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A Regularized Approach for Geodesic-Based
Semisupervised Multimanifold Learning

Mingyu Fan, Xiaoqin Zhang, Zhouchen Lin, Zhongfei Zhang, and Hujun Bao

Abstract— Geodesic distance, as an essential measurement for
data dissimilarity, has been successfully used in manifold learn-
ing. However, most geodesic distance-based manifold learning
algorithms have two limitations when applied to classification:
1) class information is rarely used in computing the geodesic
distances between data points on manifolds and 2) little attention
has been paid to building an explicit dimension reduction
mapping for extracting the discriminative information hidden in
the geodesic distances. In this paper, we regard geodesic distance
as a kind of kernel, which maps data from linearly inseparable
space to linear separable distance space. In doing this, a new
semisupervised manifold learning algorithm, namely regularized
geodesic feature learning algorithm, is proposed. The method
consists of three techniques: a semisupervised graph construction
method, replacement of original data points with feature vectors
which are built by geodesic distances, and a new semisupervised
dimension reduction method for feature vectors. Experiments on
the MNIST, USPS handwritten digit data sets, MIT CBCL face
versus nonface data set, and an intelligent traffic data set show
the effectiveness of the proposed algorithm.

Index Terms— Feature extraction, manifold learning,
semisupervised learning, image classification.

I. INTRODUCTION

D IMENSION reduction plays an important role in clas-
sification problems, including face recognition [1], [2]

and text clustering [3]. Classical linear dimension reduction
methods, including Principal Component Analysis (PCA) [4],
Linear Discriminant Analysis (LDA) [2], and Maximum
Marginal Criterion (MMC) [5], are computationally efficient,
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globally optimal and in addition, converge asymptotically.
Therefore, linear dimension reduction methods are commonly
used in real applications. Recently, a number of studies show
that image data possibly reside on nonlinear manifolds [6]–[8].
However, linear dimension reduction methods fail to discover
the underlying nonlinear structure. As a promising approach
to nonlinear dimension reduction, manifold learning becomes
a hot topic and has been studied extensively.

Two promising manifold learning algorithms, Isometric
Feature Mapping (Isomap) [6] and Locally Linear Embedding
(LLE) [7], were introduced in the same issue of SCIENCE
in 2000. Since then, many new manifold learning algorithms
have been proposed based on different motivations, such as
Laplacian Eigenmaps (LE) [8], Hessian LLE [9], and Local
Tangent Space Alignment (LTSA) [10]. Manifold learning
algorithms have an advantage over linear dimension reduction
because they can extract the nonlinear structure of data.
However, a common drawback of earlier manifold learning
algorithms is that they learn the low-dimensional representa-
tions of high-dimensional data implicitly. No explicit mapping
relationship from the input manifold to the output embedding
can be obtained after the training process. Therefore, many
linear projection based algorithms have been proposed for
manifold learning by assuming that there exists a linear dimen-
sion reduction projection. Linear manifold learning algorithms
include the Locally Preserving Projections (LPP) [11], Orthog-
onal Neighborhood Preserving Projections (ONPP) [12],
Discriminative Orthogonal Neighborhood-Preserving Projec-
tions (DONPP) [13], and Graph embedding [14].

Geodesic distance, as an essential measurement for data
dissimilarity, has been successfully used in manifold learning
[6], [15], [16]. Roughly speaking, geodesic distance means
the shortest path between points in the space. For Isomap [6]
and related manifold learning methods [15], [16], geodesic
distance is defined to be the sum of edge weights along the
shortest path between two nodes (computed using Dijkstra’s
algorithm, for example). However, there are still limitations
for the most of geodesic distance based manifold learning
algorithms in classification. First, class information is rarely
used in computing the geodesic distances between data points
on manifolds. They are less effective when the dataset is
partially labeled or distributes on multiple manifolds, as is
common in classification. Second, little effort has been paid
to build an explicit dimension reduction mapping for extracting
the discriminative information hidden in geodesic distances.

In this paper, we consider geodesic distance as a kind of
kernel, which maps data from linearly inseparable space to
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Fig. 1. The flow chart of the proposed Reg-GeoFeature algorithm.

linear separable feature space. In doing this, we propose a new
semi-supervised manifold learning algorithm for image classi-
fication, which has three techniques. First, a semi-supervised
neighborhood graph construction method is introduced for
data distributed on multiple manifolds, which is named as
k-Connectivity Graph (k-CG) method. Second, considering the
geodesic distance as a kernel, we replace each data point
with a distance feature vector, whose elements are graph
distances from the data point to the remaining data points. This
replacement is considered as a kind of feature mapping, which
maps data from input space to linearly separable distance
space. Third, to introduce the class information and to build
explicit dimension reduction mappings, we propose a new
semi-supervised linear dimension reduction method for the
feature vectors. The new method, namely the Regularized
Sparsity preserving Semi-Supervised Dimension Reduction
(Reg-S3DR) method, maps the distance feature vectors from
the same class to nearby locations and feature vectors from
different classes to far away locations.

We combine the mapping to feature vectors and the linear
dimension reduction method together to achieve the explicit
nonlinear dimension reduction mapping. The flow chart of
our Regularized Geodesic Feature Learning (Reg-GeoFeature)
algorithm is given in Fig. 1, where {x1, . . . , xN } denotes the
input dataset, fi is the corresponding feature vector, which is
used to replace xi for i = 1, . . . , N , and {z1, . . . , zN } are the
obtained low-dimensional representations of { f1, . . . , fN }.

The research herein extends and improves upon the research
of [17], through the following.

1. Theoretical results on the validity and the rationality
of the replacement of original data points to geodesic
distance feature vectors are included.

2. More related state-of-the-art supervised and semi-
supervised manifold learning methods [18]–[20] are com-
pared with our method for image classification.

3. We have conducted experiments on another two bench-
mark datasets, namely the intelligent traffic dataset [45]
and the MNIST handwritten dataset [47].

4. In order to better use the label information and manifold
structure of data for semi-supervised learning, we replace
the Semi-Supervised Discriminant Analysis method [17]
to a more robust semi-supervised linear dimension reduc-
tion method, which is called as the Regularized Sparsity
preserving Semi-Supervised Dimension (Reg-S3DR).

The rest of the paper is structured as follows. In Section II,
the related dimension reduction algorithms are reviewed. Our
algorithm is described in Section III. In Section IV, exper-
iments are conducted on real world datasets to show the
promise and effectiveness of the proposed Reg-GeoFeature
algorithm. Finally, in Section V, we provide concluding
remarks and suggestions for the future work.

TABLE I

NOTATION

II. RELATED WORK

In order to avoid confusion, we give a list of the main
notations used in this paper, as shown in Table I.

There are a lot of successful supervised dimension reduction
algorithms. LDA [2] is designed to find a linear projection A
which maximizes the distances among the means of the classes
and minimizes the distances among the points in the same class
using the Fisher’s criterion:

A∗ = arg max
A∈RN×d

tr
(

AT Sb A
)

tr
(
AT Sw A

) , (1)

where the within-class scatter matrix Sw and the between-class
scatter matrix Sb are defined as

Sw =
C∑

m=1

Nm∑

j=1

(xm, j − cm)(xm, j − cm)T , (2)

Sb =
C∑

m=1

Nm(cm − c)(cm − c)T , (3)

with cm = 1
Nm

∑Nm
j=1 xm, j as the mean of data points in

the m-th class and c = 1
N

∑N
i=1 xi as the mean of all data

points. Despite the success of LDA [2], it has been found
to have intrinsic problems [21]: singularity of within-class
scatter matrices and limited available projection directions.
Many subspace based variants of LDA have been done to deal
with these problems, such as [22]–[24].

MMC [5] is based on the same intuition as LDA. The
algorithm takes the following approach to find a dimension
reduction mapping:

A∗ = arg max
A∈RN×d ,AT A=I

tr
(

AT (Sb − Sw)A
)

. (4)

Cai et al. [25] proposed a semi-supervised discriminant
analysis method, which includes a term which preserves the
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local information of the unlabeled data points to improve the
performance of the classification. The term is

J (A) = 1

2

∑

i, j

‖AT xi − AT x j‖2wi j = tr
(

AT X L X T A
)

, (5)

where X = [x1, . . . , xN ] is the data matrix, L = D − W
be the graph Laplacian matrix, W = (

wi j
)

is the similarity
matrix of order N , and D is the N × N diagonal matrix with
Dii = ∑

j wi j for i = 1, . . . , N . The objective function for
the algorithm is presented as

A∗ = arg max
A∈RN×d

tr
(
AT Sb A

)

tr
(

AT (St + αX L X T )A
) , (6)

where St = Sb + Sw and α > 0 is a given parameter.
Kernelized Semi-Supervised Discriminant Analysis [25] is
also proposed to discover the nonlinear intrinsic geometry.
Independently, Song et al. [26] proposed a similar semi-
supervised dimension reduction framework based on the LDA
and the MMC algorithms. In [27], Nie et al. proposed a
flexible manifold embedding framework, which unifies a lot
of graph embedding related, linear, and kernelized nonlinear
semi-supervised dimension reduction methods. All of these
semi-supervised dimension reduction methods work by adding
a manifold smooth term to an optimization problem. Because
these methods construct the adjacent graphs in an unsupervised
manner, class information of the partially labeled data is not
well used in discovering the discriminant structure of the data
manifold.

The Discriminative Multi-Manifold Analysis (DMMA) [33]
for face recognition first segments each face image into
non-overlapping patches in a specific way and then treats all
the patches of an image as a data manifold. Discriminant
Analysis then is implemented on the data manifolds for
feature extraction. In the assumption of DMMA, there is
high overlapping between these manifolds and the distances
between patches at the same location of different images are
usually smaller than those at different locations of the same
image. For example, the similarity of the patches of two eyes
from two different subjects is usually higher than that of an eye
and a cheek from the same person. However, this assumption
is no longer valid for non-face image classification problems
because the patches from the same location of different images
(from different classes) may be highly dissimilar. Compres-
sive sensing is also a powerful tool in subspace learning.
There are multi-subspace learning algorithms based on the
sparse representation [34] or low-rank representation [35]. But
previous studies indicate that sparsity based methods are
usually computationally expensive [34], [36].

In order to incorporate class information into mani-
fold learning, the S-Isomap method [37] is proposed. This
algorithm replaces the Euclidean distance with a new mea-
surement of dissimilarity between data points: D(xi , x j ) =√

1 − e−‖xi−x j ‖/β if yi = y j and D(xi , x j ) = √
e‖xi−x j ‖/β −α

if yi �= y j , where α and β are pre-specified parameters,
yi is the class label of xi . The subsequent procedure of
S-Isomap algorithm is the same as that of Isomap algorithm.
However, a general method to determine the appropriate values

of parameters α and β is still unknown. E-Isomap [38] is
another supervised manifold learning algorithm which has
three steps. The first and second steps of E-Isomap are the
same as those of the classical Isomap algorithm. In the third
step, a feature vector fi is used to represent the original
data point xi , where fi = (dG(xi , x1), . . . , dG(xi , xN ))T , for
i = 1, . . . , N , where dG(xi , x j ) denotes the graph distances
between data points on the adjacent graphs. The classical
LDA [2] method is then applied to reduce the dimension
of the extracted feature vectors { f1, . . . , fN }. Therefore,
E-Isomap suffers the intrinsic problem of LDA: limited avail-
able projection dimensions.

By introducing the local metrics of semi-Riemannian
manifold to describe the structures of classes, Zhao et al. [31]
proposed the Semi-Riemannian Discriminant Analysis
(SRDA) algorithm for supervised dimension reduction.
An extended SRDA algorithm for semi-supervised dimension
reduction has been proposed in [32]. Isometric Projection
(IsoProjection) [18] constructs a weighted data graph with the
approximations of the geodesic distances. A linear projection
mapping is then obtained by preserving the pair wise distances
in the graph embedding manner. In [19], [20], Maximum
Margin Projection (MMP) and Locality Sensitive Discriminant
Analysis (LSDA) are both designed for discovering the local
manifold structure in the semi-supervised manner. There are
also several related multi-manifold analysis methods, such
as [28]–[30]. However, the projective mappings proposed in
these methods either work on the original data points or on
the kernel vectors. None of them explores the discriminative
information hidden in geodesic distances.

III. A REGULARIZED APPROACH FOR SEMI-SUPERVISED

MULTI-MANIFOLD LEARNING

In this section, we propose the Reg-GeoFeature algorithm
with the following three features for multi-manifold learning.

1. A new neighborhood graph construction method is pro-
posed and used in our algorithm. This feature is presented
in Section III-A.

2. Each data point is replaced with a feature vector built
by graph distances from this point to the remaining data
points. This feature is presented in Section III-A.

3. A regularized sparsity preserving dimension reduction
method is proposed to build explicit mapping from feature
vectors to low-dimensional representations. This feature
is also presented in Section III-B.

A. Multi-Manifold Modeling and Distance Feature
Vectors Building

In this subsection, we consider the construction of a neigh-
borhood graph for multi-manifold data and the replacement of
the original data points with the feature vectors built from the
graph distances.

That data lying on multiple manifolds are common in the
real world. For instance, in face recognition the images of
each person form his or her own manifold [39]; in com-
puter vision motion detection and human tracking, moving
subjects trace different trajectories which are low-dimensional
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Algorithm 1 The k-CG Algorithm

manifolds [40], [41]. Traditional graph construction methods,
k-NN and ε-NN, cannot guarantee the connectivity of the
graph for multi-manifold data [42]. For example, when the
data are spread among multiple clusters, a small neighborhood
size for graph construction may leads to a disconnected graph,
on which the geodesic distances between data points across the

disconnected components cannot be estimated. Consequently,
the data cannot be projected into a single low-dimensional
coordinate system. In order to construct a better graph,
we propose a new graph construction method, namely the
k-Connectivity Graph (k-CG) method. The proposed method
first builds a k-NN (or ε-NN) graph over the whole data
in a semi-supervised manner, and then connects the adjacent
graphs by the k shortest inter-manifold edges. Details of the
method are presented in Algorithm 1 and explained bellow.
The k-CG method:
Step 1. (Algorithm 1, lines 4–18) Construct the k-NN or

ε-NN neighborhood graph in a semi-supervised manner.
Given an appropriate neighborhood size, define a graph
G with the data points as the vertices by the means
of k-NN or ε-NN method. For the training data with
class labels, each data point is connected to its nearest
neighbors in the same class; for the training data without
class labels, each data point is connected to its nearest
neighbors in the training set. It can be seen that the
nearest neighbor approach cannot guarantee a connected
graph. At this step, several disconnected graph compo-
nents may be obtained and each graph component can
be considered as a data manifold. It is assumed that
there are P data manifolds and the p-th data manifold
can be written as S p = {x (p)

1 , . . . , x (p)
n p }.

Step 2. (Algorithm 1, lines 19–21) Compute the average
number of the neighbors. If the ε-NN method is applied
to define the graph G at Step 1, the average number k
of the neighbors needs to be computed. Let li be the
number of the neighbors of xi . The value of k is set to
be the nearest integer to

∑N
i=1 li/N .

Step 3. (Algorithm 1, lines 22–26) Connect the k
nearest inter-manifold data points among manifolds.
Identify the k nearest inter-manifold data pairs,
{(x p

q(i), xq
p(i)), i = 1, . . . , k}, between S p and Sq , and

connect these data pairs by edges, for p, q = 1, . . . , P .
Then the k-CG graph is constructed on X .

The k-CG graph has the following three advantages on
multi-manifold data:

1. It is connected by only short edges. Our k-CG method
does not need to enlarge the neighborhood size to build
a connected graph. Consequently, it can build a graph
faithfully following the data manifold and avoid the
“short-circuit” problem [43].

2. It has multiple edge connections among any partitions
of the graph. Compared with the extended graph con-
struction proposed in [38], our method uses k edge
to connect different partitions. Therefore, the geodesic
distances across the partitions can be better approximated.

3. The k-CG graph is constructed in a semi-supervised man-
ner. Each labeled training data point is only connected
to data points from the same class. Therefore, the graph
distances among data points from the same class by our
method are shorter than those by the k-NN or ε-NN
method. This is an advantage for classification.

When k-CG graph is built, the lengths of the shortest paths
among the data points can be computed by the classical
Floyd-Warshall’s or Dijkstra’s algorithm. Let dG(xi , x j ) be
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Fig. 2. 1-dimensional representation of the two moons dataset by (b) PCA (c) LDA (d) Kernel PCA (e) Kernel LDA (f) 12-NN feature PCA (g) 12-CG
feature PCA and (h) Reg-GeoFeature.

the graph distance between data points xi and x j in the
neighborhood graph and let the feature vector fi be fi =
(dG(xi , x1), . . . , dG(xi , xN ))T .

However, the batch mode graph construction method is
computationally expensive for streaming data. We propose an
incremental graph construction procedure for the new data
points. When a new data point x comes, we first iden-
tify its k-nearest or ε-nearest neighbors in X , which are
assumed to be {x1, . . . , xk}. Then, we set the edges between
x and these neighboring points. In this way, the lengths of
the shortest paths from x to the data points in X can be
computed by

dG(x, xi) = min
t=1,...,k

{‖x − xt‖ + dG(xt , xi )},
for i = 1, . . . , N. (11)

Though this procedure may be less accurate than imple-
menting Floyd-Warshall’s or Dijkstra’s algorithm on the new
dataset X ∪ {x}, it has a low computational complexity. Only
O((k + 1)N) computational time is needed to include each
new data point. Then the feature vector of x is obtained
as f = (dG(x, x1), . . . , dG(x, xN ))T . In the appendix, we
prove that the replacement is an injection and therefore, it is
sensible for classification. In view of this property, we replace
X = {xi , i = 1, . . . , N} with feature vectors F = { fi , i =
1, . . . , N}.

To verify the claim that the feature vectors contain the
discriminative nonlinear information, we generate a two-
moon dataset, which is shown in Fig. 2(a). Two classes of
labeled samples are shown with circles and stars and each
class consists of 100 data points in R

2. As can be seen,
the dataset is linearly inseparable. So it is impossible to
apply the linear dimension reduction algorithms to find its
separable 1-dimensional representation of the data, as shown
in Fig. 2(b) and (c). We test on a wide range of kernel width,
but kernel PCA just cannot find the separable representation

of the data, as can be seen in Fig. 2(d). On the other hand,
Kernel LDA can obtain the separable 1-dimensional represen-
tation, as shown in Fig. 2(e). We build the feature vectors on
the 12-NN graph, and reduce the dimension of feature vectors
by PCA. As can be seen from Fig. 2(f), representations of the
data points from different classes are still inseparable. Finally,
we build feature vectors on the 12-CG graph and reduce the
dimension of feature vectors by PCA and our Reg-S3DR(will
be presented later). The results given in Fig. 2(g) and (h)
indicate that the low-dimensional representations are linearly
separable.

B. A Regularized Sparsity Preserving Approach for
Semi-Supervised Dimension Reduction

In this subsection, we propose a novel Regularized Spar-
sity preserving Semi-Supervised Dimension Reduction (Reg-
S3DR) method for feature vectors. The proposed method
preserves the relationship between data samples, which emerge
as a sparsely defined weighted neighborhood graph, in the
manner of a regularized regression problem. As the third
step of our Reg-GeoFeature algorithm, we apply it to feature
vectors F instead of the original dataset X .

To realize robust dimension reduction, we propose to utilize
the following regularized regression model,

�∗ = arg min
�

{
1

l

l∑

i=1

V ( fi , ylabel
i ,�) + γK ‖�‖2

K

+ γI ‖�‖2
I

}
, (12)

where the optimization variable is a vector mapping � :
R

N → R
d , ylabel

i ∈ R
d , i = 1, . . . , l, denote the prior low-

dimensional representations which are unknown and to be
constructed from the class labels of the data points, and γK and
γI are two regularization parameters. Here, V ( fi , ylabel

i ,�) =
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‖�( fi ) − ylabel
i ‖2

2, i = 1, . . . , l, is the squared loss func-
tion, ‖�‖2

K is a measurement of the complexity of mapping
� and ‖�‖2

I measures the ability of � in preserving certain
structure of data. In this paper, the structure of data is repre-
sented as a sparsely defined weighted neighborhood graph.

How to construct {ylabel
i }l

i=1 of the labeled data samples
is a key issue of our proposed Reg-S3DR method. The low-
dimensional representations of data from different classes
should spread as far as possible while low-dimensional repre-
sentations from the same class should be located as close as
possible. To do this, we apply the method proposed in [44],
which generates random label vectors for data samples from
different classes. Firstly, C vectors {Lk}C

k=1 ⊂ R
d are ran-

domly generated. Secondly, we set the label vectors to labeled
data points

ylabel
i = Lk, (i = 1 . . . , l), if xi is in the k-th class.

Each component of Lk is a random number from the [0, 1]
uniform distribution. It has been proven that the probability
of the label vectors spread far apart from each other is very
high. The following theorem can be utilized to corroborate this
claim.

Theorem 3.1: Since {Lk}C
k=1 ⊂ R

d are uniformly distrib-
uted in a d-dimensional unit hypercube, the probability that
all the other C − 1 vectors are not in Bk(r) is (1 − rd)C−1,
where 0 < r < 1 and Bk(r) represents a d-dimensional hyper-
sphere of radius r centered around Lk .
For example, let r = 0.5, d = 10 and C = 10, the probability
that no other C − 1 label vectors in Bk(r) is 99.12%.

According to the theory of statistical learning [49], [50], the
regularizer ‖�‖2

K is usually defined as the norm of function
in certain Reproducing Kernel Hilbert Space (RKHS). Given
a positive semi-definite kernel k(u, v), there is an associated
RKHS HK . Any function φs ∈ HK can be expressed as a
linear combination of kernel functions φs(·) = ∑

i ηs
i k(ui , ·).

For a vector mapping � = [φ1, . . . , φd ]T , ‖�‖2
K can be

defined as:

‖�‖2
K =

d∑

s=1

‖φs‖2
K =

d∑

s=1

∑

i, j

ηs
i η

s
j k(ui , u j ). (13)

To make the mapping � more discriminative, the regularizer
‖�‖2

I should be defined using both the geometrical structure
of the data manifold and the label information. In doing so,
the pairwise weights between data points are defined in the
following:

Wij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ, if xi and x j belong to the same class,

1, if xi or x j is unlabeled but they are

neighbors on our k-CG graph,

−κ, if xi and x j belong to different classes,

and they are neighbors on k-CG graph,

0, otherwise.

The value of Wij represents the prior knowledge of whether
xi and x j are from the same class. A large Wij means that
the confidence that xi and x j are from the same class is high,
while a negative Wij means that the confidence that xi and x j

are from different classes is high. Wij = 0 means that we have
no prior knowledge on the label relation between xi and x j .
Therefore, the value of κ is supposed to be relatively large.
In our experiments, κ is empirically set to be 5. A reasonable
criterion for finding a discriminative mapping is to optimize
the objective function

min
N∑

i=1

N∑

j=1

Wij ‖�( fi ) − �( f j )‖2. (14)

This objective function incurs a heavy penalty if xi and x j are
mapped far apart when Wij is large. We define the manifold
smoothing regularizer ‖�‖2

I as

‖�‖2
I = 1

2N2

N∑

i=1

N∑

j=1

Wij ‖�( fi ) − �( f j )‖2. (15)

As can be seen, we can maximize the distances between
low-dimensional representations from different classes and
minimize the distances between representations from the same
class by minimizing ‖�‖2

I .
Then, our Reg-S3DR method is presented as follows:

�∗ = arg min
φs∈HK ,s=1...,d

{
1

l

l∑

i=1

‖�( fi ) − ylabel
i ‖2

2 + γK ‖�‖2
K

+ γI

2N2

N∑

i=1

N∑

j=1

Wij ‖�( fi )−�( f j )‖2

⎫
⎬

⎭
. (16)

Based on the following theorem, we can derive the explicit
function solution of (16).

Theorem 3.2: [44] The minimizer of optimization problem
(16) admits an expansion

�∗( f ) =
N∑

i=1

αi k( fi , f ), (17)

in terms of the labeled and unlabeled data points, where αi =
[α1i , . . . , αdi ]T ∈ R

d , f is a feature vector built by geodesic
distances, and k(·, ·) is some kernel function.

Substituting the terms given in Eqs. (13), (15), and the
expansion (17) into (16), and by matrix manipulations, we
can formulate (16) in the form:

A∗ = arg min
A∈Rd×N

{
1

l
tr

(
(AK J − Y label)(AK J − Y label)T

)

+γK tr
(

AK AT
)

+ γI

N2 tr
(

AK L K AT
)}

, (18)

where A = [α1, . . . , αN ] ∈ R
d×N is the coefficient matrix for

the expansion of �, Y label = [ylabel
1 , . . . , ylabel

l , 0, . . . , 0] ∈
R

d×N is the target matrix, K = (
k( fi , f j )

) ∈ R
N×N is

the kernel matrix, L = S − W ∈ R
N×N denotes the graph

Laplacian matrix, W = (
Wij

) ∈ R
N×N , S is a diagonal

matrix whose diagonal element Sii = ∑N
j=1 Wij , I is the

identity matrix, and J ∈ R
N×N is a diagonal selection matrix

whose first l diagonal elements are ones and the rest diago-
nal elements are zeros. Based on their definitions, we have
J T = J , J 2 = J , Y label = Y label J and kernel matrix K
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is a positive definite matrix. Imposing the derivative of the
objective function in (18) with respect to A to zero, it follows
that

1

l

(
Y label − AK J

)
(K J )T +γK AK + γI

N2 AK L K = 0. (19)

By matrix manipulations, Eq. (19) can be formulated as

A(K J − γK l I − l

N2 γI K L) = Y label .

Subsequently, the least squares solution of (19) can be
obtained as

A∗ = Y label
(

K J + γK l I + γI l

N2 K L

)−1

. (20)

Then the desired dimension reduction mapping is given as

Z = �∗( f ) =
N∑

i=1

α∗
i k( fi , f ),

where α∗
i is the i -th column of A∗. As geodesic distance is

regarded as a kernel, we simply use linear kernel for dimension
reduction mapping �, i.e., k(ui , u j ) = uT

i u j .

C. The Regularized Geodesic Feature Learning Algorithms

By including the k-CG graph construction method, the
replacement of the original data with the feature vectors, and
the Reg-S3DR method, our Reg-GeoFeature algorithm has
three steps.
Algorithm 3.2. (The Reg-GeoFeature Algorithm)

Step 1. Construct a connected graph. Construct a neigh-
borhood graph over X using the k-CG method in
Algorithm 1. A weighted graph G = {X , D} is
constructed, where (D)i j = ‖xi − x j‖ if xi and
x j are connected by an edge and (D)i j = ∞
otherwise.

Step 2. Compute feature vectors. Compute the lengths
of pair-wise shortest paths on the graph by
implementing the Floyd-Warshall’s or Dijkstra’s
algorithm, and then replace xi with the feature vector
fi = [dG(xi , x1), . . . , dG(xi , xN )]T , for i = 1, . . . , N .
The class label of fi is set to be yi , for i = 1, . . . , l.

Step 3. Compute d-dimensional embedding. Apply the Reg-
S3DR method on the feature vectors. Let the computed
coefficients for the expansion be A. Each data point xi is
represented by its low-dimensional vector zi = AFT fi ,
where F = [ f1, . . . , fN ].

Algorithm 3.2 presents the Reg-GeoFeature algorithm,
which trains an explicit dimension reduction mapping for fea-
ture vectors of both the labeled and unlabeled data. When the
low-dimensional representations of data points are obtained,
one can train an efficient classifier using the labeled low-
dimensional representations.

In the following, we propose the online Reg-GeoFeature
algorithm for test data. Given an unlabeled sample x , online
Reg-GeoFeature first maps it to low-dimensional space, and
then applies the trained classifier to its low-dimensional
representation.

Algorithm 3.3. (Online Reg-GeoFeature Algorithm)

Step 1. Compute pair-wise Euclidean distances ‖x − xi‖,
for i = 1, . . . , N . Identify the k-nearest neighbors
or ε-nearest-neighbors of x , which are assumed as
{x1, . . . , xk}.

Step 2. Compute the lengths of the shortest paths for x by
Eq. (11). Then, the feature vector of x is given as f =
[dG(x, x1), . . . , dG(x, xN )]T .

Step 3. Then, we obtain the low-dimensional representation
of x as z = AFT f , where F = [ f1, . . . , fN ].

D. Time Complexity Analysis

The time complexity of the Reg-GeoFeature algorithm is
a crucial issue in its applications. The graph construction
process, which applies the k-CG method, needs O(k N2)
computational time. Subsequently, Dijkstra’s algorithm con-
sumes O(k N log N) computational time on the graph. The
complexity for solving the matrix inversion problem (20)
directly is O(N3). Therefore, the total time complexity of the
Reg-GeoFeature algorithm is O(k N2 + k N log N + N3).

For online classification tasks, there are three steps in the
algorithm. The first step which computes pair-wise Euclidean
distances consumes O(N) computational time. Lengths of
the shortest paths are computed at the second step, which
needs O(k N) computational time. The time complexity for the
final projection is O(N). Therefore, for online classification,
the Online Reg-GeoFeature algorithm consumes O((k + 2)N)
computational time for a new point.

E. Differences From the Previous Work

Cai et al. [25] proposed the semi-supervised discrimi-
nant analysis based on the LDA algorithm. Independently,
Song et al. [26] proposed similar semi-supervised dimension
reduction algorithms based on LDA and MMC. Our algorithm
is intrinsically different from their algorithms in two aspects.
First, the dimension reduction mappings of their algorithms
[25], [26] are obtained by solving eigen-decomposition prob-
lems, whereas our algorithm takes the regression manner.
Second, the nonlinear algorithms [25], [26] by Cai et al. and
Song et al. are achieved through the kernel trick, while our
algorithm extracts the multi-manifold structure of the data in
the form of feature vectors. In the experiments of this paper,
we compare the proposed Reg-GeoFeature algorithm with the
Kernel Semi-supervised LDA, which is named as SS-KDA
in [25].

Our work is also different from the E-Isomap
algorithm [38]. E-Isomap applies k-NN method to build
a graph, which ignores class information. Besides, it achieves
dimension reduction using the classical LDA method, which
suffers from the problems such as singularity of within-class
scatter matrices and the limited available projection directions.

In this paper, Reg-S3DR replaces the Semi-Supervised
Discriminant Analysis (SSDA) method of [17]. The merits of
Reg-S3DR can be summarized as follows:

1. The labels of data are sufficiently utilized by the regres-
sion model. The label information is not only used to
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TABLE II

BRIEF DESCRIPTIONS OF THE COMPARING ALGORITHMS

TABLE III

RELEVANT ATTRIBUTES OF THE FOUR DATASETS

generate the prior low-dimensional representations of
labeled data, but also used to define the graph weights
for the manifold smoothing regularizer. This makes our
regression model very discriminative.

2. The regression model is more robust than SSDA. This is
because the complexity of dimension reduction mapping,
the data structure, and the discriminative information can
be naturally incorporated into the regression model as
regularizers. Both ill-posedness and over-fitting issues can
thus be mitigated.

IV. EXPERIMENTS

In this section, we make use of four publicly available
datasets, namely, MNIST [47], USPS [46], Intelligent Traffic
System (ITS) [45], and MIT CBCL [48]. Among them,
MNIST and USPS are handwritten digital image datasets.
ITS contains images with human and images without human,
which is obtained from intelligent traffic systems. MIT
CBCL contains human face images and non-face images.
The important statistics of these datasets are summarized in
Table III. We compare the proposed Reg-GeoFeature algorithm
with representative dimension reduction algorithms, PCA [4],
LDA [2], SS-KDA [25], SDONPP [13], IsoProjection [18],
LSDA [20], MMP [19], E-Isomap [38] and our previous work
Multi-MDA [17]. The properties of the comparing algorithms
are summarized in Table II.

A. Dataset Description

MNIST1 [47] is a benchmark dataset for digital image
classification. Each sample is a 28×28 image of a handwritten
digit which can be transformed to a 784-dimensional data
point. The subset used in this paper consists of 980 samples
from class ‘0’, 1135 samples from class ‘1’, 1032 samples
from class ‘2’, and 1010 samples from class ‘3’, which form
a dataset with four classes. Samples of this dataset are shown
in Fig. 3.

USPS2 [46] is another benchmark handwritten digit dataset,
which contains 1100 samples for each class from ‘0’, ‘1’ to ‘9’.
Each sample of this dataset is a 16×16 image of a handwritten

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.nyu.edu/~roweis/data.html

Fig. 3. Image samples from the MNIST handwritten dataset of classes ‘0’,
‘1’, ‘2’ and ‘3’.

Fig. 4. Image samples from the USPS handwritten dataset of classes ‘0’,
‘1’, ‘2’ and ‘3’.

Fig. 5. (a) Images samples with human, (b) Image samples without human.

Fig. 6. Image samples from the CBCL dataset. The first two rows show
some face images, and the last two rows show some non-face images.

digit and can be transformed to a 256-dimensional data point.
The dataset used in our experiment consists of the samples
from classes ‘0’, ‘1’, ‘2’ and class ‘3’, which form a four
class dataset with 4400 data samples. Samples of this dataset
are shown in Fig. 4.

The ITS [45] dataset is collected by a camera on a moving
car. Each sample is a cropped 24 × 12 × 3 color image
with or without a person in it and can be transformed to a
576-dimensional data point. There are 950 samples of people
walking or running, and there are 2028 samples without a
person. Samples with people in them are shown in Fig. 5(a)
and samples without people are shown in Fig. 5(b).

MIT CBCL3 [48] dataset contains 2429 face images and
4548 non-face images. Each image has 19 × 19 pixels and
is transformed to a 361-dimensional vector. This dataset con-
tains two classes of data points, face and non-face. In the
experiment, we use a subset of this dataset, which comprises
1500 face and 1500 non-face images. In Fig. 6, we show some
face and non-face images contained in this dataset.

3http://cbcl.mit.edu/software-datasets/FaceData2.html
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B. Experimental Settings

We apply 10-fold cross-validation to evaluate the com-
paring algorithms. Given any dataset, we randomly split it
into ten equally-sized subsets. For the k-th subset, the other
9 subsets form the data X and the k-th subset is used as the
test data Xtest . In each class of X , we label α percent of
the data points and denote all labeled data in X as Xlabel .
Therefore, X can be used as a partially labeled training set and
Xlabel is a totally labeled training set. For unsupervised and
semi-supervised methods, PCA, SS-KDA, SDONPP, MMP,
Multi-MDA, and Reg-GeoFeature, X is applied to learn the
projection mappings. For supervised methods, LDA, LSDA,
E-Isomap, and IsoProjection, Xlabel is applied to train the
projection mappings.

Classification on the unlabeled samples in X is conducted
as follows:

Step 1. Train an explicit dimension reduction mapping using
the training data. We apply the algorithms to X or
Xlabel , which provide explicit dimension reduction
mappings for unlabeled data in X and the test data
points. Assume that Z = {(zi , yi ), zl+ j , i = 1, . . . , l,
j = 1, . . . , u} is the low-dimensional representation of
X = {(x1, y1), . . . , (xl , yl), xl+1, . . . , xu+l}.

Step 2. Considering {(zi , yi ), i = 1, . . . , l} as the training
set, we implement the nearest neighbor classifier on the
unlabeled set {zl+ j , , j = 1, . . . , u}.

Classification on the test dataset Xtest is conducted as
follows:

Step 1. Apply the trained dimension reduction mappings on
Xtest , where the computed low-dimensional representa-
tions are assumed as {ztest

j , j = 1, . . . , T }.
Step 2. Considering {(zi , yi ), i = 1, . . . , l} as the training set,

we implement the nearest neighbor classifier on the test
set {ztest

j , j = 1, . . . , T }.
The codes for IsoProjection, LSDA, MMP, LDA and

SS-KDA methods are downloaded from the web.4 We imple-
mented the other methods ourselves and tuned the parame-
ters for each method for a fair comparison. For SS-KDA,
SDONPP, Multi-MDA and Reg-GeoFeature, the regular-
ization parameters need to be set beforehand to balance
different terms. For fair comparisons, we set each parameter to
{10−8, 10−5, 10−3, 10−2, 1, 10, 102, 103}, and then choose the
parameter configuration corresponding to the top-1 recognition
accuracy. The Gaussian Kernel exp{−‖x − y‖2/σ 2} is used for
SS-KDA, and σ is set as σ = 2(n−10)/2.5σ0, n = 0, . . . , 20,
where σ0 is the standard derivation of pairwise Euclidean
distances between training samples. The top-1 recognition
accuracy of the best parameter configuration is reported.
By referring to [13], the number k ′ of the selected neighbors
having the same label for SDONPP algorithm is set as 5.
The neighborhood size k for SDONPP, SS-KDA, E-Isomap,
MMP, IsoProjection, and LSDA is chosen between 4 and 8C
at a sampling intervals of 2. The neighborhood size k for
multi-MDA and Reg-GeoFeature is set as 10, which is an
empirically good choice on the four datasets.

4http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

For LDA, E-Isomap and SS-KDA algorithms, there are at
most C −1 nonzero generalized eigenvectors [25], [38]. So, an
upper bound on dimension d is C −1, where C is the number
of classes. That explains why the experimental results of LDA,
SS-KDA, and E-Isomap are unaffected by varying dimensions.

In the following, the averaged cross-validation recognition
rates with standard variations are reported accordingly.

C. Experiments on the Techniques Applied
in Reg-GeoFeature Algorithm

It is necessary for us to verify the effectiveness of our
proposed techniques: geodesic distance feature vectors vs.
original data points, i.e., Reg-GeoFeature vs. Reg-S3DR;
our new term ‖�‖2

I vs. the Laplacian smoothing term [50],
which is unsupervised and built by local similarity,
i.e., Reg-S3DR vs. Laplacian Regularized Least Squares
Classifier (LapRLSC) [50] with linear kernel.

In order to make a fair comparison, the target dimension d
is set as 50 for all datasets, the neighborhood size k is set
as 10 for all four methods and the regularization parameters
are set to their best performances. And the percentage of the
labeled training data, α, varies from 5 to 40. In Fig. 7, the
averaged recognition accuracies and standard variations on
both unlabeled training data and test data are reported.

According to the results shown in Fig. 7, we have the
following observations.

1. Reg-GeoFeature shows higher classification accuracies
than Reg-S3DR. This indicates geodesic distance could
be regarded as a kind of kernel, which unfolds the
nonlinear structure and thus makes originally inseparable
data linearly separable in the distance space.

2. Reg-S3DR has better performances than linear LapRLSC.
This implies that the regularizer ‖�‖2

I contains more
discriminative information than the Laplacian based
manifold smoothing regularizer [50].

D. Classification With Varying Dimensions

Fixing α = 10, which means 10 percent of the data in
X are labeled, we evaluate the performances of comparing
algorithms with different dimensions. Here the dimension
varies from C to 70 + C , where C is the number of classes.
The results of the comparing methods on unlabeled data are
reported in Fig. 8, and the results of the methods on test data
are reported in Fig. 9.

1) MNIST: Figs. 8(a) and 9(a) give the curves of
the classification accuracies on unlabeled data and test
data of MNIST dataset under different reduced dimensions.
Reg-GeoFeature shows the best classification performance.
Except Reg-GeoFeature, Multi-MDA has slightly better per-
formance than the other methods when d ≥ 10. The classifi-
cation accuracy curve of E-Isomap is the lowest as there are
limited number of labeled data points to approximate pairwise
geodesic distances.

2) USPS: The results of comparing methods on unlabeled
training data and test data of USPS dataset are reported
in Figs. 8(b) and 9(b). As can be seen, Reg-GeoFeature
outperforms other methods on all the dimensions. Multi-MDA
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Fig. 7. Classification results of Reg-GeoFeature, Reg-S3DR, and LapRLSC with linear kernel methods on (a) the unlabeled data of MNIST, (b) the unlabeled
data of USPS, (c) the unlabeled data of ITS, (d) the unlabeled data of CBCL, (e) the test data of MNIST, (f) the test data of USPS, (g) the test data of ITS,
(h) the test data of CBCL.

Fig. 8. Classification results of the comparing algorithms on unlabeled data in X with various dimension d, where d changes from C to 70+C . (a) MNIST,
(b) USPS, (c) ITS, and (d) MIT CBCL.

has the second highest classification accuracies on this dataset.
SS-KDA ranks the third on unlabeled training data but shows
poorer results on the test data. The reason for the poorer results
of SS-KDA is that the kernel width works well on training
data is unsuitable for test data, which is unseen in the training
stage.

3) ITS: As can be seen from Figs. 8(c) and 9(c),
Multi-MDA achieves a gain in accuracy of approximately
3 percent on ITS dataset. Reg-GeoFeature shows the second

highest recognition rates. LDA and SS-KDA have poor per-
formance on this dataset for two reasons: firstly, there are
limited projection directions for the two class data. Secondly,
the numbers of data points in different classes are uneven,
i.e., 950 vs. 2028. So the learned dimension reduction mapping
may have a bias toward one of the classes.

4) MIT CBCL: Figs. 8(d) and 9(d) present the comparisons
of the recognition rates on unlabeled data and test data of
CBCL dataset under different reduced dimensions. As can be
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Fig. 9. Classification results of the comparing algorithms on test data Xtest with various dimension d, where d changes from C to 70 + C . (a) MNIST,
(b) USPS, (c) ITS, and (d) MIT CBCL.

seen, Reg-GeoFeature outperforms other methods and MMP
has better performance than Multi-MDA. Still, the recognition
accuracies of Reg-GeoFeature are always 3 or 4 percent higher
than the MMP method. E-Isomap and LSDA show the poorest
performances on this dataset.

As can be seen from the experimental results in
Figs. 8 and 9, the performance of Reg-GeoFeature seems
unaffected by the variation of reduced dimensions. This is
interesting and similar phenomenon can be found in the
paper [44]. For dimension reduction methods in regression
manner, it seems that the absolute distances among the targets
of different classes do not matter. But they should spread
evenly, i.e., the distances among them should be nearly equal,
which is satisfied by our label/target generation method.

E. Classification With Different Portions of
Labeled Training Samples

We conduct experiments on datasets with fixed target
dimension d , where d = 50 for the most of the compar-
ing methods and a suitable value (C or C − 1) for LDA,
SS-KDA, and E-Isomap. Meanwhile, the percentage α of
labeled training data changes from 5, 20, 30 to 40. When
α increases, the number of labeled data Xlabel ⊂ X increases
accordingly.

The classification results on MNIST and USPS datasets are
reported in Table IV, while the results on ITS and CBCL
datasets are reported in Table V. As can be seen, when α ≤ 20,

Reg-GeoFeature and Multi-MDA show the best performance
on all of these datasets, which implies that geodesic distance
feature is discriminative for semi-supervised classification.
However, the gains of our method over other methods decrease
as the number of labeled training samples increases. This
is because, in order to get better results, the regularization
parameters for Reg-GeoFeature should be updated to the
varying number of labeled training data points. We simply
tune these parameters for each method on a dataset when
α = 10. So the parameters are invariant to the number of
training data points. Multi-MDA is generally better than other
methods on the ITS dataset, except for the case when α = 30
and 40 and on the test data. On MIT CBCL dataset, the
results of Reg-GeoFeature and Multi-MDA are not the best in
all comparisons. But the geodesic feature based methods still
show competitive performances on CBCL dataset. Especially
when the number of labeled training data points is relatively
small.

F. Discussion

According to the experiments systematically performed on
the datasets, we have several observations:

1. PCA and SDONPP show better performance than
LDA, E-Isomap, and SS-KDA on the applied datasets.
There are two reasons for this. First, the available pro-
jection directions of LDA, E-Isomap, and SS-KDA are
limited by the number of classes, which are 4, 4, 2, 2
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TABLE IV

CLASSIFICATION WITH DIFFERENT PERCENTAGES OF LABELED TRAINING DATA ON MNIST AND USPS DATASETS

TABLE V

CLASSIFICATION WITH DIFFERENT PERCENTAGES OF LABELED TRAINING DATA ON ITS AND CBCL DATASETS

for our datasets, respectively. Second, there are a large
number of data points in each class and data of different
classes overlap with each other heavily. Thus, separability
of the different classes cannot be well characterized by
the interclass scatter matrix.

2. Linear methods sometimes can be seen to outperform
SS-KDA. This is because the kernel width is very dif-
ficult to adapt to a varying number of training points.
It is observed that when the number of labeled training
points changes, the kernel width needs to be updated
accordingly. Otherwise, kernel methods give poor results.

3. If the number of data points in each class is large enough
to characterize its data distribution (manifold structure),
Reg-GeoFeature and Multi-MDA always show a better
performance than the other methods. However, as they are
based on manifold assumption and dense data distribution
(as is described in the Appendix), Reg-GeoFeature and

Multi-MDA are expected to have poor performances
when the number of data points in each class is small,
such as the face recognition problem when there are only
a few images per person.

V. CONCLUSION

In this paper, we have proposed a new multi-manifold learn-
ing algorithm. It combines semi-supervised multi-manifold
modeling, nonlinear feature extraction, and a new semi-
supervised dimension reduction method to achieve a better
performance in geodesic feature extraction and classification
tasks. Experiments show that the proposed algorithm yields
good results on projecting the data to a comparably low-
dimensional space. Future work will be concentrated on exam-
ining other nonlinear features from data.
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APPENDIX A

In the following, we show that fi in F uniquely expresses
xi in dataset X and therefore the replacement of xi with fi is
appropriate for classification.

Let us first give the definitions of parameterized manifold,
tangent map on a manifold and isometry [16].

Definition A.1 (Parameterized Manifold): Let d ≤ D, and
� open in R

d . Let φ : � → RD . The set M ≡ φ(�) together
with the mapping φ is called a parameterized manifold of
dimension d .

Definition A.2 (Tangent Map): The tangent map φ∗ of φ
assigns to each tangent vector v of � the tangent vector φ∗(v)
of M such that if v is the initial velocity of a curve γ in
�, then φ∗(v) is the initial velocity of the image curve φ∗(γ )
in M.

As can be seen, M is characterized by D functions of d
variables, which can be considered as a d-dimensional surface
embedded in R

D .
Definition A.3 (Isometry): The mapping φ : � → M is an

isometry if φ is one-to-one and onto and φ preserves inner
products in the tangent spaces, i.e., for the tangent map φ∗,

φ∗(v)T φ∗(w) = vT w

for any two vectors v and w that are tangent to �.
For an isometry φ defined on an open convex set of R

d , it is
easy to show that the geodesic distance between two points
φ(v) and φ(w) on M is given by

dG(φ(v), φ(w)) = ‖v − w‖.
The following gives our propositions and results.

Proposition A.1: M ≡ φ(L) ⊂ R
D is a d-dimensional

parameterized manifold; here L is an open set in R
d and

φ : L → R
D is an isometry.

Assume that data points of X = {x1, . . . , xN } densely
reside on the manifold M. Correspondingly, we have Z =
{z1, . . . , zN } ⊂ L, where zi = φ−1(xi ) ∈ R

d , i = 1 . . . , N ,
and φ−1 denotes the inverse function of φ. As coordinate
translation is a kind of smooth invertible function which does
not involve scale variation and rotations, we assume that
φ is a compound function involving a translation function.
So without loss of generality, we can assume that Z has a
zero mean.

Proposition A.2: Z = {z1, . . . , zN } spans a d-dimensional
linear space.

According to Proposition A.2, the dimension of Z is
irreducible. This is a reasonable assumption as X densely
distributes over X , and correspondingly, Z also densely
distributes over L. Let dG(xi , x j ) denotes the geodesic
distance on M between data points xi and x j . We have
dG(xi , x j ) = ‖zi − z j‖ as φ is an isometry.

For any point t ∈ M, we define a geodesic distance based
feature function f as

f (t) =
⎛

⎜
⎝

dG(x1, t)
...

dG(xN , t)

⎞

⎟
⎠ . (21)

Corollary A.1: For any point t ∈ M, there exists θ ∈ L,
such that t = φ(θ) and

f (t) = f ◦ φ(θ) =
⎛

⎜
⎝

‖z1 − θ‖
...

‖zN − θ‖

⎞

⎟
⎠ = F(θ), (22)

We see that F = f ◦ φ.
As the mapping φ is an isometry, this corollary holds.

Theorem A.1: For any x, y, z ∈ L, if ‖x‖ ≤ ‖y‖ ≤ ‖z‖,
we have ‖F(x)‖ ≤ ‖F(y)‖ ≤ ‖F(z)‖.

Proof:

‖F(θ)‖2 =
N∑

i=1

‖θ − zi‖2 (23)

=
N∑

i=1

{
‖zi‖2 + ‖θ‖2 − 2〈zi , θ〉

}
(24)

As
∑N

i=1 zi = 0, thus

‖F(θ)‖2 = N‖θ‖2 +
N∑

i=1

‖zi‖2. (25)

Therefore, we have ‖F(x)‖ ≤ ‖F(y)‖ ≤ ‖F(z)‖ when
‖x‖ ≤ ‖y‖ ≤ ‖z‖.

Here we present the main result:
Theorem A.2: The function F(θ) is an injection.

Proof: We prove by contradiction: if ∃p �= q , with
p, q ∈ L, we have F(p) = F(q), i.e., ‖zi − p‖ = ‖zi − q‖,
i = 1, . . . , N . Thus, zi is located on the perpendicular bisector
hyper-plane of points p and q .

Let v1 = p−q
‖p−q‖ , which can be expanded to a set of

basis vectors of space L by adding d − 1 orthonormal
vectors{v2, . . . , vd }. We write zi ∈ span{v2, . . . , vd } + p+q

2 ,
i = 1, . . . , N .

It can be seen that Z lies on a d −1 linear subspace, which
is an contradictory to Proposition A.2.

As φ is a injection, f is also an injection. Therefore, using
feature vectors to represent the original data points makes
sense.
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