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L1-Norm Kernel Discriminant Analysis via Bayes
Error Bound Optimization for Robust
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Abstract— A novel discriminant analysis criterion is derived in
this paper under the theoretical framework of Bayes optimality.
In contrast to the conventional Fisher’s discriminant criterion,
the major novelty of the proposed one is the use of L1 norm
rather than L2 norm, which makes it less sensitive to the
outliers. With the L1-norm discriminant criterion, we propose
a new linear discriminant analysis (L1-LDA) method for linear
feature extraction problem. To solve the L1-LDA optimization
problem, we propose an efficient iterative algorithm, in which
a novel surrogate convex function is introduced such that the
optimization problem in each iteration is to simply solve a convex
programming problem and a close-form solution is guaranteed to
this problem. Moreover, we also generalize the L1-LDA method to
deal with the nonlinear robust feature extraction problems via the
use of kernel trick, and hereafter proposed the L1-norm kernel
discriminant analysis (L1-KDA) method. Extensive experiments
on simulated and real data sets are conducted to evaluate the
effectiveness of the proposed method in comparing with the state-
of-the-art methods.

Index Terms— Linear discriminant analysis (LDA),
L1-norm linear discriminant analysis (L1-LDA), L1-norm kernel
discriminant analysis (L1-KDA), robust feature extraction.

I. INTRODUCTION

FEATURE extraction plays a very important role in pattern
classification [1]. A major goal of feature extraction is

to reduce the dimensionality of data points for the purpose
of data visualization or discrimination. During the last sev-
eral decades, many feature extraction methods have been
developed in the literatures [2]. Among the various methods,
principal component analysis (PCA) and linear discriminant
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analysis (LDA) are two of the most popular ones [3]. PCA is
an unsupervised feature extraction method aiming to find a set
of optimal representative projection vectors such that the pro-
jections of the data points can best preserve the structure of the
data distribution, whereas LDA is a supervised method aiming
to find an optimal set of discriminative projection vectors
that simultaneously maximize the between-class distance and
minimize the within-class distance such that they have better
discrimination ability in the reduced feature space. A common
property of PCA and LDA is that both methods are derived
based on the L2 norm.

Although the L2-norm-based feature extraction methods
had been successfully applied to many pattern recognition
applications, they are prone to suffering from the outliers
compared with the L1-norm-based ones since the effect of
large norm outliers may be more exaggerated by the L2 norm
than the L1 one [7]. Consequently, to overcome this drawback
of L2 norm, many researchers turned to use L1 norm instead of
L2 norm in developing the robust feature extraction method,
e.g., robust PCA, in recent years [4]– [9]. In contrast to the
L2-norm PCA method, the major advantage of the L1-norm
PCA (L1-PCA) method is that it may be less sensitive to
the effect of outliers [7]. Despite of the potential advantages
of L1-PCA, however, it is notable that the optimization of
the L1-PCA method is more difficult than the conventional
L2-norm PCA method due to the absolute value operator in
L1-PCA, where the L2-norm PCA can be simply solved via the
singular value decomposition (SVD) of the covariance matrix.
To resolve the optimal solution of L1-PCA, Kwak [7] proposed
a greedy iteration algorithm to find its local optimizer, and
experimentally demonstrated the superiority over the con-
ventional PCA method in the facial image reconstruction
experiments in the cases of contaminated face image data [7].

Noting that L1-PCA is an unsupervised feature extraction
method whose goal is to find the optimal representative
projection vectors rather than the optimal discriminative ones,
it may not deliver good result for the pattern classifica-
tion problems. In such cases, supervised feature extraction
methods such as LDA would be a better choice. To deal
with the robust discriminative feature extraction problem,
Kim et al. [10] proposed a robust fisher discriminant analysis
(RFDA) by optimizing the class means and class covariance
matrices under a model of data uncertainty in a classifica-
tion problem. Huang et al. [11] proposed a robust regres-
sion approach based on the low-rank representation of the
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training data matrix, in which the training data matrix is
factorized into a low-rank data matrix corresponding to the
clean data and a spare data matrix corresponding to noise data.
Tzimiropoulos et al. [12] proposed a gradient orientation
method for image description, and then carried out the fea-
ture extraction on the image gradient orientation to achieve
the robust feature extraction. Zafeiriou et al. [13] proposed
a regularized kernel discriminant analysis (RKDA) method
with a cosine kernel based on the image gradient orientation
method for robust feature extraction. He et al. [14] proposed
to use the maximum correntropy criterion for robust feature
extraction. Recently, Wang et al. [15] proposed an L1-norm
based common spatial patterns (L1-CSP) method for robust
electroencephalography (EEG) feature extraction, where the
L2 norm appeared in the conventional CSP method is replaced
by the L1 norm and the better performance had been visualized
in the EEG classification experiments.

In this paper, we investigate the robust feature extraction
problem using discriminant analysis method. However, differ-
ent from the previous robust discriminant analysis methods, we
focus our attention on the L1 norm to deal with the feature
extraction problems in the cases that the data samples are
contaminated by outliers. Although the similar idea recently
appeared in [16] and [17], both papers lack of rigorous
theoretical derivations of the L1-norm discriminant criteria,
in which the authors just simply replace the L2 norm in
the traditional LDA formulation with the L1 one. Different
from both [16] and [17], in this paper we first derive a novel
L1-norm discriminant criterion under a rigorous theoretical
framework of Bayes optimality instead of simply replacing
the L2 norm with L1 norm in the conventional Fisher’s
discriminant criterion. Then we propose an L1-norm linear dis-
criminant analysis (L1-LDA) based on this new discriminant
criterion for linear feature extraction. Due to the absolute value
operation, however, the conventional optimization approach
of solving a generalized eigensystem for L2-norm LDA will
not be applicable for the L1-LDA method. Hence, a new
optimization method for L1-LDA is required in this paper.

In our preliminary work on L1-CSP [15], we proposed a
gradient ascending-based algorithm to iteratively update the
optimal spatial filters of L1-CSP, where a nonconvex surro-
gate function was introduced for this purpose. However, this
method needs to choose an appropriate stepsize in updating
the new spatial filters. Since the surrogate function is non-
convex, the inappropriate choice of the stepsize will affect the
optimality of the solution. To obtain the local optimal solution
of L1-LDA, we introduce a new surrogate function. Compared
with the previous one used in [15], the new surrogate function
is convex such that the original L1-LDA optimization problem
can be solved via solving a series of convex programming
problems in which a close-form solution can be obtained in
each convex programming problem.

To deal with the nonlinear robust feature extraction problem,
in this paper we also generalize the L1-LDA method by
mapping the input data points from the input space to a
high-dimensional reproducing kernel Hilbert space (RKHS)
via a nonlinear mapping, and then perform the linear feature
extraction in RKHS using the L1-LDA method. This method

is referred to as the L1-norm kernel discriminant analysis
(L1-KDA) method in the paper. By utilizing the kernel trick
as well as the representation theory [18], we show that
the L1-KDA method can be solved using the same opti-
mization approach of L1-LDA. In addition, similar to what
Yang et al. [19] had found about the equivalence between
the kernel discriminant analysis (KDA) [20] method and the
kernel principal component analysis (KPCA) [21] plus LDA,
it is interesting to see that the L1-KDA method can also
be expressed as L1-KDA = KPCA + L1-LDA. Finally, to
evaluate the robustness as well as the better discriminative
ability of the proposed method compared with several state
of the art methods, we will conduct extensive experiments on
both simulated and real data sets in this paper.

This paper is organized as follows. In Section II, we present
the L1-norm discriminant criterion under the theoretical frame-
work of Bayes optimality. The L1-LDA method is presented in
Section III. In Section IV, we propose the L1-KDA method.
In Section V, we present the experiments of evaluating the
proposed method. In Section VI, we conclude the paper.

II. L1-NORM DISCRIMINANT CRITERION VIA BAYES

ERROR BOUND ESTIMATION

Suppose that X = {xi ∈ IRd |i = 1, . . . , N} is the data set
with N data samples corresponding to c classes, and let li =
(li j )N×1 denote the corresponding label vector of xi , where
each element li j ∈ {1, . . . , c} indicates the class membership
associated with the data sample xi . Let x ∈ IRd be a sample
vector, and pi (x) and Pi be the probability density function
(PDF) and the prior probability of the i th class, respectively.
Then, the multiclass Bayes error can be expressed as [22]:

ε = 1 −
∫

max
i

{Pi pi(x)} dx (1)

which satisfies the following inequality [22]:

ε ≤
∑
i< j

∫ √
Pi pi(x)Pj p j (x)dx. (2)

Assume that the c classes of data sets are homocedastic
and the PDF of the i th class is a Gaussian function, i.e.,
pi(x) = N (x|mi ,�), where mi and � denote the class mean
and the class covariance matrix, respectively. If we project the
samples onto a projection vector ω ∈ IRd , then the projected
data samples become X̃ = {x̃i = ωT xi ∈ IRd |i = 1, . . . , N},
and the PDF of the projected samples will become pi (x̃) =
N (x̃ |m̃i , σ

2), where ωT denotes the transpose operation of
ω, m̃i = ωT mi is the i th class mean and σ is the standard
variance of the data samples x̃i (i = 1, . . . , N) and can be
calculated as follows:

σ =
√√√√ 1

N

N∑
i=1

(x̃i − m̃li )
2 =

√√√√ 1

N

N∑
i=1

(ωT xi − ωT mli )
2. (3)

The standard variance σ measures the deviation of the
data samples away from their corresponding class means.
However, it is notable that the value of (3) may be prone
to suffering from outliers since the effect of the outliers with
a large distance |x̃i −m̃li | would be largely exaggerated by the
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square operation. For this reason, we use the average distance
1/N

∑N
i=1 |x̃i − m̃li | to represent the standard variance σ in

order to alleviate the effect of the square operation, i.e.,

σ = 1

N

N∑
i=1

∣∣x̃i − m̃li

∣∣ = 1

N

N∑
i=1

∣∣ωT xi − ωT mli

∣∣. (4)

Then, by substituting the expressions of pi (x̃) = N (x̃ |m̃i , σ
2)

into (2), we obtain the multiclass Bayes error upper bound can
be expressed as [22] follows:

ε(ω) ≤
∑
i< j

√
Pi Pj exp

⎧⎨
⎩−1

8

[
ωT (mi − m j )

1
N

∑N
k=1 |ωT xk − ωT mlk |

]2
⎫⎬
⎭.
(5)

The detailed derivations of (5) is also given in Appendix A.
It is still difficult to compute the optimal projection vector ω

such that the right hand side of (5) is minimized. So we have
to simplify it. For this purpose, we introduce the following
lemma:

Lemma 1: Let h(x) = exp(−x2) (0 ≤ x ≤ a). Then ĥ(x) =
1−(1−exp(−a2))/ax (0 ≤ x ≤ a) is the tightest linear upper
bound of h(x).

Proof: h(x) is a convex function on the interval [0, a]. So
the linear function passing through its two ends, (0, h(0))
and (a, h(a)), is the tightest linear upper bound of h(x). This
function is ĥ(x).

By applying Lemma 1 to the expression of the right-hand
side of (5), we obtain that

ε(ω) ≤
∑
i< j

√
Pi Pj

{
1 − Bij |ωT (mi − m j )|

1
N

∑N
k=1 |ωT xk − ωT mlk |

}
(6)

where Bij are tradeoff coefficients.
Without loss of generality, we simply set the value of each

tradeoff coefficient Bij (i < j ) equals to the same fixed
one, i.e., Bij = B , and then further assume that the c prior
probabilities Pi are equal to P , i.e., P = P1 = N1

N = · · · =
Pc = Nc

N , where Ni (i = 1, · · · , c) is the number of i th class
data samples. Let m = 1/c

∑c
j=1 m j be the mean of the c

classes. Then, by applying the following inequality:
c∑

i=1

c∑
j=1

∣∣∣∣(ωT mi − ωT m j )

∣∣∣∣

≥
c∑

i=1

∣∣∣∣
c∑

j=1

(ωT mi − ωT m j )

∣∣∣∣

=
c∑

i=1

∣∣∣∣cωT mi −
c∑

j=1

ωT m j

∣∣∣∣ = c
c∑

i=1

∣∣∣∣ωT mi − ωT m

∣∣∣∣
(7)

to the Bayes error upper bound of (6), we obtain the following
new Bayes error upper bound with simpler expression:

ε(ω) ≤
∑
i< j

√
Pi Pj

{
1 − Bij |ωT (mi − m j )|

1
N

∑N
k=1 |ωT xk − ωT mlk |

}

≤
∑
i< j

P − cP B
∑c

i=1 |ωT (mi − m)|
2
N

∑N
k=1 |ωT xk − ωT mlk |

(8)

In addition, by applying the following inequality:

1

N

N∑
i=1

|ωT xi − ωT mli |

= 1

N

N∑
i=1

|ωT xi − ωT m + ωT m − ωT mli |

≤ 1

N

N∑
i=1

|ωT xi − ωT m| + 1

N

N∑
i=1

|ωT m − ωT mli |

= 1

N

N∑
i=1

|ωT xi − ωT m| +
c∑

i=1

P|ωT mi − ωT m| (9)

to the Bayes error upper bound of (8), we finally obtain the
following new Bayes error upper bound:

ε(ω) ≤
∑
i< j

P

− cP B
∑c

i=1 |ωT (mi − m)|
2
N

∑N
k=1 |ωT xk − ωT m| + 2P

∑c
k=1 |ωT mk − ωT m| .

(10)

Consequently, to minimize the Bayes error, we should min-
imize the upper bound of (10). Equivalently, we have to
maximize the following objective function:

J1(ω) =
∑c

i=1 |ωT (mi − m)|
1

P N

∑N
i=1 |ωT xi − ωT m| + ∑c

i=1 |ωT mi − ωT m|
which is also equivalent to maximizing the following L1-norm
objective function:

J2(ω) =
∑c

i=1 |ωT (mi − m)|∑N
i=1 |ωT xi − ωT m| = ‖ωT B‖1

‖ωT T‖1
(11)

where B = [(m1 − m), . . . , (mc − m)], T =
[(x1 − m), . . . , (xN − m)], and ‖ · ‖1 denotes the
L1-norm operation of vector.

III. L1-LDA FOR LINEAR FEATURE EXTRACTION

In the aforementioned Section II, we developed a new
discriminant criterion with L1 norm. With this new dis-
criminant criterion, in this section we will propose an
L1-LDA method for linear feature extraction, in which the
optimal discriminant vectors are defined as the ones that
maximize the L1-norm discriminant criterion J2(ω). In other
words, the optimal discriminant vectors of L1-LDA are defined
as the solution of the following optimization problem:

arg max
ω

‖ωT B‖1

‖ωT T‖1
. (12)

The optimization problem of (12) is nonconvex and hence
there may exist several local minimizers. Moreover, due to
the absolute value operation, the optimization problem of (12)
is much more difficult than that of the traditional LDA
method [1]. To solve the L1-LDA problem, we firstly give
the definition about the optimality of two vectors.
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Definition 1: Let φ1 and φ2 denote two d-dimensional
projection vectors. Let b j and t j be the j th column of B
and T, respectively. Suppose that

Q(φ2) = ‖φT
2 B‖1

‖φT
2 T‖1

=
∑c

j=1 |φ2
T b j |∑N

j=1 |φ2
T t j |

≥
∑c

j=1 |φ1
T b j |∑N

j=1 |φ1
T t j |

= ‖φT
1 B‖1

‖φT
1 T‖1

= Q(φ1). (13)

Then, we say φ2 is a better vector than φ1 in terms of Q(φ).

A. Solving the First Discriminant Vector of L1-LDA

Noting that the objective function of (12) is invariant to
the magnitude of ω, we can scale ω such that the nominator
of (12) equal to 1. Then, the optimization problem of (12) can
be rewritten as

arg min
ω

N∑
j=1

|ωT t j | = ωT

⎛
⎝ N∑

j=1

t j tT
j

|ωT t j |

⎞
⎠ω (14)

s.t.‖ωT B‖1 =
c∑

j=1

sgn(ωT b j )ω
T b j = 1

where sgn(a) denotes the positive or negative sign of a

sgn(a) =
{+1, a ≥ 0;

−1, a < 0.
(15)

To solve the optimal projection vector of (14), we propose
an iterative algorithm in what follows. The basic idea of
the proposed algorithm is to iteratively update the projection
vector ω until it converges to a local optimizer. Specifically,
suppose that ω(p) is the optimal projection vector solved in the
pth iteration, and ω(p+1) is the one of the (p + 1)th iteration,
where ω(p+1) is defined by

ω(p+1) = arg min
ω
ωT Vt (ω

(p))ω (16)

s.t.
c∑

j=1

s(p)
j ωT b j = 1

where Vt (ω
(p)) = ∑N

i=1 ti tT
i /|ω(p)T ti | and s(p)

j =
sgn(ω(p)T b j ) Then we can prove that ω(p+1) is better than
ω(p). This observation is summarized in Theorem 1. To prove
it, we first introduce the following Lemma 2.

Lemma 2: For any vector a = [a1, . . . , aN ]T ∈ IRN , the
following variational equality holds [23]:

‖a‖1 = min
z∈IRN

+

1

2

N∑
j=1

a2
j

z j
+ 1

2
‖z‖1 (17)

and the minimum is uniquely reached at z j = |a j | for j =
1, . . . , N , where z = [z1, . . . , zN ]T .

Theorem 1: Suppose that ω(p) is a d-dimensional vector
such that

∑c
j=1 |ω(p)T b j | = 1. Let s(p) = (s(p)

j )c×1 be a

c-dimensional vector and s(p)
j = sgn(ω(p)T b j ). Suppose that

ω(p+1) is the solution of (16), then ω(p+1) is better than ω(p).
The proof of Theorem 1 is given in Appendix B.

Theorem 1 guarantees the convergence of the aforemen-
tioned L1-LDA algorithm. Noting that the optimization prob-
lem of (16) is a linear constraint quadratic programming

problem and has a close-form solution, we can get the solution
via Lagrangian multiplier approach [24]. The Lagrangian can
be expressed as follows:

L(ω) = 1

2
ωT Vt (ω

(p))ω − λ

⎛
⎝ c∑

j=1

s(p)
j ωT b j − 1

⎞
⎠ . (18)

Taking the partial derivative of L with respect to ω and setting
it to be a zero value, we have

∂L

∂ω
= Vt (ω

(p))ω − λ

c∑
j=1

s(p)
j b j = 0. (19)

From (19), we obtain that

ω(p+1) = λ
[
Vt (ω

(p))
]−1

Bs(p). (20)

Substituting (20) into the equality
∑c

j=1 s(p)
j ωT b j = 1, we

obtain that

λ = 1(
Bs(p)

)T [
Vt (ω(p))

]−1 (Bs(p)
) . (21)

Combining (20) and (21), we have the following close-form
solution of ω(p+1):

ω(p+1) =
[
Vt (ω

(p))
]−1

Bs(p)

(
Bs(p)

)T [
Vt (ω(p))

]−1 (Bs(p)
) . (22)

By increasing the iteration number p until ω(p) converges to
a fixed value, we obtain the local optimizer of ω as

ω = lim
p→∞ω

(p).

B. Solving Multiple Discriminant Vectors of L1-LDA

Assume that we have obtained the first r−1 (r > 1) discrim-
inant vectors ω1, . . . , ωr−1. Then, the r th discriminant vector
ωr is defined as the solution of the following optimization
problem:

arg max
ω

‖ωT B‖1

‖ωT T‖1
, (23)

s.t. ωT Stω j = 0, ( j = 1, . . . , r − 1)

where St = 1/NTTT is the covariance matrix of the data
samples, and ωT Stω j = 0, ( j = 1, . . . , r − 1) is served as a
statistically uncorrelated restriction such that the discriminant
vectors are statistically uncorrelated [29]. To solve the opti-
mal discriminant vectors of (23), we introduce the following
Lemma 3, whose proof can be obtained by following the
method in [25]. We give the proof in Appendix C.

Lemma 3: Let Ur−1 = [Stω1, . . . ,Stωr−1]. Suppose that
Ur−1 = Qr−1Rr−1 is the QR decomposition of Ur−1, where
the columns of Qr−1 are orthonormal and Rr−1 is an upper
triangular matrix. Then, there exists a (nonunique) α such that
the discriminant vector ω that satisfies ωT Ur−1 = 0 can be
expressed as

ω = (Id − Qr−1QT
r−1)α,

where Id is a d × d identity matrix.
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From Lemma 3, we obtain that solving the optimal discrim-
inant vector ωr in (23) is equivalent to solving the following
optimization problem:

αr = arg max
ω

‖αT (Id − Qr−1QT
r−1)B‖1

‖αT (Id − Qr−1QT
r−1)T‖1

. (24)

This optimization problem can be solved using the solution
method addressed in Section III-A. In this case, we can obtain
the optimal discriminant vector ωr = (Id − Qr−1QT

r−1)αr .
By repeating the above procedures, we can solve r (>1)
discriminant vectors ω1, . . . , ωr of L1-LDA. Table I summa-
rizes the complete algorithm of solving the multiple optimal
discriminant vectors of L1-LDA.

Assume that we obtain r discriminant vectors of
L1-LDA and denote the transform matrix of L1-LDA by
Wr = [ω1, . . . , ωr ]. Then the projection of a test sample
xt onto Wr can be expressed as

yt = WT
r xt . (25)

IV. L1-KDA FOR NONLINEAR FEATURE EXTRACTION

In this section, we will generalize the L1-LDA method
via the kernel trick [18] such that it is able to deal with
the nonlinear robust feature extraction problem. Let 
 be a
nonlinear mapping that maps the data points xi from the input
space IRd to a high-dimensional reproducing kernel Hilbert
space (RKHS) F ,


 : IRd �→ F , xi �→ 
(xi ) (26)

in which the inner product of two data points in F , say 
(xi )
and 
(x j ), can be calculated via a kernel function

k(xi , x j ) = 
(xi )
T
(x j ).

Based on the derivation of L1-LDA in Section II, we
can obtain that, in the kernel feature space F , the L1-KDA
method can be expressed as solving the following optimization
problem:

arg max
ω

∥∥ωT B

∥∥

1∥∥ωT T

∥∥

1

(27)

where the matrices B
 and T
 can be, respectively, defined
as

B
 = [
(m


1 − m
), . . . , (m

c − m
)

]
and

T
 = [(
(x1)− m
), . . . , (
(xN )− m
)]
in which m


i and m
 are defined as

m

i = 1

Ni

∑
j :l j =i


(x j ) and m
 = 1

c

c∑
j=1

m

j

and Ni is the number of the i th class data samples.
Now denote the data matrix in the feature space F by


(X) = [
(x1), . . . ,
(xN )]. Then, the mean vector of the
i th class data set can be expressed as

m

i = 
(X)ni (28)

TABLE I

EFFICIENT ALGORITHM FOR SOLVING THE MULTIPLE OPTIMAL

DISCRIMINANT VECTORS OF L1-LDA

where ni = [ni1, . . . , ni N ]T is an N × 1 vector whose j th
entry is

ni j =
{ 1

Ni
, l j = i ;

0, otherwise.

From (28) we obtain that B
 and T
 can be expressed as

B
 = 
(X)Nb and T
 = 
(X)Nt

where Nb = [(n1 − n), . . . , (nc − n)] , n = 1
c

∑c
j=1 n j , Nt =

[e1 − n, . . . , eN − n], and e j is an N × 1 unit vector with the
j th entry equal to 1.

Substituting the expressions of B
 and T
 into (27), we
obtain that the optimization problem of L1-KDA is equivalent
to the following one:

arg max
ω

∥∥ωT
(X)Nb
∥∥

1∥∥ωT
(X)Nt
∥∥

1

. (29)

According to the representation theory [18], we obtain that the
optimal solution of ω lies in the span of 
(xi ) (i = 1, . . . , N),
i.e., there exists a coefficient vector α, such that

ω = 
(X)α. (30)

Consequently, solving the optimal vectors ω1, . . . , ωr boils
down to solving the coefficient vectors α1, . . . , αr given by

arg max
α

∥∥αT KNb
∥∥

1∥∥αT KNt
∥∥

1

(31)

where K = [ki j ]N×N is the N × N Gram matrix and ki j =
k(xi , x j ). The optimal solutions of (31) can be solved using
the L1-LDA algorithm presented in Table I.
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Fig. 1. Comparison of discriminant vectors between LDA and L1-LDA as well as the projections of data points around the regions of (−2.0, 2.0) to
(2.0,−2.0) onto the discriminant vector of LDA and L1-LDA, respectively. (a) LDA without noise data. (b) LDA with noise data. (c) L1-LDA without
noise data. (d) L1-LDA with noise data. (e) LDA without noise data. (f) LDA with noise data. (g) L1-LDA without noise data. (h) L1-LDA with noise data.

Remarks:Yang et al. [19] showed that kernel discriminant
analysis (KDA) [20] is equivalent to KPCA [21] plus LDA,
i.e.,

KDA = KPCA + LDA. (32)

The similar result can also be observed in the L1-KDA
method, in which the L1-KDA method can be expressed as
KPCA plus L1-LDA, i.e.,

L1-KDA = KPCA + L1-LDA. (33)

The derivation of this result is given in Appendix D.
Let W


r = [ω1, . . . , ωr ] be the transform matrix of L1-
KDA. Then the projection of a test point 
(xt ) onto W


r can
be expressed as

yt = W

r

T

(xt ) = AT

r κt (34)

where Ar = [α1, . . . , αr ], κt = [κt,1, . . . , κt,N ]T , where κt,i =
k(xi , xt ).

V. EXPERIMENTS

In this section, we will conduct extensive experiments on
both simulated and real data sets to evaluate the discrim-
inant performance of the proposed L1-LDA and L1-KDA
methods. For comparisons, we also conduct the same experi-
ments using several state-of-the-art feature extraction methods,
including KPCA [21], KPCA + L1-PCA (L1-KPCA) [7],
MCCKPCA [14], KPCA + LDA [20], and RKDA [13].
Throughout the experiments, the nearest neighbor classifier
is adopted to evaluate the discriminant ability of the extracted
features of the various methods.

A. Experiment on Simulated Data Set

In this experiment, two data sets with 2-D data points
are generated to evaluate the robustness of L1-LDA against
outliers. The two data sets are centered at (1.6, 0.3) and
(0.7, 0.4), respectively. For each data set, a number of 30 data
points are randomly generated under the gaussian distribution
with zero mean and standard variance 0.2.

To visualize the differences of LDA and L1-LDA in the
feature extraction, we calculate the discriminant vectors of the
two methods, and then project a set of testing data points
sampled from the region of (−2.0, 2.0) to (2.0,−2.0) onto
the first discriminant vector of the two methods, respectively.
Moreover, to evaluate the robustness of the two methods
against outliers, we inserted one data point into the second
data set (indicated by ‘+’ with green color), which is far
away from most of the data points of the second data set.
Hence, this data point can be seen as an outlier of the data
set. We recalculate the discriminant vectors as well as the
projections of the testing data points onto the first discriminant
vector of LDA and L1-LDA, respectively. Fig. 1(a) and (c)
shows the optimal projection vectors of LDA and L1-LDA
when no outlier points are inserted, whereas Fig. 1(b) and (d)
shows the optimal projection vectors of LDA and L1-LDA
when an outlier point is inserted into the training data set.
The corresponding projection features extracted by LDA and
L1-LDA are also shown in Fig. 1(e)–(h), in which the depicted
are the feature values (indicated by gray levels) and contuor
lines of identical feature values.

By comparing the feature extraction results of LDA and
L1-LDA in Fig. 1, we can clearly see that the projection
direction of the LDA method [see Fig. 1(a) and (b)] is
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Fig. 2. 11 face images of one subject in Yale face data set. (a) Face images that do not suffer from outliers. (b) Face images occluded by a baboon image
with the size of 10 × 10 pixels. (c) The 11 face images occluded by a baboon image with the size of 20 × 20 pixels. (d) The 11 face images occluded by a
baboon image with the size of 30 × 30 pixels.
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Fig. 3. Comparisons of the average test error rates among the various feature extraction methods on the Yale face data set. (a) The results correspond to the
clean training data samples. (b) The results correspond to the training data samples with occlusions of size 10 × 10 pixels. (c) The results correspond to the
training data samples with occlusions of size 20 × 20 pixels. (d) The results correspond to the training data samples with occlusions of size 30 × 30 pixels.

significantly changed when the training data set suffers from
an outlier. In contrast to LDA, however, the change of the
projection vector of L1-LDA is [see Fig. 1(c) and (d)] less.
The experimental results indicate that the L1-LDA method
would be less sensitive to the outliers than LDA due to the
use of L1 norm.

B. Experiments on Yale Face Database

In this experiment, the Yale face database [26] is used to
evaluate the recognition performance of L1-KDA compared
with the state-of-the-art methods. The Yale face data set
consists of 165 face images from 15 subjects. Each subject
contains 11 images taken under the variations of different
facial expressions and lighting conditions. The original face

images have the size of 243 × 320 pixels with a 256-level
gray scale. In this experiment, we aligned the face images
such that their eyes are in the similar positions, and then
cropped the face images and down-sampled them into the
size of 64 × 64 pixels. Moreover, to alleviate the influences
of the lighting condition on the face images, the histogram
equalization operation is applied in advance to each face
image. Fig. 2(a) shows the 11 face images of one subject.
We use fivefold cross-validation strategy [1] to evaluate the
recognition performance of the methods. In this method, the
whole data set is partitioned into five subsets with approx-
imately equal size of samples. Then, one of the subset is
chosen as the testing data set and the other four ones as
the training data set. This procedure is repeated until each
subset has been used once as the testing data. To evaluate the



800 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 4, APRIL 2014

Fig. 4. 44 gradient orientation images corresponding to the 44 face images shown in Fig. 2. (a) The 11 gradient orientation images corresponding to the
11 clean face images in Fig. 2(a). (b) The 11 gradient orientation images corresponding to the 11 face images with 10 ×10 occlusions in Fig. 2(b). (c) The 11
gradient orientation images corresponding to the 11 face images with 20 × 20 occlusions in Fig. 2(c). (d) The 11 gradient orientation images corresponding
to the 11 face images with 30 × 30 occlusions in Fig. 2(d).
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Fig. 5. Comparisons of the average test error rates among the various feature extraction methods on the gradient orientation images of Yale face data set,
where (a)–(d) are the experimental results correspond to different face occlusions shown in Fig. 2.

robustness of the proposed method against outliers, in each
trial of experiment we use outliers to contaminate the training
face images and then use the clean testing face images to
evaluate the recognition performance. In the experiments, the
outliers are simulated by using three baboon images with the
image size of 10×10 pixels, 20×20 pixels, and 30×30 pixels
to, respectively, occlude the training face images, where the
positions of the occlusions are randomly selected in each
training face image. Fig. 2(b), (c), and (d) shows several
examples of face images occluded by the baboon images with
the size of 10 × 10 pixels, 20 × 20 pixels, and 30 × 30 pixels,
respectively.

To conduct the experiments, each intensity face image is
concatenated into a 4096-dimensional vector. Then, the mono-
mial kernel with degree one, denoted by k(xi , x j ) = xT

i x j ,

and the RBF kernel with parameter σ , denoted by k(xi , x j ) =
exp

{−‖xi − x j‖2/σ
}
, are, respectively, used to calculate the

Gram matrix of the various methods. For RBF kernel, the
parameter σ is empirically set to be σ = 1e9. For KPCA and
L1-KPCA, the number of the projection vectors is set to be
the one where the sum of variances exceeds 90% of the total
variance. For MCCKPCA, KPCA + LDA, RKDA, and L1-
KDA, the number of projection vectors is empirically set to be
45, 14, 14, and 14, respectively. In addition, the initial vector of
solving each discriminant vector of L1-LDA was set to be the
one of L2-norm LDA, i.e., ω(1) = arg maxω ‖ωT B‖2/‖ωT T‖2,
where ‖ · ‖2 denotes the L2 norm operation of vector.

Fig. 3 summarizes the average test error rates (%) of
the methods corresponding to the different kinds of image
occlusions and the different kernel functions, where the results
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TABLE II

UCI BENCHMARK DATA SETS AND THE AVERAGE ERROR RATES (%) OF SEVERAL METHODS

labeled with intensity and RBF-intensity are associated with
the monomial kernel function and RBF kernel function,
respectively. Fig. 3(a) shows the experimental results of the
various methods on the face images without occlusions added
into the training face images, whereas Fig. 3(b)–(d) shows
the experimental results of the various methods in which
the training face images with occlusions corresponding to
Fig. 2(b)–(d), respectively. From Fig. 3, we can see that the
supervised feature extraction methods (KPCA + LDA, RKDA,
and L1-KDA) achieve better recognition results than the
unsupervised methods (KPCA, L1-KPCA, and MCCKPCA).
On the other hand, among the three supervised methods, the
proposed L1-KDA method achieves the lowest error rates in
most of experiments.

To further evaluate the recognition performance of the pro-
posed L1-KDA method, we adopt the method of applying the
image gradient orientation descriptor [12] to the Yale face data
set, and then reconduct the same experiments as those of using
the intensity images. Fig. 4 shows the 44 gradient orientation
images corresponding to the 44 intensity face images shown in
Fig. 2. Similar to [13], we use the cosine orientation kernel and
the RBF-cosine orientation kernel, respectively, to calculate
the Gram matrix in the experiments. Suppose that θi and θ j are
two orientation images corresponding to the intensity image
xi and x j , respectively. Then, the cosine orientation kernel and

the RBF-cosine orientation kernel are, respectively, defined as:

Cosine orientation kernel: k(θi , θ j ) = �d
p=1 cos(θip − θ j p)/d,

and RBF-cosine orientation kernel:

k(θi , θ j ) = exp

{
−1 − ∑d

p=1 cos(θip − θ j p)/d

σ

}

where d is the number of each face image pixels, θip is
the pth entry of θi , and θ j p is the pth entry of θ j . In the
experiments, the RBF-cosine orientation kernel parameter σ
is empirically set to be σ = 49. For KPCA and L1-KPCA,
the number of the projection vectors is set to be the one
where the sum of variances exceeds 90% of the total variance.
For MCCKPCA, KPCA + LDA, RKDA, and L1-KDA, the
number of projection vectors is empirically set to be 90, 14,
14, and 15, respectively.

Fig. 5 summarizes the average test error rates (%) of the
various methods, in which Fig. 5(a) shows the experimental
results without occlusions added into the training face images,
and Fig. 5(b)–(d) shows the results with the occlusions corre-
sponding to Fig. 2(b)–(d), respectively, added into the training
face images. From Fig. 5, we can see that the experimental
results coincide with those in Fig. 3, in which the supervised
feature extraction methods achieve better recognition results
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than the unsupervised methods, and the proposed L1-KDA
method also demonstrates the lowest average error rates in
most of experiments.

C. Experiment on UCI Data Sets

In this experiment, we use 10 UCI data sets [27] previously
used in [28] to evaluate the discriminant performance of the
proposed methods. These data sets are

1) Wisconsin breast cancer (WBC).
2) BUPA liver disorder (BUPA).
3) Pima indians diabetes (PID).
4) Wisconsin diagnostic breast cancer (WDBC).
5) Cleveland heart-disease (CH).
6) SPECTF heart (SPECTFH).
7) Iris plants (IRIS).
8) Thyroid gland (TG).
9) Vowel context (VC).

10) Multifeature digit (Zernike moments) (MD).

To evaluate the recognition performance of the various
methods, the twofold cross-validation strategy [1] is adopted in
the experiments. Similar to [28], before the experiments, PCA
is firstly applied on the training set as a data preprocessing
step, and then the various kernel based feature extraction
methods are applied to evaluate the recognition performance
of these methods. In the experiments, the monomial kernel
function with degree D, denoted by

k(xi , x j ) = (xT
i x j )

D

is used to calculate the Gram matrix. For KPCA and
L1-KPCA, the number of the projection vectors is set to be
the one when the sum of variances exceeds 90% of the total
variance. For MCCKPCA, the number of projection vectors
is set to be equal to that of KPCA. Table II summarizes the
main properties of the 10 UCI data sets and the average error
rates (%) of the various methods, where “#PC” in the fourth
row shows the number of the principal components we use
after the PCA preprocessing. From Table II, we can see that
the proposed L1-KDA method achieves lower error rates (%)
than the other methods for most UCI data sets, despite of the
different choices of the monomial kernel degree D.

VI. CONCLUSION

In this paper, we have developed a novel L1-norm discrim-
inant criterion under the rigorous theoretical framework of
Bayes error bound. With the new discriminant criterion, we
proposed the L1-LDA method for linear feature extraction. To
efficiently solve the L1-LDA optimization problem, we also
proposed an iterative algorithm in which a surrogate quadratic
convex function is introduced such that a close-form solution
can be obtained in each iteration. Moreover, we also proposed
the L1-KDA method via kernel trick as a generalization of L1-
LDA to cope with the robust nonlinear feature extraction prob-
lems. To evaluate the effectiveness of the proposed method,
we conducted extensive experiments on both simulated data
set and real data sets. The experimental results on simulated
data set show that L1-LDA is superior over LDA in terms

of robustness against outlier. For real data sets, we use Yale
face database and UCI data sets to, respectively, test the
performance of the proposed method. The experimental results
on both Yale face database and UCI data sets show that the L1-
KDA method achieves better discriminant performances than
several state of the art kernel-based feature extraction methods.
The experimental results confirm the superiority of using L1
norm over L2 norm in dealing with the feature extraction
problem under the environment of outliers. This is mainly due
to the more powerful ability of L1 norm in suppressing the
effect of outliers than L2 norm.

Although the L1 norm is mainly used to deal with the
robust feature extraction problems as for the case of outliers,
it is notable that the use of L1 norm can also be used for
other applications such as feature selection. In [23], [30], [31],
and [32], the authors successfully used an L1-norm penalty to
obtain sparse projection vectors for both feature extraction and
feature selection. The research on simultaneously dealing with
robust feature extraction and feature selection using L1-norm-
based discriminant analysis approaches would be our future
work.

APPENDIX A

Derivations of (5): From (2), we obtain that

ε(ω) ≤
∑
i< j

∫ √
Pi pi (x̃)Pj p j (x̃)dx̃

=
∑
i< j

√
Pi Pj

∫ √
pi(x̃)p j (x̃)dx̃ . (35)

Since pi (x̃) is the Gaussian function, it can be expressed as

pi (x̃) = 1√
2πσ

exp

{
− 1

2σ 2 (x̃ − m̃i )
2
}
.

Hence, we obtain that√
pi (x̃)p j (x̃)

= 1√
2πσ

exp

{
− 1

4σ 2

[
(x̃ − m̃i )

2 + (x̃ − m̃ j )
2
]}

= 1√
2πσ

exp

{
− 1

2σ 2

[(
x − m̃i + m̃ j

2

)2

+
(

m̃i − m̃ j

2

)2
]}

= 1√
2πσ

exp

{
− 1

2σ 2

(
x − m̃i + m̃ j

2

)2
}

× exp

{
− (m̃i − m̃ j )

2

8σ 2

}
.

From the fact that∫
1√

2πσ
exp

{
− 1

2σ 2

(
x − m̃i + m̃ j

2

)2
}

dx̃ = 1

we obtain that∫ √
pi (x̃)p j (x̃)dx̃ = exp

{
− (m̃i − m̃ j )

2

8σ 2

}
. (36)
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Substituting the expression of (36) into (35), we obtain that

ε(ω) ≤
∑
i< j

√
Pi Pj exp

{
−1

8

(
m̃i − m̃ j

σ

)2
}

=
∑
i< j

√
Pi Pj exp

⎧⎨
⎩−1

8

[
ωT (mi − m j )

1
N

∑N
k=1 |ωT xk − ωT mlk |

]2
⎫⎬
⎭

here we utilize the equalities m̃i = ωT mi , m̃ j = ωT m j , and
σ = 1/N

∑N
k=1 |ωT xk − ωT mlk|.

APPENDIX B

Proof of theorem 1: From the definition of ω(p+1) in (16),
we have that

c∑
j=1

s(p)
j ω(p+1)T b j = 1. (37)

Let
J (ω) = 1

2
ωT Vt (ω

(p))ω + 1

2
‖ω(p)T T‖1.

Then, from the physical meaning of ω(p+1), we have that

J (ω(p+1)) = 1

2

N∑
i=1

[
ω(p+1)T ti

]2

|ω(p)T ti |
+ 1

2
‖ω(p)T T‖1

≤ J (ω(p)) =
N∑

i=1

|ω(p)T ti | (38)

On the other hand, from Lemma 2, we have that

J (ω(p+1)) = 1

2

N∑
i=1

[
ω(p+1)T ti

]2

|ω(p)T ti |
+ 1

2
‖ω(p)T T‖1

≥ 1

2

N∑
i=1

[
ω(p+1)T ti

]2

|ω(p+1)T ti |
+ 1

2
‖ω(p+1)T T‖1

=
N∑

i=1

|ω(p+1)T ti |. (39)

Combining (38) and (39), we have that

N∑
i=1

|ω(p)T ti | ≥
N∑

i=1

|ω(p+1)T ti |. (40)

From (40) and (37), we obtain that

Q(ω(p+1)) =
∑c

j=1 |ω(p+1)T b j |∑N
j=1 |ω(p+1)T t j |

≥
∑c

j=1 s(p)
j ω(p+1)T b j∑N

j=1 |ω(p+1)T t j |
= 1∑N

j=1 |ω(p+1)T t j |
≥ 1∑N

j=1 |ω(p)T t j |
. (41)

From the equality
∑c

j=1 |ω(p)T b j | = 1, we have that

Q(ω(p)) =
∑c

j=1 |ω(p)T b j |∑N
j=1 |ω(p)T t j |

= 1∑N
j=1 |ω(p)T t j |

. (42)

Combining (41) and (42), we have that

Q(ω(p+1)) ≥ Q(ω(p)). (43)

So, ω(p+1) is better than ω(p).

APPENDIX C

Proof of lemma 3: Since ωT Ur−1 = 0, Qr−1Rr−1 is the QR
decomposition of Ur−1, and Rr−1 is nonsingular, we obtain
that

ωT Qr−1 = 0. (44)

Let Q⊥
r−1 be the complement basis of Qr−1 such that the

matrix Q = (Qr−1 Q⊥
r−1) is an orthogonal matrix. Then we

have Q⊥
r−1(Q

⊥
r−1)

T = Id −Qr−1QT
r−1 due to QQT = Id . From

ωT Qr−1 = 0, there exists a β ∈ IRd−r+1 such that

ω = Q⊥
r−1β. (45)

On the other hand, rank{(Q⊥
r−1)

T } = d −r +1. Therefore, the
columns of (Q⊥

r−1)
T form a basis of IRd−r+1. So there exists

a α ∈ IRd , such that

β = (Q⊥
r−1)

Tα. (46)

Combining (45) and (46), we obtain that

ω = Q⊥
r−1(Q

⊥
r−1)

Tα = (Id − Qr−1QT
r−1)α (47)

APPENDIX D

Proof of (33): To show that

L1-KDA = KPCA + L1-LDA

we have to show the optimal solution of L1-KDA can be
expressed as

ω = W

KPCAβ (48)

where W

KPCA is the transform matrix of KPCA, and β is the

optimal solution of L1-LDA in the KPCA projection subspace.
Let Y be the transformed data of 
(X) on the KPCA

transform matrix, then we have

Y = (W

KPCA)

T
(X). (49)

In the transformed subspace, the L1-LDA problem can be
formulated by

β = arg max
β

∥∥βT BY
∥∥

1∥∥βT TY
∥∥

1

(50)

where BY and TY can be respectively expressed as

BY = YNb, TY = YNt . (51)

Let ψ be the optimal discriminant vector of KPCA + L1-LDA,
then ψ can be expressed as

ψ = W

KPCAβ. (52)

On the other hand, since W

KPCA is the KPCA transform

matrix, it can be expressed as [21]

W

KPCA = 
(X)P (53)
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where P is a coefficient matrix. Substituting (53) into (52) and
(49), respectively, we obtain that

ψ = 
(X)Pβ (54)

Y = PT (
(X))T
(X) = PT K (55)

where K is the Gram matrix.
Finally, substituting (55) and (51) into (50), we obtain that

β = arg max
β

∥∥βT PT KNb
∥∥

1∥∥βT PT KNt
∥∥

1

. (56)

Let α = Pβ, then from (54) and (56), we obtain that

ψ = 
(X)α (57)

where

α = arg max
α

∥∥αT KNb
∥∥

1∥∥αT KNt
∥∥

1

. (58)

By comparing the optimization problems of (57) and (58) with
those of (30) and (31), we obtain that ψ is also the optimal
discriminant vector of L1-KDA.
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