
Linear time Principal Component Pursuit and its extensions using
ℓ1 filtering

Risheng Liu a,b, Zhouchen Lin c,n, Zhixun Su d, Junbin Gao e

a Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
b School of Software Technology, Dalian University of Technology, Dalian, China
c Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, Beijing, China
d School of Mathematical Sciences, Dalian University of Technology, Dalian, China
e School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia

a r t i c l e i n f o

Article history:
Received 23 September 2013
Received in revised form
4 March 2014
Accepted 10 March 2014
Communicated by E.W. Lang
Available online 27 May 2014

Keywords:
Robust principal component analysis
Principal component Pursuit
ℓ1 minimization
Subspace learning
Incremental learning

a b s t r a c t

In the past decades, exactly recovering the intrinsic data structure from corrupted observations, which is
known as Robust Principal Component Analysis (RPCA), has attracted tremendous interests and found
many applications in computer vision and pattern recognition. Recently, this problem has been
formulated as recovering a low-rank component and a sparse component from the observed data
matrix. It is proved that under some suitable conditions, this problem can be exactly solved by Principal
Component Pursuit (PCP), i.e., minimizing a combination of nuclear norm and ℓ1 norm. Most of the
existing methods for solving PCP require Singular Value Decompositions (SVDs) of the data matrix,
resulting in a high computational complexity, hence preventing the applications of RPCA to very large
scale computer vision problems. In this paper, we propose a novel algorithm, called ℓ1 filtering, for
exactly solving PCP with an Oðr2ðmþnÞÞ complexity, where m�n is the size of data matrix and r is the
rank of the matrix to recover, which is supposed to be much smaller than m and n. Moreover, ℓ1 filtering
is highly parallelizable. It is the first algorithm that can exactly solve a nuclear norm minimization
problem in linear time (with respect to the data size). As a preliminary investigation, we also discuss the
potential extensions of PCP for more complex vision tasks encouraged by ℓ1 filtering. Experiments on
both synthetic data and real tasks testify the great advantage of ℓ1 filtering in speed over state-of-the-art
algorithms and wide applications in computer vision and pattern recognition societies.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Robustly recovering the intrinsic low-dimensional structure of
high-dimensional visual data, which is known as Robust Principal
Component Analysis (RPCA), plays a fundamental role in various
computer vision and pattern recognition tasks, such as face image
alignment and processing, structure from motion, background
modeling, photometric stereo and texture representation (see e.
g., [1–5], to name just a few).

Through the years, a large number of approaches have been
proposed for solving this problem. The representative works
include [2,6–10]. The main limitation of above-mentioned meth-
ods is that there is no theoretical guarantee for their performance.
Recently, the advances in compressive sensing have led to increas-
ing interests in considering RPCA as a problem of exactly

recovering a low-rank matrix L0 (with the size m�n) from
corrupted observations M¼ L0þS0, where S0 is known to be
sparse [1,11]. Its mathematical model is as follows:

min
L;S

rankðLÞþλ‖S‖ℓ0 s:t: M¼ LþS; ð1Þ

where ‖ � ‖ℓ0 is the ℓ0 norm of a matrix, i.e., the number of nonzero
entries in the matrix.

Unfortunately, (1) is known to be NP-hard. So Candés et al. [11]
proposed using Principal Component Pursuit (PCP) to solve (1),
which is to replace the rank function and the ℓ0 norm with the
nuclear norm (which is the sum of the singular values of a matrix,
denoted as ‖ � ‖n) and the ℓ1 norm (which is the sum of the
absolute values of the entries), respectively. More specifically, PCP
is to solve the following convex problem instead:

min
L;S

‖L‖nþλ‖S‖ℓ1 s:t: M¼ LþS: ð2Þ

The work in [11] also rigorously proved that under fairly general
conditions and λ¼ 1=

ffi
maxðm;nÞ

p
, PCP can exactly recover the low-

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.03.046
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: rsliu@dlut.edu.cn (R. Liu), zlin@pku.edu.cn (Z. Lin),

zxsu@dlut.edu.cn (Z. Su), jbgao@csu.edu.au (J. Gao).

Neurocomputing 142 (2014) 529–541

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.03.046
http://dx.doi.org/10.1016/j.neucom.2014.03.046
http://dx.doi.org/10.1016/j.neucom.2014.03.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.03.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.03.046&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.03.046&domain=pdf
mailto:rsliu@dlut.edu.cn
mailto:zlin@pku.edu.cn
mailto:zxsu@dlut.edu.cn
mailto:jbgao@csu.edu.au
http://dx.doi.org/10.1016/j.neucom.2014.03.046

rank matrix L0 (namely the underlying low-dimensional structure)
with an overwhelming probability, i.e., the difference of the
probability from 1 decays exponentially when the matrix size
increases. This theoretical analysis makes PCP distinct from pre-
vious methods for RPCA.

1.1. Main idea and our contribution

In this paper, we address the large-scale RPCA problem and
propose a truly linear cost method to solve the PCP model (2)
when the data size is very large while the target rank is relatively
small. Such kind of data is ubiquitous in computer vision and
pattern recognition. Our algorithm fully utilizes the properties of
low-rankness. The main idea is to apply PCP to a randomly
selected submatrix of the original noisy matrix and compute a
low-rank submatrix. Using this low-rank submatrix, the true low-
rank matrix can be estimated efficiently, where the low-rank
submatrix is part of it.

Specifically, our method consists of two steps (illustrated in
Fig. 1). The first step is to recover a submatrix1 Ls (Fig. 1 (e)) of L0.
We call this submatrix the seed matrix because all other entries of
L0 can be further calculated by this submatrix. Ls is computed by
sampling a submatrix of M and solving a small scale PCP on this
submatrix. The second step is to use the seed matrix to recover

two submatrices Lc and Lr (Fig. 1(f) and (g)), which are on the
same rows and columns as Ls in L0, respectively. They are
recovered by minimizing the ℓ1 distance from the subspaces
spanned by the columns and rows of Ls, respectively. Hence we
call this step ℓ1 filtering. Since the rank of Ls equals to that of L0 (at
an overwhelming probability), the remaining part ~L

s
(Fig. 1(h)) of

L0 can be represented by Ls, Lc and Lr , using the generalized
Nystrom̈ method [12]. We do not multiply Ls, Lc and Lr together to
form ~L

s
explicitly, thus saving both storage and computation

greatly.
As analyzed in Section 3.3.1, our method is of linear cost with

respect to the data size. Besides the advantage of linear time cost,
the proposed algorithm is also highly parallel: the columns of Lc

and the rows of Lr can be recovered fully independently. We also
prove that under suitable conditions, our method can exactly
recover the underling low-rank matrix L0 with an overwhelming
probability. To our best knowledge, this is the first algorithm that
can exactly solve a nuclear norm minimization problem in linear
time.

As a preliminary investigation, we further discuss potential
extensions of PCP for more complex visual analysis tasks, such as
online subspace learning and subspace clustering. Our goal is to
show the readers some basic ideas on using the mechanism of ℓ1
filtering to extend PCP for more complex computer vision and
pattern recognition tasks.

The rest of this paper is organized as follows. In Section 2, we
briefly review previous algorithms for solving PCP. We then
present our ℓ1 filtering algorithm in Section 3. We provide

Fig. 1. Illustration of the proposed ℓ1 filtering method. A large observed data matrix M (a) is the sum of a low-rank matrix L0 (b) and a sparse matrix S0 (c). The method first
recovers a seed matrix (a submatrix of L0) L

s (e). Then the submatrices Lc (f) and Lr (g) can be recovered by column and row filtering, respectively, where U and VT are the
column space and row space of Ls , respectively. Then the complement matrix ~L

s
(h) can be represented by Ls , Lc and Lr . Finally, we obtain the computed low-rank matrix Ln

(d), which is identical to L0 with an overwhelming probability. (a) M, (b) L0, (c) S0, (d) Ln, (e) Ls, (f) Lc, (g) Lr and (h) ~L
s
.

1 Note that the “submatrix” here does not necessarily mean that we have to
choose consecutive rows and columns from M.

R. Liu et al. / Neurocomputing 142 (2014) 529–541530

extensive experiments to verify the efficacy of ℓ1 filtering in
Section 4. After that, we discuss some potential extensions and
variations of PCP using ℓ1 filtering in Section 5. Finally, we
conclude our paper in Section 6.

2. Previous works

In this section, we review some previous algorithms for solving
PCP. The existing solvers can be roughly divided into three
categories: classic convex optimization, factorization and com-
pressed optimization.

For small sized problems, PCP can be reformulated as a
semidefinite program and then be solved by standard interior
point methods. However, this type of methods cannot handle even
moderate scale matrices due to their Oðn6Þ complexity in each
iteration. So people turned to first-order algorithms, such as the
dual method [13], the Accelerated Proximal Gradient (APG)
method [13] and the Alternating Direction Method (ADM) [14],
among which ADM is the most efficient. All these methods require
solving the following kind of subproblem in each iteration:

min
A

η‖A‖nþ1
2
‖A�W‖2F ; ð3Þ

where ‖ � ‖F is the Frobenious norm. Cai et al. [15] proved that the
above problem has a closed form solution:

A¼USηðΣÞVT ; ð4Þ
where UΣVT is SVD of W and SηðxÞ ¼ sgnðxÞmaxðjxj�η;0Þ is the
soft shrinkage operator. Therefore, these methods all require
computing SVDs for some matrices, resulting in Oðmn minðm;nÞÞ
complexity, where m�n is the matrix size.

As the most expensive computational task required by solving
(2) is to perform SVD, Lin et al. [14] adopted partial SVD [16] to
reduce the complexity at each iteration to O(rmn), where r is the
target rank. However, such a complexity is still too high for very
large data sets. Drineas et al. [17] developed a fast Monte Carlo
algorithm, named Linear-Time SVD (LTSVD), which can be used for
solving SVDs approximately (also see [18]). The main drawback of
LTSVD is that it is less accurate than the standard SVD as it uses
random sampling. So the whole algorithm needs more iterations
to achieve the same accuracy. As a consequence, the speed
performance of LTSVD quickly deteriorates when the target rank
increases (see Fig. 2). Actually, even adopting LTSVD the whole
algorithm is still quadratic w.r.t. the data size because it still
requires matrix–matrix multiplication in each iteration.

To address the scalability issue of solving large-scale PCP
problems, Shen et al. [19] proposed a factorization based method,

named Low-Rank Matrix Fitting (LMaFit). This approach repre-
sents the low-rank matrix as a product of two matrices and then
minimizes over the two matrices alternately. Although they do not
require nuclear norm minimization (hence the SVDs), the conver-
gence of the proposed algorithm is not guaranteed as the corre-
sponding problem is non-convex. Moreover, both the matrix–
matrix multiplication and the QR decomposition based rank
estimation technique require O(rmn) complexity. So this method
does not essentially reduce the complexity.

Inspired by compressed optimization, the work in [20] pro-
posed reducing the problem scale by Random Projection. However,
as this method solved a modified optimization model with
introduced auxiliary variables, the theoretical guarantee for the
original PCP model is no longer applicable to it. Moreover, the
need to introduce additional constraint to the problem slows
down the convergence. And actually, the complexity of this
method is also O(pmn), where p�m is the size of the random
projection matrix and p4r. So this method is still not of linear
complexity with respect to the matrix size.

3. The ℓ1 filtering algorithm

Given an observed data matrix MARm�n, which is the sum of a
low-rank matrix L0 and a sparse matrix S0, PCP is to recover L0
from M. What our approach differs from traditional ones is that
the underlying low-rank matrix L0 is reconstructed from a seed
matrix. As explained in Section 1.1, our ℓ1 filtering algorithm
consists of two steps: first recovering a seed matrix, second
performing ℓ1 filtering on the corresponding rows and columns
of the data matrix. Below we provide details of these two steps.

3.1. Seed matrix recovery

Suppose that the target rank r is very small compared with the
data size: r5minðm;nÞ. We first randomly sample an ðsrrÞ � ðscrÞ
submatrix Ms from M, where sr41 and sc41 are the row and
column oversampling rates, respectively. Then the submatrix Ls of
the underlying matrix L0 can be recovered by solving a small sized
PCP problem:

min
Ls ;Ss

‖Ls‖nþ ~λ‖Ss‖ℓ1 s:t: Ms ¼ LsþSs; ð5Þ

e.g., using ADM, where ~λ ¼ 1=
ffi
maxðsrr; scrÞ

p
.

By Theorem 1.1 in [11], the seed matrix Ls can be exactly
recovered from Ms with an overwhelming probability when sr and
sc increase. In fact, by that theorem sr and sc should be chosen at

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

5

10

15

20

25

30

35

40

45

50

 Rank Ratio (ρr)

 T
im

e

 S−ADM
 L−ADM
 l1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

5

10

15

20

25

 Sparse Ratio (ρs)

 T
im

e

 S−ADM
 L−ADM
 l1

Fig. 2. Performance of the S-ADM, L-ADM and ℓ1 filtering under different rank ratios ρr and sparsity ratios ρs, where the matrix size is 1000�1000. The x-axis represents the
rank ratio (a) or sparsity ratio (b). The y-axis represents the CPU time (in seconds).

R. Liu et al. / Neurocomputing 142 (2014) 529–541 531

the scale of Oðln2 rÞ. For the experiments conducted in this paper,
whose r's are very small, we simply choose sc ¼ sr ¼ 10.

3.2. ℓ1 Filtering

For ease of illustration, we assume that Ms is the top left ðsrrÞ �
ðscrÞ submatrix of M. Then accordingly M, L0 and S0 can be
partitioned into:

M¼ Ms Mc

Mr ~M
s

" #
; L0 ¼

Ls Lc

Lr ~L
s

" #
; S0 ¼

Ss Sc

Sr ~S
s

" #
: ð6Þ

Since rankðL0Þ ¼ rankðLsÞ ¼ r, there must exist matrices Q and P,
such that

Lc ¼ LsQ and Lr ¼ PTLs: ð7Þ
As S0 is sparse, so are Sc and Sr . Therefore, Q and P can be found by
solving the following problems:

min
Sc ;Q

‖Sc‖ℓ1 s:t: Mc ¼ LsQþSc; ð8Þ

and

min
Sr ;P

‖Sr‖ℓ1 s:t: Mr ¼ PTLsþSr ; ð9Þ

respectively. The above two problems can be easily solved by ADM.
With Q and P computed, Lc and Lr are obtained as (7). Again by

rankðL0Þ ¼ rankðLsÞ ¼ r, the generalized Nystrom̈ method [12] gives

~L
s ¼ LrðLsÞ†Lc; ð10Þ

where ðLsÞ† is the Moore–Penrose pseudo-inverse of Ls.
In real computation, as the SVD of Ls is readily available when

solving (5), due to the singular value thresholding operation (4), it
is more convenient to reformulate (8) and (9) as

min
Sc ; ~Q

‖Sc‖ℓ1 ; s:t: Mc ¼Us ~Q þSc; ð11Þ

and

min
Sr ; ~P

‖Sr‖ℓ1 ; s:t: Mr ¼ ~P
T ðVsÞT þSr ; ð12Þ

respectively, where UsΣsðVsÞT is the skinny SVD of Ls obtained
from (4) in the iterations. Such a reformulation has multiple
advantages. First, as ðUsÞTUs ¼ ðVsÞTVs ¼ I, it is unnecessary to
compute the inverse of ðUsÞTUs and ðVsÞTVs when updating ~Q
and ~P in the iterations of ADM. Second, computing (10) also
becomes easy if one wants to form ~L

s
explicitly because now

~L
s ¼ ~P

T ðΣsÞ�1 ~Q : ð13Þ
By the relationship (7), we can rewrite (10) as

~L
s ¼ LrðLsÞ†Lc ¼ PTLsðLsÞ†LsQ ¼ PTLsQ

which is based on a property of pseudo-inverse, i.e., LsðLsÞ†Ls ¼ Ls.
In this view, PTLsQ is reduced to PTLr or LcQ . This not only speeds
up computation, but also avoids the numerical instability of (13) as
this formulation requires to invert the singular values of Ls.

To make the algorithm description complete, we sketch in
Algorithm 1 the ADM for solving (11) and (12), which are both of
the following form:

min
E;Z

‖E‖ℓ1 s:t: X¼ AZþE; ð14Þ

where X and A are known matrices and A has orthonormal
columns, i.e., ATA¼ I. The ADM for (14) is to minimize the
following augmented Lagrangian function:

‖E‖ℓ1 þ 〈Y;X�AZ�E〉þβ
2
‖X�AZ�E‖2F ; ð15Þ

with respect to E and Z, respectively, by fixing other variables, and
then update the Lagrange multiplier Y and the penalty parameter
β.2

Algorithm 1. Solving (14) by ADM.

Input: X and A.
Initialize: Set E0, Z0 and Y0 to zero matrices. Set ε40, ρ41

and βbβ040.
while ‖X�AZk�Ek‖ℓ1=‖X‖ℓ1 Zε do
Step 1: Update Ekþ1 ¼ Sβ� 1

k
ðX�AZkþYk=βk),

where S is the soft-thresholding operator [15].

Step 2: Update Zkþ1 ¼AT ðX�Ekþ1þYk=βkÞ.
Step 3: Update Ykþ1 ¼ YkþβkðX�AZkþ1�Ekþ1Þ and
βkþ1 ¼minðρβk;βÞ.

end while

Note that it is easy to see that (11) and (12) can also be solved in
full parallelism as the columns and rows of Lc and Lr can be
computed independently, thanks to the decomposability of the
problems. So the recovery of Lc and Lr is very efficient if one has a
parallel computing platform, such as a general purpose graphics
processing unit (GPU).

3.3. The complete algorithm

Now we are able to summarize in Algorithm 2 our ℓ1 filtering
method for solving PCP, where steps 3 and 4 can be done in
parallel.

Algorithm 2. Solving PCP (2) by ℓ1 filtering.

Input: Observed data matrix M.
Step 1: Randomly sample a submatrix Ms.
Step 2: Solve the small sized PCP (5), e.g., by ADM, to recover

the seed matrix Ls.
Step 3: Reconstruct Lc by solving (11).
Step 4: Reconstruct Lr by solving (12).

Step 5: Represent ~L
s
by (13).

Output: Low-rank matrix L and sparse matrix S¼M�L.

3.3.1. Complexity analysis
Now we analyze the computational complexity of the proposed

Algorithm 2. For the step of seed matrix recovery, the complexity
of solving (5) is only Oðr3Þ. For the ℓ1 filtering step, it can be seen
that the complexity of solving (11) and (12) is Oðr2nÞ and Oðr2mÞ,
respectively. So the total complexity of this step is Oðr2ðmþnÞÞ. As
the remaining part ~L

s
of L0 can be represented by Ls, Lc and Lr ,

using the generalized Nystrom̈ method [12],3 and recall that
r5minðm;nÞ, we conclude that the overall complexity of
Algorithm 2 is Oðr2ðmþnÞÞ, which is only of linear cost with
respect to the data size.

It should be emphasized that though accelerated SVD decom-
position (e.g., Linear Time SVD (LTSVD) [17]) can speed up classic
convex optimization algorithms (e.g. ADM) for solving nuclear
norm minimization, the matrix–matrix multiplication still cannot

2 The ADM for solving PCP follows the same methodology. As a reader can refer
to [14,21] for details, we omit the pseudo-code for using ADM to solve PCP.

3 Of course, if we explicitly form ~L
s
then this step costs no more than rmn

complexity. Compared with other methods, our rest computations are all of
Oðr2ðmþnÞÞ complexity at the most, while those methods all require at least O
(rmn) complexity in each iteration, which results from matrix–matrix
multiplication.

R. Liu et al. / Neurocomputing 142 (2014) 529–541532

be avoid at each iteration, thus the complexity is at least quadratic
[22], which is higher than that of our ℓ1 filtering. This has also
been illustrated in our experimental part (see Section 4.1.1).

3.4. Discussions

This subsection discusses the exact recoverability and target
rank estimation details of ℓ1 filtering framework.

3.4.1. Exact recoverability of ℓ1 filtering
The exact recoverability of L0 using our ℓ1 filtering method

consists of two factors. First, exactly recovering Ls from Ms.
Second, exactly recovering Lc and Lr . If all Ls, Lc, and Lr can be
exactly recovered, L0 is exactly recovered.

The exact recoverability of Ls from Ms is guaranteed by
Theorem 1.1 of [11]. When sr and sc are sufficiently large, the
chance of success is overwhelming.

To analyze the exact recoverability of Lc and Lr , we first observe
that it is equivalent to the exact recoverability of Sc and Sr . By
multiplying annihilation matrices Us;? and Vs;? to both sides of
(11) and (12), respectively, we may recover Sc and Sr by solving

min
Sc

‖Sc‖ℓ1 s:t: Us;?Mc ¼Us;? Sc; ð16Þ

and

min
Sr

‖Sr‖ℓ1 s:t: MrðVs;? ÞT ¼ SrðVs;? ÞT ; ð17Þ

respectively. If the oversampling rates sc and sr are large enough, we
are able to choose Us;? and Vs;? that are close to Gaussian random
matrices. Then we may apply the standard theory in compressed
sensing [23] to conclude that if the oversampling rates sc and sr are
large enough and Sc and Sr are sparse enough,4 Sc and Sr can be
exactly recovered with an overwhelming probability.

We also present an example in Fig. 1 to illustrate the exact
recoverability of ℓ1 filtering. We first truncate the SVD of a
1024�768 image “Water”5 to get a matrix of rank 30 (Fig. 1(b)).
The observed image (Fig. 1(a)) is obtained from Fig. 1(b) by adding
large noise to 30% of the pixels uniformly sampled at random
(Fig. 1(c)). Suppose we have the top-left 300�300 submatrix as
the seed (Fig. 1(e)), the low-rank image (Fig. 1(d)) can be exactly
recovered by ℓ1 filtering. Actually, the relative reconstruction
errors in Ln are only 7.03�10�9.

3.4.2. Target rank estimation
The above analysis and computation are all based on a known

value of the target rank r. For some applications, we could have an
estimate on r. For example, for the background modeling problem
[1], the rank of the background video should be very close to one
as the background hardly changes; and for the photometric stereo
problem [4] the rank of the surface normal map should be very
close to three as the normals are three dimensional vectors.
However, the rank r of the underlying matrix might not always
be known. So we have to provide a strategy to estimate r.

As we assume that the size m0 � n0 of submatrix Ms is
ðsrrÞ � ðscrÞ, where sr and sc should be sufficiently large in order
to ensure the exact recovery of Ls from Ms, after we have
computed Ls by solving (5), we may check whether

m0=r0Zsr and n0=r0Zsc ð18Þ
are satisfied, where r0 is the rank of Ls. If yes, Ls is accepted as a seed

matrix. Otherwise, it implies that m0 � n0 may be too small with
respect to the target rank r. Then we may increase the size of the
submatrix to ðsrr0Þ � ðscr0Þ and repeat the above procedure until (18) is
satisfied or

maxðm0=m;n0=nÞ40:5: ð19Þ
We require (19) because the speed advantage of our l1 filtering
algorithm will quickly lost beyond this size limit (see Fig. 2). If we
have to use a submatrix whose size should be greater than
ð0:5mÞ � ð0:5nÞ, then the target rank should be comparable to the
size of data, hence breaking our low-rank assumption. In this case, we
may resort to the usual method to solve PCP.

Of course, we may sample one more submatrix to cross validate
the estimated target rank r. When r is indeed very small, such a
cross validation is not a big overhead.

4. Experimental results

In this section, we present experiments on both synthetic data
and real vision problems (structure from motion and background
modeling) to test the performance of ℓ1 filtering. All the experi-
ments are conducted and timed on the same PC with an AMD
Athlons II X4 2.80 GHz CPU that has 4 cores and 6 GB memory,
running Windows 7 and Matlab (Version 7.10).

4.1. Comparison results for solving PCP

We first test the performance of ℓ1 filtering on solving PCP (2).
The experiments are categorized into the following three classes:

� Compare with classic numerical algorithms on randomly gen-
erated low-rank and sparse matrices.

� Compare with factorization based algorithm on recovering
either randomly generated or deterministic low-rank matrix
from its sum with a random sparse matrix.

� Compare with compressed optimization based algorithm on
recovering randomly generated low-rank and sparse matrices.

In the experiments synthetic data, we generate random test data in
the following way: anm�m observed data matrixM is synthesized as
the sum of a low-rank matrix L0 and a sparse matrix S0. The rank r
matrix L0 is generated as a product of two m� r matrices whose
entries are i.i.d. Gaussian random variables with zero mean and unit
variance. The matrix S0 is generated as a sparse matrix whose support
is chosen uniformly at random, and whose p non-zero entries are i.i.d.
uniformly in ½�500;500�. The rank ratio and the sparsity ratio are
denoted as ρr ¼ r=m and ρs ¼ p=m2, respectively.

4.1.1. ℓ1 Filtering vs. classic convex optimization
Firstly, we compare our approach with ADM on the whole

matrix, which we call the standard ADM, and its variation, which
uses LTSVD6 for solving the partial SVD, hence we call the LTSVD
ADM (L-ADM). We choose these two approaches because the
Standard ADM (S-ADM)7 is known to be the most efficient classic
convex optimization algorithm to solve PCP exactly and L-ADM has
a linear time cost in solving SVD.8 For L-ADM, in each time to
compute the partial SVD we uniformly oversample 5r columns of

4 As the analysis in the compressed sensing theories is qualitative and the
bounds are actually pessimistic, copying those inequalities here is not very useful.
So we omit the mathematical descriptions for brevity.

5 The image is available at http://www.petitcolas.net/fabien/watermarking/
image_database/.

6 The Matlab code of LTSVD is available in FPCA package at http://www.
columbia.edu/�sm2756/FPCA.htm.

7 The Matlab code of S-ADM is provided by the authors of [14] and all the
parameters in this code are set to their default values.

8 However, L-ADM is still of O(rmn) complexity as it involves matrix–matrix
multiplication in each iteration. See also Section 2.

R. Liu et al. / Neurocomputing 142 (2014) 529–541 533

http://www.petitcolas.net/fabien/watermarking/image_database/
http://www.petitcolas.net/fabien/watermarking/image_database/
http://www.columbia.edu/~sm2756/FPCA.htm
http://www.columbia.edu/~sm2756/FPCA.htm
http://www.columbia.edu/~sm2756/FPCA.htm

the data matrix without replacement.9 For all methods in compar-
ison, the stopping criterion is ‖M�Ln�Sn‖F=‖M‖Fr10�7.

Table 1 shows the detailed comparison among the three
methods, where RelErr¼ JLn�L0 JF=‖L0‖F is the relative error to
the true low-rank matrix L0. It is easy to see that our ℓ1 filtering
approach has the highest numerical accuracy and is also much
faster than the S-ADM and L-ADM. Although L-ADM is faster than
the S-ADM, its numerical accuracy is the lowest among the three
methods because it is probabilistic.

We also present in Fig. 2 the CPU times of the three methods
when the rank ratio ρr and sparsity ratio ρs increase, respectively.
The observed matrices are generated using the following para-
meter settings: m¼1000, vary ρr from 0.005 to 0.05 with fixed
ρs ¼ 0:02 and vary ρs from 0.02 to 0.2 with fixed ρr ¼ 0:005. It can
be seen from Fig. 2(a) that L-ADM is faster than the S-ADM when
ρro0:04. However, the computing time of L-ADM grows quickly
when ρr increases. It even becomes slower than the S-ADM when
ρrZ0:04. This is because LTSVD cannot guarantee the accuracy of
partial SVD in each iteration. So its number of iterations is larger
than that of the S-ADM. In comparison, the time cost of our ℓ1
filtering method is much less than the other two methods for all
the rank ratios. However, when ρr further grows the advantage of
ℓ1 filtering will be lost quickly, because ℓ1 filtering has to compute
the PCP on the ðsrrÞ � ðscrÞ ¼ ð10rÞ � ð10rÞ submatrix Ms. In con-
trast, Fig. 2(b) indicates that the CPU time of these methods grows
very slowly with respect to the sparsity ratio.

4.1.2. ℓ1 Filtering vs. factorization method
We then compare the proposed ℓ1 filtering with a factorization

method (i.e., LMaFit10) on solving (2). To test the ability of these
algorithms in coping with corruptions with large magnitude, we
multiply a scale r to the sparse matrix, i.e., M¼ L0þsS0. We fix
other parameters of the data (m¼1000, r¼ 0:01m and ρs ¼ 0:01)
and vary the scale parameter s from 1 to 10 to increase the
magnitude of the sparse errors.

The computational comparisons are presented in Fig. 3. Besides
the CPU time and relative error, we also measure the quality of
the recovered Ln by its maximum difference (MaxDif) and average
difference (AveDif) to the true low-rank matrix L0, which are

respectively defined as MaxDif ¼maxðjLn�L0jÞ and AveDif ¼
ð∑ijjLn�L0jÞ=m2. One can see that the performance of LMaFit
dramatically decreases when sZ3. This experiment suggests that
the factorization method fails when the sparse matrix dominates the
low-rank one in magnitude. This is because a sparse matrix with large
magnitudes makes rank estimation difficult or impossible for LMaFit.
Without a correct rank, the low-rank matrix cannot be recovered
exactly. In comparison, our ℓ1 filtering always performs well on the
test data.

In the following, we consider the problem of recovering
deterministic low-rank matrix from corruptions. We generate an
m�m “checkerboard” image (see Fig. 4), whose rank is 2, and
corrupt it by adding 10% impulsive noise to it. The corruptions
(nonzero entries of the sparse matrix) are sampled uniformly at
random. The image size m ranges from 1000 to 5000 with an
increment of 500.

The results for this test are shown in Fig. 4, where the first
image is the corrupted checkerboard image, the second image is
recovered by LMaFit and the third by ℓ1 filtering. A more complete
illustration for this test can be seen from Fig. 4(d), where the CPU
time corresponding to all tested data matrix sizes is plotted. It can
be seen that the images recovered by LMaFit and ℓ1 filtering are
visually comparable in quality. The speeds of these two methods
are very similar when the data size is small, while ℓ1 filtering runs
much faster than LMaFit when the matrix size increases. This
concludes that our approach has significant speed advantage over
the factorization method on large scale data sets.

4.1.3. ℓ1 Filtering vs. compressed optimization
Now we compare ℓ1 filtering with a compressed optimization

method (i.e., Random Projection11). This experiment is to study the
performance of these two methods with respect to the rank of the
matrix and the data size. The parameters of the test matrices are
set as follows: ρs ¼ 0:01, ρr varying from 0.05 to 0.15 with fixed
m¼1000, and m varying from 1000 to 5000 with fixed ρr ¼ 0:05.
For the dimension of the projection matrix (i.e., p), we set it as
p¼ 2r for all the experiments.

As shown in Fig. 5, in all cases the speed and the numerical
accuracy of ℓ1 filtering are always much higher than those of
random projection.

Table 1
Comparison among the S-ADM, L-ADM and ℓ1 filtering (ℓ1 for short) on the synthetic data. We present CPU time (in seconds) and the numerical accuracy of tested
algorithms. L0 and S0 are the ground truth and Ln and Sn are the solution computed by different methods. For ℓ1 filtering, we report its CPU time as t ¼ t1þt2, where t, t1 and
t2 are the time for total computation, seed matrix recovery and ℓ1 filtering, respectively.

Size Method RelErr rankðLnÞ ‖Ln‖n ‖Sn‖ℓ0 ‖Sn‖ℓ1
Time

2000 rankðL0Þ ¼ 20, ‖L0‖n ¼ 39;546, ‖S0‖ℓ0 ¼ 40;000, ‖S0‖ℓ1 ¼ 998;105
S-ADM 1.46�10�8 20 39,546 39,998 998,105 84.73
L-ADM 4.72�10�7 20 39,546 40,229 998,105 27.41
ℓ1 1.66�10�8 20 39,546 40,000 998,105 5.56¼2.24þ3.32

5000 rankðL0Þ ¼ 50, ‖L0‖n ¼ 249;432, ‖S0‖ℓ0 ¼ 250;000, ‖S0‖ℓ1 ¼ 6;246;093
S-ADM 7.13 �10�9 50 249,432 249,995 6,246,093 1093.96

L-ADM 4.28�10�7 50 249,432 250,636 6,246,158 195.79
ℓ1 5.07 �10�9 50 249,432 250,000 6,246,093 42.34¼19.66þ22.68

10,000 rankðL0Þ ¼ 100, ‖L0‖n ¼ 997;153, ‖S0‖ℓ0 ¼ 1;000;000, ‖S0‖ℓ1 ¼ 25;004;070
S-ADM 1.23�10�8 100 997,153 1,000,146 25,004,071 11,258.51
L-ADM 4.26�10�7 100 997,153 1,000,744 25,005,109 1301.83
ℓ1 2.90 �10�10 100 997,153 1,000,023 25,004,071 276.54¼144.38þ132.16

9 As there is no general suggestion for setting this parameter, we experimen-
tally set it as 5r and found that such an oversampling rate is important for ensuring
the numerical accuracy of L-ADM at high probability.

10 The Matlab code of LMaFit is provided by the authors of [19] and all the
parameters in this code are set to their default values.

11 The Matlab code of Random Projection is provided by the author of [20] and
all the parameters in this code are set to their default values.

R. Liu et al. / Neurocomputing 142 (2014) 529–541534

4.2. Structure from motion

In this subsection, we apply ℓ1 filtering to a real world vision
application, namely Structure from Motion (SfM). The problem of
SfM is to automatically recover the 3D structure of an object from
a sequence of images of the object. Suppose that the object is rigid,
there are F frames and P tracked feature points (i.e., L0 ¼ ½XY�2F�P),
and the camera intrinsic parameters do not change. As shown in
[24], the trajectories of feature points from a single rigid motion of
the camera all lie in a liner subspace of R2F , whose dimension is at
most four (i.e., rankðL0Þr4). It has been shown that L0 can be
factorized as L0 ¼AB, where AAR2F�4 recovers the rotations and
translations while the first three rows of BAR4�P encode the
relative 3D positions for each feature point in the reconstructed
object. However, when there exist errors (e.g., occlusion, missing
data or outliers) the feature matrix is no longer of rank 4. Then
recovering the full 3D structure of the object can be posed as a
low-rank matrix recovery problem.

For this experiment, we first generate the 2D feature points L0
by applying an affine camera model (with rotation angles between

0 and 2π, with a step size π=1000, and uniformly randomly
generated translations) to the 3D “Wolf” object,12 which contains
4344 3D points. Then we add impulsive noises S0 (the locations
of the nonzero entries are uniformly sampled at random) to
part (e.g., 5% or 10%) of the feature points (see Fig. 6). In this
way, we obtain corrupted observations M¼ L0þS0 with a size
4002�4344.

We apply our ℓ1 filtering to remove outliers (i.e., S0) and
compute the affine motion matrix A and the 3D coordinates B
from the recovered features (i.e., L0). For comparison, we also
include the results from the Robust Subspace Learning (RSL) [2],13

and standard PCP (i.e., S-ADM based PCP, S-PCP for short). In Fig. 7,
we show the original 3D object, SfM results based on noisy
trajectories and trajectories recovered by RSL, S-PCP and ℓ1
filtering, respectively. It is easy to see that the 3D reconstruction

1 2 3 4 5 6 7 8 9 10
0
5
10
15
20
25
30
35
40
45

 Sparsity Magnitude (σ) Sparsity Magnitude (σ) Sparsity Magnitude (σ) Sparsity Magnitude (σ)

 T
im

e

1 2 3 4 5 6 7 8 9 10
−8
−7
−6
−5
−4
−3
−2
−1
0
1

 lo
g 10

(R
el

Er
r)

1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10
−8

−7

−6

−5

−4

−3

−2

−1

0

 lo
g 10

(A
ve

D
if)

 lo
g 10

(A
ve

D
if)

Fig. 3. Performance of LMaFit and ℓ1 filtering under different sparsity magnitudes (sA ½1;10�). The x-axes represent the sparsity magnitudes and the y-axes represent the
CPU time (in seconds) (a), “RelErr” (b), “MaxDif” (c) and “AveDif” (d) in log scale, respectively.

1000 1500 2000 2500 3000 3500 4000 4500 500
0

5

10

15

20

25

30

35

 Data Size (m)

 T
im

e

a b c d

Fig. 4. Recovery results for “checkerboard”. (a) Is the image corrupted by 10% impulsive noise. (b) Is the image recovered by LMaFit. (c) Is the image recovered by ℓ1 filtering.
(d) CPU time (in seconds) vs. data size (mA ½1000;5000�). (a) Corrupted, (b) LMaFit, (c) ℓ1 and (d) Time.

0.05 0.1 0.1

50

100

150

200

 Rank Ratio (ρr) Rank Ratio (ρr)

 T
im

e

0.05 0.1 0.1

−7

−6

−5

−4

−3

−2

−1

 lo
g 10

(R
el

Er
r)

 lo
g 10

(R
el

Er
r)

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00 50

0
0

1000

2000

3000

4000

5000

6000

 Data Size (m)

 T
im

e

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00 50

0
−9
−8
−7
−6
−5
−4
−3
−2
−1
0

 Data Size (m)

Fig. 5. Performance of Random Projection (RP for short) and ℓ1 filtering. (a) and (b) are the comparison under different rank ratios (ρrA ½0:05;0:15�). (c) and (d) are the
comparison under different data sizes (mA ½1000;5000�). In (a) and (c), the y-axes are the CPU times (in seconds). In (b) and (d), the y-axes are the relative errors in log scale.

12 The 3D “Wolf” data is available at: http://tosca.cs.technion.ac.il/.
13 The Matlab code of RSL is available at http://www.salleurl.edu/� ftorre/

papers/rpca/rpca.zip and the parameters in this code are set to their default values.

R. Liu et al. / Neurocomputing 142 (2014) 529–541 535

http://tosca.cs.technion.ac.il/
http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip
http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip
http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip

of RSL fails near the front legs and tail. In contrast, the S-PCP and
ℓ1 filtering provide results with almost the same quality. Table 2
further compares the numerical behaviors of these methods. We
measure the quantitative performance for SfM by the well-known
mean 2D reprojection error, which is denoted as “ReprojErr” and
defined by the mean distance of the ground truth 2D feature
points and their reprojections. We can see that the S-PCP provides
the highest numerical accuracy while its time cost is extremely
high (9 times slower than RSL and more than 100 times slower
than ℓ1 filtering). Although the speed of RSL is faster than S-PCP,
its numerical accuracy is the worst among these methods. In
comparison, our ℓ1 filtering achieves almost the same numerical
accuracy as S-PCP and is the fastest.

4.3. Background modeling

In this subsection, we consider the problem of background
modeling from video surveillance. The background of a group of
video surveillance frames is supposed to be exactly the same and
the foreground on each frame is recognized as sparse errors. Thus
this vision problem can be naturally formulated as recovering the
low-rank matrix from its sum with sparse errors [11]. We compare
our ℓ1 filtering with other state-of-the-art robust approaches, such

as RSL and S-PCP. For ℓ1 filtering, we set the size of the seed matrix
as 20�20.

For quantitative evaluation, we perform all the compared
methods on the “laboratory” sequence from a public surveillance
database [25] which has ground truth foreground. Both the False
Negative Rate (FNR) and the False Positive Rate (FPR) are calcu-
lated in the sense of foreground detection. FNR indicates the
ability of the method to correctly recover the foreground while
the FPR represents the power of a method on distinguishing the
background. These two scores correspond to the Type I and Type II
errors in the statistical test theory14 and are judged by the
criterion that the smaller the better. One can see from Table 3
that RSL has the lowest FNR but the highest FPR among the
compared methods. This reveals that RSL could not exactly
distinguish the background. It can be seen that the performance
of our ℓ1 is as good as S-PCP, which achieves the best results but
with the highest time cost.

To further test the performance of ℓ1 filtering on large scale
data set, we also collect a video sequence (named “Meeting”) of
700 frames, each of which has a resolution 576�720. So the data

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

Fig. 6. The illustrations of some trajectories (2D image frames) generated by the 3D “Wolf” object (300th, 500th, …, 1300th, 1500th frames). Top row: the ground truth
trajectories. Bottom row: 10% corrupted trajectories.

Fig. 7. The SfM reconstruction. (a) is the original 3D object. (b)–(e) are SfM results using corrupted trajectory and the trajectories recovered by RSL, S-PCP and ℓ1 filtering,
respectively. (a) Original, (b) Corrupted, (c) RSL, (d) S-PCP and (e) ℓ1.

Table 2
Comparison among RSL, S-PCP and ℓ1 filtering on the structure from motion problem. We present CPU time (in seconds) and the numerical accuracy of tested algorithms. L0
and S0 are the ground truth and Ln and Sn are the solution computed by different methods.

Noise Method RelErr rankðLnÞ ‖Sn‖ℓ0
Time MaxDifðLnÞ AveDifðLnÞ ReprojErr

5% rankðL0Þ ¼ 4, ‖S0‖ℓ0 ¼ 869;234
RSL 0.0323 4 (fixed) 15,384,229 93.05 32.1731 0.4777 0.9851
S-PCP 5.18�10�9 4 869,200 848.09 1.70�10�5 2.47�10�8 4.18�10�8

ℓ1 1.16�10�8 4 869,644 6.46 1.80�10�5 3.61�10�7 4.73�10�7

10% rankðL0Þ ¼ 4, ‖S0‖ℓ0 ¼ 1;738;469
RSL 0.0550 4 (fixed) 16,383,294 106.65 38.1621 0.9285 1.8979
S-PCP 6.30�10�9 4 1,738,410 991.40 1.57�10�5 4.09�10�8 6.82�10�7

ℓ1 3.18�10�8 4 1,739,912 6.48 5.61�10�5 9.03�10�7 1.26�10�6

14 Please refer to http://en.wikipedia.org/wiki/Type_I_and_type_II_errors.

R. Liu et al. / Neurocomputing 142 (2014) 529–541536

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors

matrix is of size greater than 700�400,000, which cannot be fit
into the memory of our PC. As a result, we cannot use the standard
ADM to solve the corresponding PCP problem. As for RSL, we have
found that it did not converge on this data. Thus we only present
the performance of ℓ1 filtering. The time cost is reported in Table 3
and the qualitative results are shown in Fig. 8. We can see that the
background and the foreground can be separated satisfactorily by
ℓ1 filtering. This makes sense because our ℓ1 filtering can exactly
recover the (global) low-rank structure for the background and
remove the foreground as sparse errors. The speed of ℓ1 filtering is
also fast for such a large data set (with the dimensionality greater
than 400,000).

5. Extensions of PCP via ℓ1 filtering

It has been shown in above sections that ℓ1 filtering is a
powerful tool for solving PCP model (2). In this section, we would
like to further highlight some potential extensions of ℓ1 filtering
for more complex visual analysis problems. Here one should be
aware that we do not claim that the strategy given in this section is
the best solution to each problem. Instead, the goal is merely to
show some examples of utilizing the mechanism of ℓ1 filtering to
handle different computer vision tasks.

5.1. Online subspace learning

Within the computer vision community, the dramatic increase
in the amount of visual data has posed severe challenges for many
problems, such as video processing, object tracking, motion
analysis and human action segmentation and recognition. This is
because the increasing volume of sequential data can overwhelm
the traditional batch subspace learning approaches as they process
all the test data simultaneously. To overcome this drawback,
various online methods have been proposed in the computer
vision society (e.g., [26,27]). But unfortunately, due to the difficulty
in solving nuclear norm minimization incrementally at each
iteration, it is hard to directly extend the existing PCP for online
problems. In this subsection, we would like to discuss how to use
the mechanism of ℓ1 filtering to extend PCP for this challenge

Table 3
Comparison among RSL, S-PCP, and ℓ1 filtering on background modeling problem.
“Resolution” and “No. Frames” denote the size of each frame and the number of
frames in a video sequence, respectively. We present FNR, FPR and the CPU time (in
seconds) for the “Laboratory” data set. For our collected “Meeting” data set, we only
report the CPU time because there is no ground truth foreground for this video
sequence.

Video Measure RSL S-PCP ℓ1

Laboratory Resolution: 240�320, No. Frames: 887
FNR 7.31 8.61 8.62
FPR 10.83 8.72 8.76
Time 3159.92 10,897.96 48.99

Meeting Resolution: 576�720, No. Frames: 700
Time N.A. N.A. 178.74

Fig. 8. The sampled background modeling results of ℓ1 filtering on the “Meeting” video sequence. (a) Is the original video sequence, (b)–(c) are the background (Ln) and the
foreground (Sn) recovered by ℓ1 filtering. (a) Original, (b) Background and (c) Foreground.

R. Liu et al. / Neurocomputing 142 (2014) 529–541 537

vision problem. First, the online subspace learning problem can be
defined as follows:

Problem 5.1 (Online subspace learning). Let ½M1 M2 ⋯� be incre-
mentally updated observations, in which M1 is the initially
observed matrix and M2;… can only be achieved sequentially.
Suppose the low-rank features of all submatrices (i.e., M1;M2;…)
are sampled from the same subspace. The goal is to calculate the
following low-rank and sparse decomposition:

½M1 M2 ⋯� ¼ ½L1 L2 ⋯�þ½S1 S2 ⋯�: ð20Þ

5.1.1. Online subspace learning via ℓ1 filtering
We first discuss two naive strategies for Problem 5.1. First, it

seems that solving (2) on each Mt (t ¼ 2;3;…) can roughly address
the above problem. However, when Lt is not low-rank or even full-
rank relative to its size,15 the model (2) can no longer correctly
extract the intrinsic features for the data as the assumptions of PCP
are violated. Another possible strategy is to solve (2) on a larger
matrix ½M1 M2 ⋯ Mt � when we observed Mt . However, this strat-
egy has to suffer from extremely high computational cost as we
have to recalculate (2) on all the data points when new test
samples arrive.

Actually, by utilizing the mechanism of our proposed ℓ1
filtering, we can efficiently address Problem 5.1 in the following
way. First perform ℓ1 filtering on M1 to recover (L1, S1) and
calculate the corresponding subspace basis U.16 Then (Lt , St) can
be easily computed by the solution of

min
St ;Q t

‖St‖ℓ1 s:t: Mt ¼UQ tþSt ; t ¼ 2;3;…; ð21Þ

and Lt ¼UQ t .

5.1.2. Applications to robust visual tracking
To show the power of our proposed model for real-world vision

problems, we now apply the ℓ1 filtering based online subspace
learning strategy to address the visual tracking task. In particular,
visual tracking can be considered as the problem of estimating the
target object of next frame without knowing the concrete obser-
vation probability. Let Mt ¼ ½m1;…;mt � denotes the observed
images from the first frame to the tth frame and xt denotes the
state variable describing the affine motion parameters of an object
at time t, respectively. Then we can process xt with the following
probabilities:

pðxt jMtÞppðmt jxtÞ
Z

pðxt jxt�1Þpðxt�1jMt�1Þ dxt�1; ð22Þ

where the dynamical model pðxt jxt�1Þ denotes the state transition
distribution and the observation model pðmt jxtÞ estimates the
likelihood of observing mt at state xt . Following the work in [28],
we set xt as an affine transformation with six parameters and
model the parameters by independent Gaussian distribution
around the counterpart in xt�1, i.e., pðxt jxt�1Þ ¼N ðxt ; xt�1;Ψ Þ,
where Ψ denotes a diagonal covariance matrix. Then object
tracking reduces to the problem of calculating the observation
likelihood for sample state xt , i.e., pðmt jxtÞ. Let mi

t be a candidate
observation at newly coming frame, where i denotes the ith
sample of the state xt . Then we can use low rank feature lit and
sparse error sit to represent it, i.e., mi

t ¼ litþsit . In this way, the
observation likelihood can be measured by the reconstruction

error of each observed image patch,

pðmi
t jxi

tÞ ¼ expð�‖mi
t� lit‖

2
2Þ: ð23Þ

Based on the above preparation, the robust visual tracking
problem can be successfully addressed by incrementally learning
the low-rank features and the corresponding subspace basis for
the target from corrupted observations using our extended ℓ1
filtering method.

In the following, we compare the proposed tracking framework
with six state-of-the-art visual tracking algorithms, i.e., Incremen-
tal Visual Tracking (IVT) [28], Multiple Instance Learning (MIL)
[29], Visual Tracking by Sampling (VTS) [30], Tracking-Learning-
Detection (TLD) [31], L1 Minimization (L1) [32,33] and Sparse
Prototypes (SP) [34] on three challenge video sequences (i.e.,
“Football”, “Singer” and “Cliffbar”17). As shown in Figs. 9 and 10
and Table 4, our tracking method (OUR for short) achieves the best
performance in both qualitative and quantitative comparisons. The
bottom row of Table 4 also compares the running time of three
sparsity based methods (i.e., L1, SP and OUR). We observed that
our ℓ1 filtering based approach is the fastest one among them. This
again verify the efficiency of our algorithm on real world vision
problems.

5.2. Subspace clustering

Up to now, we all assume that the samples are drawn from a
single subspace. However, a data set could be sampled from
multiple subspaces in some vision problems, such as image
segmentation, motion segmentation and face clustering. There-
fore, it is necessary to simultaneously cluster the data into
different subspaces and find a low-dimensional subspace to fit
each group of points. As shown in [35], this so-called subspace
clustering problem can be formulated as a Low-Rank Representa-
tion (LRR) model:

min
Z;E

‖Z‖nþλ‖E‖ℓ1 s:t: X¼XZþE; ð24Þ

where X is the observed data, Z is the low-rank representation and
E is the sparse noise. The work in [36] has proved that LRR can
exactly recover the multiple subspace structure. However, due to
the SVD and the matrix–matrix multiplication at each iteration,
the complexity of LRR is Oðn3Þ, thus hard to be applied to large-
scale vision tasks. Even with accelerated techniques [22,37], it still
suffers from an Oðn2Þ computational complexity because model
(24) involves more complex constraint than that in (2). Fortu-
nately, as shown in [38], clean data X�E, rather than X itself,
should be used as the dictionary. This observation reduces LRR to
the PCP problem:

min
D;E

‖D‖nþλ‖E‖ℓ1 s:t: X¼DþE; ð25Þ

and then Z¼ VrVT
r [38], where UrΣrVT

r is the skinny SVD of D and r
is the rank of D. In this view, by utilizing ℓ1 filtering to handle (25),
it is possible to provide a linear cost solver for LRR and hence for
subspace clustering. Therefore, our ℓ1 filtering is also a powerful
tool for vision problems with data points drawn from multiple
subspaces.

6. Conclusions and future work

In this paper, we propose the first linear time algorithm, named
the ℓ1 filtering, for exactly solving very large PCP problems, whose

15 The matrix ½L1;…; Lt � is still low-rank relative to its size due to the
assumption that all the features are drawn from the same subspace.

16 When the size of the training data is relatively small, we can also simply
perform S-PCP to extract the low-rank features L1 and then compute the subspace
basis from its QR decomposition.

17 The “Football” and “Singer” video sequences are available at http://cv.snu.ac.
kr/research/�vtd/ and “Cliffbar” is available at http://vision.ucsd.edu/�bbabenko/
project_miltrack.shtml.

R. Liu et al. / Neurocomputing 142 (2014) 529–541538

http://cv.snu.ac.kr/research/~vtd/
http://cv.snu.ac.kr/research/~vtd/
http://cv.snu.ac.kr/research/~vtd/
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

ranks are supposed to be very small compared to the data size. It
first recovers a seed matrix and then uses the seed matrix to filter
some rows and columns of the data matrix. It avoids SVD on the

original data matrix, and the ℓ1 filtering step can be done in full
parallelism. As a result, the time cost of our ℓ1 filtering method is
only linear with respect to the data size, making applications of
RPCA to extremely large scale problems possible. The experiments
on both synthetic and real world data demonstrate the high
accuracy and efficiency of our method. However, there still remain
several problems for further works.

� First, we have used a random sampling based technique to
setup the ℓ1 filtering algorithm. The effectiveness of such
strategy has been verified by extensive experiments on both
synthetic and real world problems. But it is still interesting to
see whether such a Monte Carlo type method has an exact
probabilistic guarantee for the problem.

� Also, the exact recoverability of ℓ1 filtering is only guaranteed
for data with large scale but relatively small intrinsic rank. This
is because the standard PCP model is used to obtain the seed

IVT L1 MIL SP VTS TLD OUR

Fig. 9. Sampled tracking results on three challenging video sequences: (a) “Football”, (b) “Cliffbar” and (c) “Singer”.

0 100 200 300 400
0

100

200

300

400

Frame #

C
en

te
r E

rr
or

0 100 200 300 400
0

50

100

150

200

Frame #

C
en

te
r E

rr
or

0 100 200 300 400
0

5

10

15

20

25

30

Frame #

C
en

te
r E

rr
or

IVT L1 MIL SP VTS TLD OUR

Fig. 10. Performance evolution using Center Location Error (CLE) in pixels on three challenging video sequences: (a) “Football”, (b) “Cliffbar” and (c) “Singer”.

Table 4
Quantitative comparisons using Center Location Error (CLE) in pixels. The bottom
row also shows the average Frame per second (FPS) for our method and other two
sparsity based trackers (i.e., L1 and SP) over all the frames. Here the FPS value of L1
is calculated using the APG-based acceleration technique [33], which is much faster
than the original solver in [32].

Video MIL VTS TLD IVT L1 SP OUR

Football 13.4 161.8 13.5 9.4 39.9 8.9 7.7
Cliffbar 4.3 58.2 2.4 2.6 29.2 2.8 2.0
Singer1 17.2 3.5 19.9 8.5 6.4 4.7 3.3

Ave. CLE 11.6 74.2 11.9 6.8 25.2 5.5 3.2

Ave. FPS – – – – 1.0 1.7 1.9

R. Liu et al. / Neurocomputing 142 (2014) 529–541 539

matrix, which also needs a low-rank assumption. In Section 5.1,
we have demonstrated that the column subspace basis can also
be used for the ℓ1 filtering process. However, such extension is
still rudimentary in its current formulation. It is interesting to
explore deeper theoretical analysis on the extended column
subspace based ℓ1 filtering scheme, especially for their reco-
verability on corrupted data set.

� Third, and more importantly, the mechanism of ℓ1 filtering can
be very useful for other large-scale computer vision problems.
So the investigation on how to improve and augment ℓ1
filtering for more vision applications, such as object detection
and adaptive event detection, should also be considered.

Acknowledgments

The authors would like to thank Prof. Zaiwen Wen and Dr.
Yadong Mu for sharing us their codes for LMaFit [19] and Random
Projection [20], respectively. Risheng Liu is supported by the
National Natural Science Foundation of China (No. 61300086),
the China Postdoctoral Science Foundation, the Fundamental
Research Funds for the Central Universities (No. DUT12RC(3)67)
and the Open Project Program of the State Key Laboratory of
CAD&CG, Zhejiang University, Zhejiang, China (No. A1404). Zhou-
chen Lin is supported by National Natural Science Foundation of
China (Nos. 61272341, 61231002, 61121002). Zhixun Su is sup-
ported by National Natural Science Foundation of China (No.
61173103) and National Science and Technology Major Project
(No. 2013ZX04005021). Junbin Gao is supported by Australian
Research Council's Discovery Projects (No. DP130100364).

References

[1] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component
analysis: exact recovery of corrupted low-rank matrices via convex optimiza-
tion, in: NIPS, 2009, pp. 2080–2088.

[2] F. De la Torre, M. Black, A framework for robust subspace learning, Int. J.
Comput. Vis. 54 (1–3) (2003) 117–142.

[3] Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse
and low-rank decomposition for linearly correlated images, in: CVPR, 2010,
pp. 763–770.

[4] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, Y. Ma, Robust photometric
stereo via low-rank matrix completion and recovery, in: ACCV, 2010, pp. 703–
717.

[5] Z. Zhang, A. Ganesh, X. Liang, Y. Ma, TILT: transform-invariant low-rank
textures, Int. J. Comput. Vis. 99 (1) (2012) 1–24.

[6] F. Nie, H. Huang, C. Ding, D. Luo, H. Wang, Robust principal component
analysis with non-greedy l1-norm maximization, in: IJCAI, 2011, pp. 1433–
1438.

[7] Q. Ke, T. Kanade, Robust l1-norm factorization in the presence of outliers and
missing data by alternative convex programming, in: CVPR, 2005, pp. 739–
746.

[8] D. Skocaj, A. Leonardis, H. Bischof, Weighted and robust learning of subspace
representations, Pattern Recognit. 40 (5) (2007) 1556–1569.

[9] Y. Deng, Q. Dai, R. Liu, Z. Zhang, S. Hu, Low-rank structure learning via
nonconvex heuristic recovery, IEEE Trans. Neural Netw. Learn. Syst. 24 (3)
(2013) 383–396.

[10] R. Liu, Z. Lin, F. De la Torre, Z. Su, Fixed-rank representation for unsupervised
visual learning, in: CVPR, 2012, pp. 598–605.

[11] E. Candés, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM
58 (3) (2011) 11.

[12] J. Wang, Y. Dong, X. Tong, Z. Lin, B. Guo, Kernel Nystrom̈ method for light
transport, ACM Trans. Graph. 28 (3) (2009) 29.

[13] A. Ganesh, Z. Lin, J. Wright, L. Wu, M. Chen, Y. Ma, Fast algorithms for
recovering a corrupted low-rank matrix, in: Proceedings of International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing,
2009.

[14] Z. Lin, M. Chen, L. Wu, Y. Ma, The augmented Lagrange multiplier method for
exact recovery of corrupted low-rank matrices, UIUC Technical Report UILU-
ENG-09-2215.

[15] J. Cai, E. Candés, Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optim. 20 (4) (2010) 1956–1982.

[16] R. Larsen, Lanczos Bidiagonalization with Partial Reorthogonalization,
Department of Computer Science, Aarhus University, Technical Report, DAIMI
PB-357.

[17] P. Drineas, R. Kannan, M. Mahoney, Fast Monte Carlo algorithms for matrices
II: computing a low rank approximation to a matrix, SIAM J. Comput. 36 (1)
(2006) 158–183.

[18] N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions,
SIAM Rev. 53 (2) (2011) 217–288.

[19] Y. Shen, Z. Wen, Y. Zhang, Augmented Lagrangian alternating direction method
for matrix separation based on low-rank factorization, Optim. Meth. Softw. 29
(2) (2014) 239–263.

[20] Y. Mu, J. Dong, X. Yuan, S. Yan, Accelerated low-rank visual recovery by
random projection, in: CVPR, 2011, pp. 2609–2616.

[21] X. Yuan, J. Yang, Sparse and low-rank matrix decomposition via alternating
direction methods, Pacific J. Optim. 9 (1) (2014) 167–180.

[22] Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive
penalty for low rank representation, in: NIPS, 2011.

[23] E. Candés, M. Wakin, An introduction to compressive sampling, IEEE Signal
Process. Mag. 25 (2) (2007) 21–30.

[24] S. Rao, R. Tron, R. Vidal, Y. Ma, Motion segmentation in the presence of
outlying, incomplete, and corrupted trajectories, IEEE Trans. PAMI 32 (10)
(2010) 1832–1845.

[25] C. Benedek, T. Szirányi, Bayesian foreground and shadow detection in
uncertain frame rate surveillance videos, IEEE Trans. Image Process. 17 (4)
(2008) 608–621.

[26] A. Jepson, D. Fleet, T. El-Maraghi, Robust online appearance models for visual
tracking, IEEE Trans. PAMI 25 (10) (2003) 1296–1311.

[27] A. Levy, M. Lindenbaum, Sequential Karhunen–Loeve basis extraction
and its application to images, IEEE Trans. Image Process. 9 (8) (2000)
1371–1374.

[28] D.A. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental learning for robust visual
tracking, Int. J. Comput. Vis. 77 (1–3) (2008) 125–141.

[29] B. Babenko, M.-H. Yang, S. Belongie, Visual tracking with online multiple
instance learning, in: CVPR, 2009.

[30] J. Kwon, K.M. Lee, Tracking by sampling trackers, in: ICCV, 2011.
[31] Z. Kalal, K. Mikolajczyk, J. Matas, Tracking-learning-detection, IEEE Trans.

PAMI 34 (2012) 1409–1422.
[32] X. Mei, H. Ling, Robust visual tracking and vehicle classification via sparse

representation, IEEE Trans. PAMI 33 (2011) 2259–2272.
[33] C. Bao, Y. Wu, H. Ling, H. Ji, Real time robust l1 tracker using accelerated

proximal gradient approach, in: CVPR, 2012.
[34] D. Wang, H. Lu, M.-H. Yang, Online object tracking with sparse prototypes,

IEEE Trans. Image Process. 22 (2013) 314–325.
[35] G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation,

in: ICML, 2010.
[36] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Ma, Robust recovery of subspace structures by

low-rank representation, IEEE Trans. PAMI. 35 (1) (2014) 171–184.
[37] R. Liu, Z. Lin, Z. Su, Linearized alternating direction method with parallel

splitting and adaptive penalty for separable convex programs in machine
learning, in: ACML, 2013.

[38] S. Wei, Z. Lin, Analysis and improvement of low rank representation for
subspace segmentation, MSR-TR-2010-177.

Risheng Liu received the B.Sc and Ph.D degrees both in
Mathematics from Dalian University of Technology in
2007 and 2012. He was a visiting scholar in Robotic
Institute of Carnegie Mellon University from 2010 to
2012. He is currently a postdoctoral researcher in
Faculty of Electronic Information and Electrical Engi-
neering, Dalian University of Technology. His research
interests include machine learning, pattern recognition,
computer vision and numerical optimization.

Zhouchen Lin received the Ph.D. degree in applied
mathematics from Peking University in 2000. He was a
lead researcher in Visual Computing Group, Microsoft
Research, Asia from 2000 to 2012. He is currently a
Professor in Key Laboratory of Machine Perception
(MOE), School of EECS, Peking University. His research
interests include Image Processing, Pattern Recogni-
tion, Machine Learning, and Optimization. He is a
senior member of the IEEE.

R. Liu et al. / Neurocomputing 142 (2014) 529–541540

http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref2
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref2
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref8
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref8
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref11
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref11
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref12
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref12
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref12
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref39
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref39
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref39
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref40
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref40
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref23
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref23
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref24
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref24
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref24
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref26
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref26
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref27
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref27
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref27
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref28
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref28
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref31
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref31
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref32
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref32
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref34
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref34
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref41
http://refhub.elsevier.com/S0925-2312(14)00537-2/sbref41

Zhixun Su received the B.Sc degree in Mathematics
from Jilin University in 1987 and M.Sc degree in
Computer Science from Nankai University in 1990. He
received his Ph.D degree in 1993 from Dalian University
of Technology, where he has been a professor in the
School of Mathematical Sciences since 1999. His
research interests include computer graphics and
image processing, computational geometry, computer
vision, etc.

Junbin Gao is currently a Professor in Computer
Science in the School of Computing and Mathematics
at Charles Sturt University (CSU). His recent research
has involved the development of newmachine learning
algorithms for image analysis and computer vision.

R. Liu et al. / Neurocomputing 142 (2014) 529–541 541

	Linear time Principal Component Pursuit and its extensions using ℓ1 filtering
	Introduction
	Main idea and our contribution

	Previous works
	The ℓ1 filtering algorithm
	Seed matrix recovery
	ℓ1 Filtering
	The complete algorithm
	Complexity analysis

	Discussions
	Exact recoverability of ℓ1 filtering
	Target rank estimation

	Experimental results
	Comparison results for solving PCP
	ℓ1 Filtering vs. classic convex optimization
	ℓ1 Filtering vs. factorization method
	ℓ1 Filtering vs. compressed optimization

	Structure from motion
	Background modeling

	Extensions of PCP via ℓ1 filtering
	Online subspace learning
	Online subspace learning via ℓ1 filtering
	Applications to robust visual tracking

	Subspace clustering

	Conclusions and future work
	Acknowledgments
	References

