22). Further, by
the definition of k∗, we know that diag(k∗) ∈ Sn, implies that
K∗

∈ Sn, that is,K∗ is a feasible solution of problem (B.6).Moreover,
we observe that ∥K∗

∥∗ = ∥diag(k∗)∥∗ = ∥k∗
∥1 and ∥K∗

− Ḡ∥F =

∥U diag(k∗)UT
− Ḡ∥F = ∥k∗

−λ(Ḡ)∥l2 . Thus, the objective function
(B.6) reaches the optimal value of problem (22) at K∗. It then
immediately follows that problem (B.6) and (22) share the same
optimal value, and hence K∗ is an optimal solution of (B.6), which
concludes the proof. �

The proof of Theorem 5 is based on the following lemma (Horn
& Johnson, 2008).

Lemma 10. For ∀A, B ∈ Sn, the following inequality holds:

∥A − B∥F ≥ ∥Λ(A) − Λ(B)∥F . (B.5)

Proof of Theorem 5. Since K ∈ Sn, we have

∥K − G∥
2
F = ∥K − GT

∥
2
F ,

which suggests the following relation

1
2
∥K − G∥

2
F =

1
4
∥K − G∥

2
F +

1
4
∥K − GT

∥
2
F

=
1
2
∥K − Ḡ∥

2
F + C,

where Ḡ = (G + GT )/2 ∈ Sn and C is a constant. Therefore,
optimization problem (21) is equal to the following model:

min
K

1
2
∥K − Ḡ∥

2
F + µ∥K∥∗ s.t. K ∈ Sn. (B.6)

Thus we only need to prove that K∗ is the optimal solution to
the problem (B.6). As K, Ḡ ∈ Sn, we know from Lemma 10 that

∥K − Ḡ∥F ≥ ∥Λ(K) − Λ(Ḡ)∥F .

For ∀K ∈ Sn, we also have

∥K∥∗ = ∥Λ(K)∥∗ = ∥λ(K)∥1.

Using the above relations, we immediately obtain that

1
2
∥K − Ḡ∥

2
F + µ∥K∥∗

≥
1
2
∥Λ(K) − Λ(Ḡ)∥2

F + µ∥Λ(K)∥∗

=
1
2
∥λ(K) − λ(Ḡ)∥2

2 + µ∥λ(K)∥1, ∀K ∈ Sn,

which together with diag(λ(K)) ∈ Sn implies that the optimal
value of problem (B.6) is minorized by problem (22). Further, by
the definition of k∗, we know that diag(k∗) ∈ Sn, implies that
K∗

∈ Sn, that is,K∗ is a feasible solution of problem (B.6).Moreover,
we observe that

∥K∗
∥∗ = ∥diag(k∗)∥∗ = ∥k∗

∥1

and

∥K∗
− Ḡ∥F = ∥U diag(k∗)UT

− Ḡ∥F

= ∥k∗
− λ(Ḡ)∥2.

Thus, the objective function (B.6) reaches the optimal value of
problem (22) at K∗. It then immediately follows that problem (B.6)
and (22) share the same optimal value, and hence K∗ is an optimal
solution of (B.6), which concludes the proof. �
References

Azran, A., & Ghahramani, Z. (2006). A new approach to data driven clustering. In
ICML.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computing , 15(6), 1373–1396.

Cai, J.-F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.

Candès, E. J., Li, X., Ma, Y., &Wright, J. (2011). Robust principal component analysis?
Journal of the ACM (JACM), 58(3), 11.

Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6), 717–772.

Chung, F. R. K. (1997). Spectral graph theory. American Mathematical Society.
Costeira, J. P., & Kanade, T. (1998). A multibody factorization method for

independently moving objects. International Journal of Computer Vision, 29(3),
159–179.

David, M. (2003). Information theory, inference and learning algorithms. Cambridge
University Press.

Elhamifar, E., & Vidal, R. (2009). Sparse subspace clustering. In CVPR.
Favaro, P., Vidal, R., & Ravichandran, A. (2011). A closed form solution to robust

subspace estimation and clustering. In CVPR.
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.
Communications of the ACM , 24(6), 381–395.

Gear, C. W. (1998). Multibody grouping from motion images. International Journal
of Computer Vision, 29(2), 133–150.

Geng, X., Smith-Miles, K., Zhou, Z.-H., & Wang, L. (2011). Face image modeling by
multilinear subspace analysiswithmissing values. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 41(3), 881–892.

Goh, A., & Vidal, R. (2007). Segmenting motions of different types by unsupervised
manifold clustering. In CVPR.

Gruber, A., &Weiss, Y. (2004).Multibody factorizationwith uncertainty andmissing
data using the EM algorithm. In CVPR.

Hager,W.W. (1989). Updating the inverse of amatrix. SIAMReview, 31(2), 221–239.
Hale, E.T., Yin, W., & Zhang, Y. A fixed-point continuation method for l1-regularized

minimization with applications to compressed sensing. CAAM TR07-07. Rice
University.

Horn, R., & Johnson, C. (2008). Topics in matrix analysis. Cambridge University Press.
Huang, Y., Liu, Q., & Metaxas, D. N. (2011). A component-based framework for

generalized face alignment. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 41(1), 287–298.

Jolliffe, I. (2002). Principal component analysis (2nd ed.). Springer.
Lafon, S., & Lee, A. B. (2006). Diffusion maps and coarse-graining: a unified

framework for dimensionality reduction, graph partitioning, and data set
parameterization. IEEE Transactions on Pattern Analysis andMachine Intelligence,
28(9), 1393–1403.

Lin, Z., Chen, M., Wu, L., & Ma, Y. The augmented Lagrange multiplier method for
exact recovery of corrupted low-rankmatrices. UIUC technical report UILU-ENG-
09-2215.

Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating directionmethodwith adaptive
penalty for low rank representation. In NIPS.

Liu, J., Ji, S., & Ye, J. (2009). Multi-task feature learning via efficient l2,1-norm
minimization. In UAI.

Liu, R., Lin, Z., De la Torre, F., & Su, Z. (2012). Fixed-rank representation for
unsupervised visual learning. In CVPR.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace
structures by low-rank representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1), 171–184.

Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank
representation. In ICML.

Mei, X., & Ling, H. (2011). Robust visual tracking and vehicle classification via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(11), 2259–2272.

Meila, M., & Shi, J. (2001). Learning segmentation with random walk. In NIPS.
Nadler, B., Lafon, S., & Coifman, R. (2005). Diffusion maps, spectral clustering and

eigenfunctions of Fokker–Planck operators. In NIPS.
Nasihatkon, B., & Hartley, R. (2011). Graph connectivity in sparse subspace

clustering. In CVPR.
Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: analysis and an

algorithm. In NIPS.
Ni, Y., Sun, J., Yuan, X., Yan, S., & Cheong, L. (2010). Robust low-rank subspace

segmentation with semidefinite guarantees. In ICDM workshop.
Qiu, H., & Hancock, E. R. (2007). Clustering and embedding using commute

times. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11),
1873–1890.

Rao, S., Tron, R., Vidal, R., & Ma, Y. (2010). Motion segmentation in the presence
of outlying, incomplete, or corrupted trajectories. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(10), 1832–1845.

Rao, S. R., Yang, A. Y., Sastry, S. S., & Ma, Y. (2010). Robust algebraic segmentation
of mixed rigid-body and planar motions from two views. International Journal
of Computer Vision, 88(3), 425–446.

Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3),
471–501.

http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref2
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref3
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref4
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref5
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref6
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref7
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref8
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref11
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref12
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref13
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref16
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref18
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref19
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref20
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref21
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref26
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref28
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref34
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref35
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref36
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref37


R. Liu et al. / Neural Networks 59 (2014) 1–15 15
Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500), 2323–2326.

Shi, L., Liu, Z.-Y., Tu, S., & Xu, L. (2014). Learning local factor analysis versus mixture
of factor analyzerswith automaticmodel selection.Neurocomputing , 139, 3–14.

Shi, J., &Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

Souvenir, R., & Pless, R. (2005). Manifold clustering. In ICCV.
Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
Toh, K.-C., & Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems. Pacific Journal of Optimization,
6(615–640), 15.

Tron, R., & Vidal, R. (2007). A benchmark for the comparison of 3D montion
segmentation algorithms. In CVPR.

Vempala, S. (2005). Geometric randomwalks: a survey. SRI Volume on Combinatorial
and Computational Geometry.

Vidal, R. (2010). A tutorial on subspace clustering. IEEE Signal Processing Magazine,
28(2), 52–68.

Vidal, R., Ma, Y., & Sastry, S. (2005). Generalized principal component analysis
(GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12),
1945–1959.
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing ,
17(4), 395–416.

Wang, J., & Lu, J. (2009). Proof of inequality of rank of matrix on skew field by
constructing blockmatrix. InternationalMathematical Forum, 36(4), 1803–1808.

Wang, X., Tieu, K., & Grimson,W. E. L. (2010). Correspondence-free activity analysis
and scene modeling in multiple camera views. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(1), 56–71.

Wei, S., & Lin, Z. Analysis and improvement of low rank representation for subspace
segmentation. arXiv Preprint arXiv:1107.1561.

Wright, J., Ganesh, A., Rao, S., & Ma, Y. (2009). Robust principal component analysis:
exact recovery of corrupted low-rankmatrices via convex optimization. InNIPS.

Xu, L. Beyond PCA learnings: from linear to nonlinear and from global representa-
tion to local representation (invited talk). In International conference on neural
information processing.

Xu, L. (2002). BYY harmony learning, structural RPCL, and topological self-
organizing on mixture models. Neural Networks, 15(8), 1125–1151.

Yan, J., & Pollefeys, M. (2006). A general framework for montion segmentation:
independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In
ECCV.

Yu, Y., & Schuurmans, D. (2011). Rank/norm regularisation with closed-form
solution: application to subspace clustering. In UAI.

http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref38
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref39
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref40
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref42
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref43
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref45
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref46
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref47
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref48
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref49
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref50
http://arxiv.org/1107.1561
http://refhub.elsevier.com/S0893-6080(14)00141-5/sbref54

	Learning Markov random walks for robust subspace clustering  and estimation
	Introduction
	Previous work
	Our contribution
	Paper organization

	Understanding spectral clustering by Markov random walk
	Notations
	Spectral clustering via normalized cut
	A Markov random walk view of NCut

	Modeling multiple subspace via Markov random walks
	The basic formulation
	Local pairwise measure
	Global structural measure

	Analysis on the proposed criteria
	The completed MRW learning model
	Comparisons with LRR related works
	Subspace clustering and estimation
	Clustering and estimation with known subspace number
	Estimating the subspace number


	Numerical solution
	Eigenvalue thresholding operator
	Solving LR-MRW model by ADM

	Robust extension for real situations
	Robust low-rank MRW
	Analysis on RLR-MRW model
	Solving RLR-MRW model

	Experimental results
	Synthetic data
	Exactly clustering and estimating clean data
	Robustness to data corruptions

	Motion segmentation
	Segmentation performance on sequences with small noises
	Segmentation performance on sequences with gross corruptions
	Estimating the number of subspaces

	Temporal segmentation of video sequence
	Fox TV video sequence
	Variety show video sequence


	Conclusions and future work
	Acknowledgments
	Proof of Theorem 2
	Proof of Theorem 5
	References


