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Abstract Automatically extracting texts from natural im-
ages is very useful for many applications such as augmented
reality. Most of the existing text detection systems require
that the texts to be detected (and recognized) in an image
are taken from a nearly frontal viewpoint. However, texts
in most images taken naturally by a camera or a mobile
phone can have a significant affine or perspective deforma-
tion, making the existing text detection and the subsequent
OCR engines prone to failures. In this paper, based on stroke
width transform and texture invariant low-rank transform,
we propose a framework that can detect and rectify texts
in arbitrary orientations in the image against complex back-
grounds, so that the texts can be correctly recognized by
common OCR engines. Extensive experiments show the ad-
vantage of our method when compared to the state of art text
detection systems.

Keywords Text extraction · Arbitrary orientation · Stroke
width transform · Texture invariant low-rank transform

1 Introduction

With the popularization of smart phones in recent years,
there has been a tremendous increase in demand of intel-
ligent, interactive applications with their onboard cameras.
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Applications such as “Google Goggles” and “Word Lens”
have captured much of the imagination and expectation of
the general public. For such applications, one crucial tech-
nological component is the ability to automatically detect,
recognize and even translate texts (e.g. street signs) within
a captured image. As many web images (e.g. street views)
also contain texts, this technology would also enable us to
more effectively annotate, index, and search web images.

In the vision community, it is generally believed that text
detection and recognition have been an extensively studied
problem and mature solutions must already exist. This could
not have been far from the truth. As our survey will show
later, although there is a vast literature on text detection and
recognition, most of it was developed mainly for the clas-
sic scenario of digitizing documents or images with nearly
frontal texts hence are far from applicable to uncontrolled
scenarios mentioned above. For one, most existing text de-
tection and recognition systems assume that the texts in the
image are taken from a nearly frontal viewpoint. This is of-
ten far from the case for web images or images taken by
mobile phones, see Fig. 1(a) for an example. The texts in
the image can be severely distorted by an arbitrary planar
(rotation, affine, or homography) transform from the image
plane. Almost all existing text detection methods perform
poorly on such images. Even if such texts are somehow de-
tected (say manually marked out), the subsequent recogni-
tion would also fail because the texts are not in their upright
position which is often needed by OCR engines for accurate
recognition (see Tables 4 for a comparison). Things become
even more challenging for conventional systems if there are
multiple lines of texts in the same image. Most detection
systems tend to fail to group the texts properly if the text
lines are not nearly parallel and horizontal (see examples in
Fig. 10). Without correct grouping, the detected texts cannot
be correctly recognized either.
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Fig. 1 Extracting texts from images. (a) An input image and text de-
tection results. (b) Text rectification results. (c) Text recognition results

In this paper, we address these challenges in text extrac-
tion from natural images, and our goal is to develop a novel
system that can effectively and efficiently extract texts in an
image that could have undergone significant planar transfor-
mations. We will handle similarity, affine, and homography
transforms in a unified manner and they together could be
used to model almost all practical deformations induced by
projecting a text in the scene onto the image plane. The suc-
cess of our system leverages strongly on two recent break-
throughs on text detection and text rectification, namely the
Stroke Width Transform (SWT) [1] and the Transform In-
variant Low-rank Textures (TILT) [2].

Stroke width recently has emerged as a new feature that
has shown to be extremely effective for text detection [3–
5] and it has quickly been extended to the so-called Stroke
Width Transform (SWT) and leads to a state-of-the-art text
detection system [1]. However, one limitation of the algo-
rithms in [3–5] is that they can only detect horizontal texts.
The algorithm proposed in [1] can detect near-horizontal
(within −15◦ and 15◦) and near-vertical (within 75◦ and
105◦) texts. It cannot detect texts with larger skews or de-
formations (e.g. Fig. 10).

Obviously, one natural thought to fix the limitations of
SWT is to apply it only to text regions whose deformations
have largely been corrected or rectified. In a recent work [2],
it has been shown that texts belong to the class of so-called
Transform Invariant Low-rank Textures (TILT). The TILT
algorithm harnesses the fact that the rank of a rectified image
is the lowest. By modifying the non-convex object function
into a convex one and finding the minimum value of object
function, TILT can robustly estimate the project transformed
matrix and rectify the distorted image. Notice that the orig-
inal TILT algorithm need users to annotate the distorted re-
gions, it cannot automatically determine the regions.

So we cannot directly use the SWT and TILT algorithms.
The main reason is that the TILT algorithm can only rectify
already detected low-rank text regions and the SWT based
detection is not effective unless the texts are already some-
what rectified. To resolve this dilemma and combine the
strengths of both methods, we propose a simple yet effective
scheme that integrates these two methods and can automat-
ically extract almost all texts in an image despite their ar-
bitrary initial deformations. Figure 2 shows the flowchart of

Fig. 2 Overall text detection process

the system and Fig. 1 shows a typical result from our system.
We have conducted extensive experiments (and comparisons
with existing systems) to demonstrate the effectiveness of
our system. As we will see from the experimental results,
the rectification cannot only improve the detection accuracy
considerably (see Table 2), but also improves the overall text
recognition rates significantly (see Table 4).

Contributions

1. We propose a simple but effective framework to detect
and rectify text of arbitrary direction. By using both the
local feature (stroke width transform feature) and global
feature (low rank) of text image, this algorithm greatly
increase the detection rate as well as recognition rate.

2. We propose an enhanced text rectification algorithm. Al-
though the original rectification algorithm can work well
for single distorted character, it does not work well for
multiple characters, such as a word or short phrase. Har-
nessing the fact that those multiple characters share the
same transform parameters, we propose an enhanced rec-
tification algorithm.

3. We propose a new evaluation for a distorted text detec-
tion algorithm. Since the original text detection evalua-
tion is mainly designed for horizontal aligned or vertical
aligned text region, it is no longed suitable for distorted
texts cases. Inspired by evaluation of the object detection
algorithm, our evaluation is also based on the intersection
and union-section of detection text rectangle and ground
truth rectangle.

1.1 Relation to prior work

There has been extensive work on text detection from im-
ages or videos [6–11]. The algorithms can be roughly di-
vided into two categories: texture-based and region-based.
The main idea of texture-based methods is first divid-
ing the image into small patches. For each patch, retrieve
the distinct properties that can separate text regions from
background ones. Such properties include distribution of
wavelet coefficients [12, 13], DCT coefficients [14], edge
feature [15], spatial variance [16]. Then use some classi-
fier, such as support vector machine (SVM) [17], neural net-
work [18], and Adaboost [19], to classify text patches and
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non-text ones. Although texture-based methods are more ro-
bust to noise and have a better self-learning ability, they are
all computationally expensive. What is more, they are un-
able to detect slanted texts effectively. Region-based meth-
ods first group the pixels which share the same properties,
such as the edges’ geometrical arrangement [20, 21] and
color uniformity [12, 22]. Then for each group of pixels,
some geometrical constraints and other text features are used
to remove non-text groups. Region-based methods are often
efficient in detecting texts of different scales and they can
detect somewhat slanted texts. Although in this work we use
the SWT-based method, one could easily replace it with any
more effective detection methods in the future.

As for text rectification, there have been many tech-
niques, e.g., [23], developed in the past to preprocess and
rectify distorted text documents. Almost all these techniques
rely on the global regular layout of the texts to rectify the
distortion. That is, the rectified texts should lie on a set
of horizontal, parallel lines, often in a rectangular region.
Hence, many different methods have been developed to es-
timate the rotation or skew angle based on statistics of the
distorted text compared to the standard layout, including
methods based on projection profiles [24], Hough transform
for gradient/edge directions [25], morphology of the text re-
gion [26], and cross-correlation of image blocks [27] etc. In
our context, the TILT-based method stands out as it can be
engineered to handle letters, words, and phrases in a uni-
fied manner. Figure 14 shows some input text regions while
Fig. 15 shows the rectified results using TILT. These images
are rather challenging for all the conventional rectification
techniques.

2 Technical approach

Our text detection algorithm consists of four steps that inter-
leave text detection and rectification. It first finds candidate
text areas using Stroke Width Transform (SWT) [1]. Then it
removes text areas whose principal directions are inconsis-
tent with others’. Next, it re-detects texts after the regions of
interest are rectified with the transforms found by TILT. Fi-
nally, it fuses the re-detected text areas and removes non-text
areas. The flowchart of our algorithm is shown in Fig. 2.

2.1 Find candidate text regions

Texts are usually printed on different planar surfaces in the
scene. If we could undo the transformation from each pla-
nar surface to the image plane, then all texts on the surface
become rectified and conventional text detection methods
should have a better chance of detecting the texts. So first
we need to find some candidate text regions on these planar
surfaces so that we can compute the rectifying transforms

for those planes. Before we discuss our algorithm, we will
introduce the Stroke Width Transform (SWT) model.

The SWT algorithm proposed by Epshtein et al. [1] lies in
the text stroke width. The nearly constant stroke text width
feature separates the text from other elements of a complex
scene. The stroke width map is the key component the SWT
model. In order to get the stroke width map, first we need
to calculate the canny edges of the input image and set ∞
to all the pixels in stroke width map. Then a gradient direc-
tion dp of each edge pixel p is calculated. Based on the fact
that if p lies on a stroke boundary, dp will be nearly perpen-
dicular to the stroke’s orientation. It follows the direction:
r = p + n × dp where n > 0 to find the next edge pixel q .
If the direction of pixel p and q is approximately opposite,
then all the pixels along this direction are set to the distance
between p and q . If directions of pixel p and q are not oppo-
site or q is not found, this direction will be removed. After
this stroke width map is calculated, one uses some logical
and flexible geometric rules to group strokes into words and
finally detect the text regions in the image. The reasons we
choose this method are as follows: firstly, this new image op-
erator (stroke width map) is fast and robust which does not
need scanning window techniques and multi-scale calcula-
tion. Secondly, the feature is not calculated for single pixel,
it is a feature of grouping pixels, which greatly reduce the
number of detected pixels. Thirdly, it can detect some text
regions with slight distortion. Notice that since our paper
proposes a framework for distorted text detection, if other
algorithms can robustly detect some slight slant text regions,
they can also be used here to replace the SWT method.

Through our experience, the SWT algorithm is very ef-
fective at detecting near-rectified texts, roughly tolerating a
rotation between −15◦ and 15◦. In order to find more candi-
date text regions in a given image, we apply the SWT al-
gorithm to the image rotated by −30◦, −10◦, +10◦, and
+30◦.1 This has effectively enlarged the working range of
SWT, practically covering almost all possible orientations
of texts. After rotating the image, the SWT algorithm can
detect texts that are roughly aligned with that orientation (or
perpendicular to it). Figure 3 shows detected text regions of
a representative image under the four orientations. This ex-
ample also shows that this naive extension of SWT cannot
achieve satisfactory detection results. So the purpose of this
step is only to find some candidate text regions on different
3D-planes so that we can use them to estimate the associated
transformation. The detection results in this step need not be
so accurate.

1Although −40◦, −20◦, 0◦, and +20◦ are more natural choices of ro-
tation angles, as in natural scenes there are rarely texts that are exactly
horizontal, from our experience these angles are not as effective for
detecting texts in all directions.
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Fig. 3 Find candidate text regions by first rotating the image and then applying SWT [1]. (a)–(d) are text detection results with the image being
rotated at −30◦, −10◦, +10◦, and +30◦, respectively. (e) is the original input image for text detection. When rotated by +10◦, no text is detected

Fig. 4 Remove inconsistent candidate text regions. (a) shows all can-
didate text regions detected in the previous step, where the green re-
gions are the inconsistent ones. (b) is the remaining candidate text re-
gions after removing inconsistent text regions

2.2 Remove inconsistent candidate text regions

The candidate text regions obtained above could have some
overlap with each other as the same text could be detected
multiple times at different orientations (see Fig. 4(a)). To
better initialize the rectification algorithm and estimate the
transform for a text region, it is important that we remove
the regions that are detected at a wrong orientation. We de-
fine the principal direction of a candidate text region as the
direction of its longer side. We use a Radon transform on the
edge map of the text region to get the principal direction. For
a group of overlapped candidate text regions, we first com-
pute their joint convex hull and the principal direction of the
convex hull. We remove text regions whose principal direc-
tions are more than 20◦ from that of the joint convex hull.
These regions are often false positives from the SWT algo-
rithm that correspond to regions that cross multiple lines of
texts. With such regions removed, the transform of the text
region can be more accurately estimated by TILT [2]. More-
over, the joint principal direction of the remaining regions
provides TILT with a good initialization. Figure 4 shows an
example of the process of filtering candidate text regions.

2.3 Re-detect texts after rectification

After removing the inconsistent candidate text regions, the
next goal is to estimate a more accurate transformation be-
tween the text plane to the image plane. To this end, we uti-
lize the TILT [2] algorithm and extend it for our purposes.

Before modifying TILT algorithm, we first introduce the
original Transform Invariant Low-rank Textures (TILT) al-
gorithm. TILT is to minimize the robust rank of an image
patch D by deforming it with a geometric transform τ :

min
A,E,τ

rank(A) + λ‖E‖0 s.t. D ◦ τ = A + E, (1)

where D is the matrix of distorted input image, ◦ is the ho-
mography transform operator, A is the low rank matrix and
E is the sparse error term which is used to make the char-
acter image as an “approximately” low rank matrix by re-
moving some imperfect parts. λ is the coefficient to balance
the low rank term and sparse error term. In this paper, τ is a
R

2 → R
2 and belongs to a certain Lie group G. To be spe-

cific, we only consider G that is either a 2D affine group
or homography group. Suppose the homography transform
matrix is defined as(

h1 h2 h3
h4 h5 h6
h7 h8 1

)

and τ encodes all the information of this matrix.
Then the homography transform can be written as fol-

lows:

D(x,y) ◦ τ = D

(
h1x + h2y + h3

h7x + h8y + 1
,
h4x + h5y + h6

h7x + h8y + 1

)
; (2)

where (x, y) is the pixel location of the input image D.
As pointed out in [28], the problem in the mathematic

model (1) is a general NP-hard problem because the rank
function and �0 norm in the original TILT are extremely
difficult to optimize. However, in recent breakthroughs in
sparse representation and low-rank matrix recovery, the
above problem can be replaced by its convex surrogates un-
der fairly broad conditions. They can be replaced by their
convex surrogates. The rank of A can be replaced by the
matrix nuclear norm ‖A‖∗ and the ‖E‖0 can be replaced by
�1 norm ‖E‖1. Thus we get the following object function:

min
A,E,τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ = A + E, (3)
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Fig. 5 Values of TILT, l1 norm of Discrete Cosine Transform (DCT)
coefficients and Total Variation (TV) objective functions (y-axis) of the
input character (shown as the embedded icon) against the rotation an-

gle (x-axis). TILT (the red line) achieves its minimal values when the
character is unrotated, while DCT (the green line) and TV (the blue
line) are much less robust and sensitive to the correct position

where ‖A‖∗ is the nuclear norm of A, i.e., the sum of the
singular values of A, and ‖E‖1 is the l1 norm of E, i.e., the
sum of the absolute values of the entries in E. Empirically,
one can verify that the minimal value of the above objective
function can be a good indicator of the upright position of
English and Chinese characters and digits. Figure 5 shows
the values of the objective function of TILT when the char-
acters or digits are rotated. They all achieve their minimal
value when the characters or digits are in their upright posi-
tions. This may be due to the rich structural regularity, such
as local or global symmetry or parallelism, which can be ac-
counted for by the low rankness of A measured by ‖A‖∗.
Any small deviation from the perfect structural regularity
can be accounted for by the sparse error E measured by
‖E‖1.

Note that TILT is mainly effective for rectifying a single
character, while our detected text regions usually consists of
multiple characters, which can be a short phrase on a street
sign or an entry on a restaurant menu. Although the images
of individual characters may be low-rank, the image of mul-
tiple characters may no longer be low-rank anymore w.r.t. its
minimal dimension. So the original TILT model (3) would
not work on an image of multiple characters as robustly as
on an individual character. To remedy this issue, one could
divide the region into multiple smaller ones and measure the
overall regularity as the sum of all:

min
Ai,E,τ

n∑
i=1

‖Ai‖∗ + ‖A‖∗ + λ‖E‖1,

s.t. D ◦ τ = A + E, A = [A1, . . . ,An],
(4)

where Ai stands for the ith block of A and τ is searched
within transform group. The above formulation is motivated
by the observation that each character (hence subimage) is of
low rank. Although Ai should ideally correspond to a char-
acter, in practice it is not necessary to segment the region

accurately. Only a rough estimate of the number of charac-
ters, which can be easily derived from the aspect ratio of
the text region, is needed and Ai can be obtained by equally
partitioning the region. The readers can also find it in Sup-
plementary Materials. The readers may refer to [2, 29] for
how to derive the detailed optimization algorithms.

When applying TILT to rectify a text region, we initial-
ize the transform τ with the rectangle found in Sect. 2.2.
Moreover, the image patch D is the binary text mask map
provided by SWT, which does not contain too much back-
ground. In the mask map, the text area has value 1 and the
background has value 0. Then the TILT algorithm will find
the best (affine) transform that rectifies the text region to its
upright position. Some examples of rectification are shown
in Figs. 14 and 15.

Next, we group the obtained affine transforms from all
the candidate text regions. We first group by rotations such
that the maximum difference of rotation degrees is within
5 degrees. For each group, we further group the transforms
by their skew values such that the maximum difference is
within 0.1.

Finally, we apply the mean of the transforms in each
group to the whole image and apply SWT to re-detect texts
in the transformed image. Since our transform matrix is pa-
rameterized by some parameters, such as scale, rotation an-
gle, transition in x and y axis, the mean of the transforms
is actually the mean of the parameters. Using those mean
parameters, we generate the corresponding transform ma-
trix. Some text re-detection results after image rectification
are shown in Fig. 6. Notice that all the rectified images are
transformed by the original input image because we have al-
ready calculated the corresponding transform parameter in
the original input image, see (a) in Fig. 4 for example. We
can see that the detection accuracies are significantly im-
proved. This is partially because SWT relies heavily on the
constant stroke width. However, in the original (distorted)
image, stroke width can change significantly due to affine
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Fig. 6 Text re-detection results on images rectified by different affine transforms. Red rectangles indicate the text areas detected. The detection
results are significantly better than those in Fig. 3

Fig. 7 The process of merging re-detected text regions. (a) is all the
re-detected text regions, shown as red windows. (b) is the final detec-
tion results after merging

or perspective transform. Hence, rectification is crucial for
enhancing SWT-based text detection.

2.4 Merge re-detected text regions

The re-detected text regions from the above step are a set of
rectangles which indicate refined candidate text regions (see
Fig. 7(a)). Again, many rectangles can overlap on the same
text region. So we have to identify a best joint region from
these overlapping rectangles.

To this end, we first group the rectangles by checking
their pairwise overlapping ratio, defined as the common area
of two rectangles divided by the area of the smaller region. If
the overlapping ratio is above 0.7, they are grouped together.
Then for each group of rectangles, we calculate the princi-
pal direction of the union of their binary text mask maps by
projection. Namely, the direction that accumulates most of
the text pixels and has the most salient peaks and valleys if
there are multiple lines of texts. Next, we remove the rectan-
gles whose principal direction is inconsistent with that of the
union. Finally, we calculate the convex hull of each group
and extract the hulls out of the original image (see Fig. 8 for
some of the examples).

After we get these text segments, we apply TILT (4) once
more on the binary text mask map of each of the text regions,
with the initial τ being the rectangular bounding box of the
text region. This time, TILT (4) can produce a very accurate
(affine) transform for rectifying each text region. After recti-
fication, we resize them so that their heights are between 10

Fig. 8 Convex hulls of different groups of re-detected text areas. We
first find groups of rectangles whose pairwise overlapping ratio is
greater than 0.7. After removing inconsistent rectangles by principal
directions, we calculate the convex hull of each rectangle group and
segment the hulls out of the original image

to 300 pixels, within the working range of SWT. In this way,
when we re-apply SWT on each text segments, both small
and large texts can be detected together. Figure 7(b) shows
an example of the final results of text detection, where the
affine transform for each planar text region is accurately un-
done.

3 Experiments

In this section, we present extensive experiments to verify
the effectiveness of our system in extracting arbitrarily ori-
ented texts in natural images, in comparison with many of
the state-of-the-art systems and methods. In addition, we
verify empirically how the results of our system could sig-
nificantly impact on the performance of OCR engines.

3.1 Text detection

To compare the accuracy of our system with others in the
literature, we use three databases. The first is the public
database used for ICDAR 2003 and ICDAR 2005 compe-
titions [30]. This database mainly consists of nearly frontal
texts. Although this dataset is not ideal for testing the
strength of our system, we can show that our system is on
par with or better than other state of the art methods in this
conventional setting. The second is an Oriented Scene Text
Dataset [31] which contains lots of distorted text regions.
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Table 1 Performances of different text detection methods on the pub-
lic ICDAR database. Since most texts in this database are nearly
frontal, our algorithm is only marginally better than Epshtein et al.’s
SWT [1] method. The results of other methods are quoted from [1]

Algorithm Precision Recall f -measure

Our system 0.73 0.64 0.68

Epshtein [1] 0.73 0.60 0.66

Yi [31] 0.71 0.62 0.66

Alex Chen [19] 0.60 0.60 0.58

The third is a set of typical natural images collected by our-
selves that are rich of texts in all geometric orientations. We
will see that our system can significantly improve text de-
tection than other methods for such less controlled image
sets.

3.1.1 On the standard ICDAR database

In this section, we compare the detection results of various
methods on the public database for ICDAR 2003 and IC-
DAR 2005 competitions [30]. The ICDAR database contains
258 images in the training set and 251 images in the test set.
The test set is used for evaluation. The images are full-color
and vary in size from 307 × 93 to 1280 × 960 pixels. A
commonly adopted way to evaluate algorithms is to use the
f -measure, which is a combination of precision and recall.
They are defined as follows [1]:

precision
.=

∑
d∈D

m(d,G)

|D| , recall
.=

∑
g∈G

m(D,g)

|G| , (5)

f
.= 1

α
precision + 1−α

recall

, (6)

where D and G are the sets of detection rectangles and
ground truth rectangles, respectively. m(d,G) is the best
matching score of rectangle d with those in G, defined as
the area of intersection divided by the area of the minimum
bounding box containing both rectangles. m(D,g) is de-
fined similarly. |D| and |G| are the numbers of rectangles
in D and G, respectively. A typical choice for α is 0.5.

In the above standard settings, the precisions, recalls, and
f -measures of various methods are shown in Table 1. There
is little surprise to see that our method is as good as Epshtein
et al.’s SWT [1] as our method builds upon it. As the dataset
contains primarily nearly frontal texts, additional rectifica-
tion in our method does not seem to improve much of the
performance, only improving the recall slightly.

3.1.2 Our dataset of images from the web and phones

To build a database that contains rich texts with natural ori-
entations, we download some images from the Internet and

also capture some images with a mobile phone by ourselves.
We collect a total of 141 images, containing road signs, shop
name boards, name cards, bill boards, and book covers. The
image sizes vary from 237 × 194 to 1323 × 998 pixels. So
images in our database is very diverse (see Fig. 10 for some
representative examples). We label the ground truth of our
dataset by clicking the four corners of a quadrilateral that
encompasses an entire text line exactly.2

In the preceding section, the evaluation focuses on mea-
suring how accurately the detected regions overlap with the
ground truth regions. This measure may become too de-
manding for images with texts of arbitrary orientation. In
practice, we often are more interested if all labeled regions
have been successfully detected and we care less about their
precise overlap percentage with the detected regions. There-
fore, we here use an evaluation protocol that is similar to
that in PASCAL object detection task [32]. Given a detected
text area d and a ground truth text area g, we first calculate
the ratio of their intersection area to their union area:

m(d,g)
.= A(d ∩ g)

A(d ∪ g)
. (7)

If this overlapping ratio is above 50 %, the text area is con-
sidered as detected correctly. So we define the true positive
score as

TP(d, g)
.=

{
1, if m(d,g) > 0.5,

m(d,g), if m(d,g) ≤ 0.5.
(8)

Then the new precision and recall are defined as

precision
.=

∑
d∈D,g∈G

TP(d, g)

|D| ,

recall
.=

∑
d∈D,g∈G

T P (d,g)

|G| ,

and the f -measure is still computed as (6) and α is still cho-
sen as 0.5.

As Epshtein et al.’s SWT [1] method and Alex Chen’s
method have been proven to be better than other methods
and Alex Chen’s method and Yi’s method claimed to be
able to detect slant text regions, we compare our method
with Epshtein et al.’s SWT, that of Alex Chen [19] and Yi’s
method.

Table 2 shows the results on our dataset. We can see
that our method is significantly better than SWT and Alex
Chen’s on the dataset that contains arbitrarily oriented text
regions. To help the reader to see the difference visually,

2Notice that this labeling is somewhat different from the ground truth
labeling used in the ICDAR dataset in which each word is labeled sep-
arately. The dataset will be released for public evaluation if our paper
is accepted for publication.
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Table 2 Performances of different text detection methods on our own
database. Since most texts in our database are slant, our algorithm sig-
nificantly outperforms Epshtein et al.’s SWT [1] method, Yi [31] and
Alex Chen’s [19] in precision, recall, and f -measure

Algorithm Precision Recall f -measure

Our system 0.7956 0.8299 0.8124

Epshtein [1] 0.5501 0.6164 0.5814

Yi [31] 0.3624 0.5686 0.4427

Alex Chen [19] 0.3658 0.3254 0.3444

Table 3 Performances of different text detection methods on OSTD
database. Since most texts in OSTD are slant, our algorithm signifi-
cantly outperforms Epshtein et al.’s SWT [1] method, Yi [31], Alex
Chen’s [19] in precision, recall, and f -measure

Algorithm Precision Recall f -measure

Our system 0.9519 0.7917 0.8644

Epshtein [1] 0.4383 0.5392 0.4835

Yi [31] 0.4915 0.5412 0.5152

Alex Chen [19] 0.3910 0.3243 0.3545

some representatively detection results of our method and
SWT are shown in Figs. 9 and 10. SWT is clearly limited
to detect near horizontal or vertical texts, while our method
can effectively detect arbitrarily oriented texts. Moreover,
our method separates the text lines better than SWT does
(see (d1), (d2) and (e1), (e2) in Fig. 10).

3.1.3 Oriented Scene Text Dataset

In paper [31], they propose a public dataset Oriented Scene
Text Dataset (OSTD). It contains texts of arbitrary orienta-
tions. There are totally 89 images and the images varies from
street view to indoor objects. The quantitative results are
shown in Table 3. Since the image in OSTD is do not con-
tains many background, that is there always contains only
text objects, so the precision of our algorithm is rather high.
However, since there are multiple lines of text, our algorithm
sometimes failed to detect all of them, so the recall rate is not
as high as the precision rate. Still our algorithm outperforms
the SWT, and Yi’s and Alex Chen’s method.

3.2 Text recognition

In practice, the goal to detect texts in images is to recog-
nize them. In this section, we compare the OCR recognition
rates on the detected texts from our system and others. No-
tice that one good property of texts detected from our system
is that they are already rectified and hence should be much
more suitable for recognition by conventional OCR engines.
Here we use two OCR engine, one is widely used ABBYY

Fine Reader [33] and the other is open source OCR engine
Tesseract-ocr [34] which was developed by HP Labs.

Since we now are only interested in how rectification
helps recognition, we use only original color detected text
regions by our method or by others for evaluation. Ground
truth is labeled for these regions. The precision and recall to
measure the recognition rates are defined as

precision
.= 1 −

∑
i dist(di, gi)∑
i length(di)

,

recall
.= 1 −

∑
i dist(di, gi)∑
i length(gi)

,

where dist(d, g) is the edit distance [35] between the strings
of the detected and ground truth texts. The f -measure is still
defined as (6), and the parameter α is still set at 0.5.

In order to show the importance of text rectification for
OCR, we calculate the precision, recall and f -measure on
five datasets of two OCR engines. The first dataset is the
text areas detected by SWT [1] on our database described in
Sect. 3.1.2. We call it “Epshtein dataset”. The second dataset
is the text areas detected by Alex Chen’s method [19] on our
database. We call it “Alex Chen dataset”. The third is the text
areas detected by Yi’s method [31] method. Both the fourth
and fifth datasets are text regions detected on our database
by our algorithm. The only difference is that the “unrectified
dataset” are the text regions in the original image which are
not rectified; and the “rectified dataset” are the same regions
but rectified. There are 6689 characters in “Epshtein dataset”
(see Fig. 11), 7283 characters in “Yi dataset” (see Fig. 13),
7335 characters in “Alex Chen dataset”, and “unrectified
dataset” and “rectified dataset” both have 7566 characters.

From Tables 4 and 5 we can see that the recognition
rates on text regions extracted by SWT, Yi’s method and
Alex Chen’s method are not satisfactory. Although SWT,
Yi’s method and Alex Chen’s method basically detect nearly
horizontal texts, there are still small rotation, skew and per-
spective in the detected texts left unrectified (see Fig. 12).
So the performance of the OCR engine is still greatly af-
fected. On the unrectified dataset detected by our method
(see Fig. 14), as expected the OCR engine performs very
poorly. After rectification, the texts are much closer to their
frontal upright positions (see Fig. 15) and the recognition
rates are improved dramatically.

Although our system works well to detect text regions
with arbitrary distortions, there are still some limitations of
our algorithm. The first limitation is we can only handle ar-
bitrary distortions in planar, however, we cannot handle va-
riety distortions in 3D dimension. This is because different
shapes in 3D dimension can be parameterized in different
ways. There is no uniform formula for those shapes, such
as the surface of the cylinder cup, on a warped paper or
surface of the ball. If all the 3D shapes belong to a same
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Fig. 9 Part of the text detection
results on our database. The (*1)
is by SWT [1]. The (*2) is by
the Yi method. The (*3) is by
our method. The detected text
areas are marked by red
rectangles
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Fig. 10 Part of the text
detection results on OSTD
database. The (*1) is by
SWT [1]. The (*2) is by Yi
method. The (*3) is by our
method. The detected text areas
are marked by red rectangles

Fig. 11 Epshtein dataset. This dataset consists of text areas detected
by SWT [1]. SWT mainly detects texts that are nearly horizontal or
with slight distortion

group, such as all cylinder shape, our algorithm can still
work. If there are variation shape in 3D, we need to deter-
mine which model should we use. This can also be the future
works.

The second limitation is that we only propose a frame-
work for slant text detection. In our framework, we use the

SWT for our text detection part. However, other techniques
which can robustly detect slight distort text can also be used
to replace the SWT algorithm. Since we only propose a
framework for slant text detection, we did not compare the
detection rate with other state-of-the-art text detection algo-
rithm.

The other limitations includes how to robustly group the
text regions, how to handle the shadow over text areas,
glossy text region and how to handle blurred or noisy text
region.

4 Conclusions and future works

In this paper, we propose a system that can automatically
and effectively detect text regions in natural images that may
have very diverse orientations and backgrounds. Our method



Transform invariant text extraction 411

Table 4 ABBYY OCR recognition rates on different datasets.
“Epshtein dataset”, “Yi dataset” and “Alex Chen dataset” consist of
text regions detected by the SWT method [1], Yi’s method [31], Alex
Chen’s method [19] on our database. The recognition rates on these
two datasets are not so miserable because most of the tests are nearly
horizontal (see Fig. 12). “unrectified dataset” and “rectified dataset”
are the text regions detected by our method. “unrectified dataset” are
not rectified (see Fig. 14) and the recognition rates are very low. “rec-
tified dataset” is rectified (see Fig. 15) and the recognition rates are
dramatically better. All datasets are color images

Datasets Precision Recall f -measure

Epshtein dataset [1] 0.5708 0.4793 0.5211

Yi dataset [31] 0.4306 0.3945 0.4118

Alex Chen dataset [19] 0.5819 0.4897 0.5318

Unrectified dataset 0.2175 0.2055 0.2113

Rectified dataset 0.7661 0.7162 0.7403

Table 5 Tesseract OCR recognition rates on different datasets.
“Epshtein dataset”, “Yi dataset” and “Alex Chen dataset” consist of
text regions detected by the SWT method [1], Yi’s method [31], Alex
Chen’s method [19] on our database. All datasets are color images

Datasets Precision Recall f -measure

Epshtein dataset [1] 0.5610 0.3990 0.4663

Yi dataset [31] 0.3952 0.3878 0.3915

Alex Chen dataset [19] 0.6039 0.4316 0.5034

Unrectified dataset 0.1509 0.1793 0.1639

Rectified dataset 0.6228 0.5861 0.6039

Fig. 12 Alex Chen dataset. This dataset consists of text areas detected
by Alex Chen’s [19] method

leverages on two state-of-the-art text detection and text rec-
tification techniques, namely SWT and TILT, and show how
they could be combined to remedy each other’s limitations
and lead to a much more powerful text detection system. Our
system can handle texts lying on multiple planar surfaces in
a scene and can correctly segment multiple lines of texts on
the same plane. Our system dramatically outperform exist-
ing text detection systems on datasets that contain practi-
cal, uncontrolled images from the Internet or taken by mo-
bile phones. In addition, the detected texts from our system
are automatically rectified and, as result, the performance of

Fig. 13 Yi dataset. This dataset consists of text areas detected by
method [1]. This method mainly detects horizontal texts and can also
detect slight distorted text regions

Fig. 14 Unrectified dataset. This dataset consists of texts detected by
our method in the original images. Most of them are not in upright
position

Fig. 15 Rectified dataset. This dataset consists of the corresponding
rectified text outputs from our method. Almost all are correctly recti-
fied to their upright position

OCR is improved significantly when using outputs from our
text detection system. As both SWT and TILT are insensi-
tive to the language, we expect that our method should also
work reasonably well for extracting texts of other languages.
This will be our future work.
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Algorithm 1 (General Augmented Lagrange Multiplier
Method)

1: Initialize variables.
2: while not converged do
3: Solve xk+1 = arg minx L(x, yk,μk).
4: yk+1 = yk + μkh(xk+1);
5: Update μk to μk+1.
6: end while

Output: xk .
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Appendix: Detailed derivation of the ADM for
multi-component TILT

A.1 ALM and ADM methods

The alternating direction method (ADM, also called inex-
act augmented Lagrange multiplier (IALM) method in [29])
is a variant of the augmented Lagrange multiplier (ALM)
method. The usual ALM method for solving the following
model problem:

minf (x), s.t. h(x) = 0, (9)

where f : Rn → R and h : Rn → R
m, is to minimize over

its augmented Lagrangian function:

L(x, y,μ) = f (x) + 〈
y,h(x)

〉 + μ

2

∥∥h(x)
∥∥2

F
, (10)

where μ is a positive scalar and y ∈ R
m is the Lagrange

multiplier. The ALM method is outlined as Algorithm 1
(see [36] for more details).

Solving the subproblem

min
x

L(x, yk,μk)

is actually not always easy. When f (x) is separable, e.g.,
f (x) = f1(a) + f2(b), where x = (aT , bT )T , we may solve
this subproblem by minimizing over a and b alternately until
convergence. However, in the case that f (x) is convex and
h(x) is a linear function of x, the ADM requires updating
a and b only once and it can still be proven that the itera-
tion converges to the optimal solution [37]. The ADM for
two variables is outlined as Algorithm 2. The generalization
to the multi-variable and multi-constraint case is straightfor-
ward.

Algorithm 2 (General Alternating Direction Method)
1: Initialize variables.
2: while not converged do
3: Solve ak+1 = arg mina L(a, bk, yk,μk).
4: Solve bk+1 = arg minb L(ak+1, b, yk,μk).
5: yk+1 =yk +μkh(xk+1), where xk+1= (aT

k+1, b
T
k+1)

T ;
6: Update μk to μk+1.
7: end while

Output: xk .

A.2 Subproblems of multi-component TILT

When applying ADM to the linearized multi-component
TILT, whose augmented Lagrangian function is

L
({Ai},A,E,�τ, {Yi}, Y,μ

)
=

n∑
i=1

‖Ai‖∗ + ‖A‖∗ + λ‖E‖1

+ 〈
Y,D ◦ τ + J�τ − A − E

〉 + n∑
i=1

〈
Yi,Ai −Pi (A)

〉

+ μ

2

(
‖D ◦ τ + J�τ − A − E‖2

F

+
n∑

i=1

∥∥Ai −Pi (A)
∥∥2

F

)
,

where Pi (A) extracts the ith block of A, we have to solve
multiple subproblems:

A
(k+1)
i = arg min

Ai

L
(
A

(k+1)
1 , . . . ,A

(k+1)
i−1 ,Ai,

A
(k)
i+1, . . . ,A

(k)
n ,A(k),E(k),�τ (k),{

Y
(k)
j

}
, Y (k),μ(k)

)
, i = 1, . . . , n, (11)

A(k+1) = arg min
A

L
({

A
(k+1)
j

}
,A,E(k),�τ (k),

{
Y

(k)
j

}
, Y (k),μ(k)

)
, (12)

E(k+1) = arg min
E

L
({

A
(k+1)
j

}
,A(k+1),E,�τ(k),

{
Y

(k)
j

}
, Y (k),μ(k)

)
, (13)

�τ(k+1) = arg min
E

L
({

A
(k+1)
j

}
,A(k+1),E(k+1),

�τ,
{
Y

(k)
j

}
, Y (k),μ(k)

)
. (14)
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When solving (11), by leaving out the terms in L that are
independent of Ai , we see

A
(k+1)
i = arg min

Ai

‖Ai‖∗ + 〈
Y

(k)
i ,Ai −Pi

(
A(k)

)〉

+ μ(k)

2

∥∥Ai −Pi

(
A(k)

)∥∥2
F

= arg min
Ai

‖Ai‖∗ + μ(k)

2

∥∥Ai − Â
(k+1)
i

∥∥2
F
,

where

Â
(k+1)
i = Pi

(
A(k)

) − (
μ(k)

)−1
Y

(k)
i .

Then by Theorem 2.1 of [38], A
(k+1)
i can be obtained

by thresholding the singular values of Â
(k+1)
i . Namely,

if the singular value decomposition (SVD) of Â
(k+1)
i is

UikΣikV
T
ik , then

A
(k+1)
i = UikS(μ(k))−1(Σik)V

T
ik ,

where

Sε(x) = max
(|x| − ε,0

)
sgn(x)

is the shrinkage operator.
Similarly, when solving (12) with some elaboration we

have

A(k+1) = arg min
A

‖A‖∗

+ 〈
Y (k),D ◦ τ + J�τ(k) − A − E(k)

〉
+

n∑
i=1

〈
Y

(k)
i ,A

(k+1)
i −Pi (A)

〉

+ μ(k)

2

(∥∥D ◦ τ + J�τ(k) − A − E(k)
∥∥2

F

+
n∑

i=1

∥∥A
(k+1)
i −Pi (A)

∥∥2
F

)

= arg min
A

‖A‖∗ + μ(k)
∥∥A − Â(k+1)

∥∥2
F
,

where

Â(k+1) = 1

2

(
D ◦ τ + J�τ(k) − E(k) + (

μ(k)
)−1

Y (k)

+ Ã(k+1)
)
,

in which Ã(k+1) is a matrix whose ith block is A
(k+1)
i +

(μ(k))−1Y
(k)
i . Then again we can apply Theorem 2.1 of [38]

to solve for A(k+1) as we did above for A
(k+1)
i .

Algorithm 3 (Solving Multi-Component TILT by ADM)

INPUT: Initial rectangular window D ∈ R
m×n and initial

transform τ in a group G (affine or projective).
WHILE not converged DO

Step 1: Normalize the image and compute the Jaco-
bian w.r.t. the transform:

D ◦ τ ← D ◦ τ

‖D ◦ τ‖F

, J ← ∂

∂ζ

(
D ◦ τ

‖D ◦ τ‖F

)∣∣∣∣
ζ=τ

.

Step 2: Solve the linearized multi-component TILT
with the initial conditions:

A(0) = 0, E(0) = 0, �τ(0) = 0, Y
(0)
i = 0, Y (0) = 0,

μ0 > 0, ρ > 1, k = 0.

WHILE not converged DO

(Uik,Σik,Vik) ← svd(Pi (A
(k)) − (μ(k))−1Y

(k)
i ),

A
(k+1)
i ← UikS(μ(k))−1(Σik)V

T
ik , i = 1, . . . , n,

(Uk,Σk,Vk) ← svd( 1
2 (D ◦ τ + J · �τ(k) − E(k)

+ (μ(k))−1Y (k) + Ã(k+1))),

A(k+1) ← UkS(2μ(k))
−1(Σk)V

T
k ,

E(k+1) ← S
λ(μ(k))

−1(D ◦ τ + J · �τ(k) − A(k+1)

+ (μ(k))
−1

Y (k)),

�τ(k+1) ← J †(−D ◦ τ + A(k+1) + E(k+1)

− (μ(k))−1Y (k)),

Y
(k+1)
i ← Y

(k)
i + μ(k)(A

(k+1)
i −Pi (A

(k+1))),

Y (k+1) ← Y (k) + μ(k)(D ◦ τ + J�τ(k+1) − A(k+1)

− E(k+1)),

μ(k+1) ← min(ρμ(k),μmax),

k ← k + 1.

END WHILE
Step 3: Update transform:

τ ← τ + �τ(k+1).

ENDWHILE
OUTPUT: A, E, τ

When solving (13), we have

E(k+1) = arg min
E

λ‖E‖1

+ 〈
Y (k),D ◦ τ + J�τ(k) − A(k+1) − E

〉
+ μ(k)

2

∥∥D ◦ τ + J�τ(k) − A(k+1) − E
∥∥2

F

= λ‖E‖1 + μ(k)

2

∥∥E − Ê(k+1)
∥∥2

F
,
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where

Ê(k+1) = D ◦ τ + J�τ(k) − A(k+1) + (
μ(k)

)−1
Y (k).

Then its well known [39] that the solution to the above prob-
lem is

E(k+1) = Sλ(μ(k))−1

(
Ê(k+1)

)
,

where S is the shrinkage operator defined above.
When solving (14), we have

�τ(k+1) = arg min
�τ

∥∥J�τ − �̂τ
(k+1)∥∥2

F
, (15)

where

�̂τ
(k+1) = −D ◦ τ + A(k+1) + E(k+1) − (

μ(k)
)−1

Y (k).

So

�τ(k+1) = J †�̂τ
(k+1)

,

where J † is the pseudo-inverse of J and �̂τ
(k+1)

is rear-
ranged into a vector.

A.3 The complete algorithm

Now we can present the ADM for multi-component TILT as
Algorithm 3.

Note that in Algorithm 3, the transformed image D ◦ τ

has to be normalized to prevent the region of interest from
shrinking into a black pixel [2]. For more details of imple-
mentation issues, such as maintaining the area and aspect
ratio, please refer to [2]. We will also post our code online if
the paper is accepted.
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