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Abstract
This work studies the Generalized Singular Value
Thresholding (GSVT) operator Proxσ

g (·),

Proxσ
g (B) = argmin

X

m∑
i=1

g(σi(X))+
1

2
||X−B||2F ,

associated with a nonconvex function g defined on the
singular values of X. We prove that GSVT can be ob-
tained by performing the proximal operator of g (denot-
ed as Proxg(·)) on the singular values since Proxg(·)
is monotone when g is lower bounded. If the noncon-
vex g satisfies some conditions (many popular noncon-
vex surrogate functions, e.g., `p-norm, 0 < p < 1,
of `0-norm are special cases), a general solver to find
Proxg(b) is proposed for any b ≥ 0. GSVT great-
ly generalizes the known Singular Value Thresholding
(SVT) which is a basic subroutine in many convex low
rank minimization methods. We are able to solve the
nonconvex low rank minimization problem by using
GSVT in place of SVT.

Introduction
The sparse and low rank structures have received much at-
tention in recent years. There have been many applications
which exploit these two structures, such as face recognition
(Wright et al. 2009), subspace clustering (Cheng et al. 2010;
Liu et al. 2013b) and background modeling (Candès et al.
2011). To achieve sparsity, a principled approach is to use
the convex `1-norm. However, the `1-minimization may be
suboptimal, since the `1-norm is a loose approximation of
the `0-norm and often leads to an over-penalized problem.
This brings the attention back to the nonconvex surrogate by
interpolating the `0-norm and `1-norm. Many nonconvex pe-
nalities have been proposed, including `p-norm (0 < p < 1)
(Frank and Friedman 1993), Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li 2001), Logarithm (Friedman
2012), Minimax Concave Penalty (MCP) (Zhang and others
2010), Geman (Geman and Yang 1995) and Laplace (Trza-
sko and Manduca 2009). Their definitions are shown in Ta-
ble 1. Numerical studies (Candès, Wakin, and Boyd 2008)
have shown that the nonconvex optimization usually outper-
forms convex models.
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Table 1: Popular nonconvex surrogate functions of `0-norm
(||θ||0).

Penalty Formula g(θ), θ ≥ 0, λ > 0
`p-norm λθp, 0 < p < 1.

SCAD


λθ, if θ ≤ λ,
−θ2+2γλθ−λ2

2(γ−1)
, if λ < θ ≤ γλ,

λ2(γ+1)
2

, if θ > γλ.

Logarithm λ
log(γ+1)

log(γθ + 1)

MCP

{
λθ − θ2

2γ
, if θ < γλ,

1
2
γλ2, if θ ≥ γλ.

Geman λθ
θ+γ

.
Laplace λ(1− exp(− θ

γ
)).

The low rank structure is an extension of sparsity defined
on the singular values of a matrix. A principled way is to
use the nuclear norm which is a convex surrogate of the
rank function (Recht, Fazel, and Parrilo 2010). However, it
suffers from the same suboptimal issue as the `1-norm in
many cases. Very recently, many popular nonconvex surro-
gate functions in Table 1 are extended on the singular val-
ues to better approximate the rank function (Lu et al. 2014).
However, different from the convex optimization, the non-
convex low rank minimization is much more challenging
than the nonconvex sparse minimization.

The Iteratively Reweighted Nuclear Norm (IRNN)
method is proposed to solve the following nonconvex low
rank minimization problem (Lu et al. 2014)

min
X

F (X) =

m∑
i=1

g(σi(X)) + h(X), (1)

where σi(X) denotes the i-th singular value of X ∈ Rm×n
(we assume m ≤ n in this work). g : R+ → R+ is contin-
uous, concave and nonincreasing on [0,+∞). Popular non-
convex surrogate functions in Table 1 are some examples.
h : Rm×n → R+ is the loss function which has Lipschitz
continuous gradient. IRNN updates Xk+1 by minimizing a
surrogate function which upper bounds the objective func-
tion in (1). The surrogate function is constructed by lineariz-
ing g and h at Xk, simultaneously. In theory, IRNN guaran-
tees to decrease the objective function value of (1) in each
iteration. However, it may decrease slowly since the upper
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Figure 1: Gradients of some nonconvex functions (For `p-
norm, p = 0.5. For all penalties, λ = 1, γ = 1.5).

bound surrogate may be quite loose. It is expected that min-
imizing a tighter surrogate will lead to a faster convergence.

A possible tighter surrogate function of the objective
function in (1) is to keep g and relax h only. This leads to
the following updating rule which is named as Generalized
Proximal Gradient (GPG) method in this work

Xk+1 = arg min
X

m∑
i=1

g(σi(X)) + h(Xk)

+ 〈∇h(Xk),X−Xk〉+
µ

2
||X−Xk||2F

= arg min
X

m∑
i=1

g(σi(X)) +
µ

2
||X−Xk +

1

µ
∇h(Xk)||2F ,

(2)
where µ > L(h), L(h) is the Lipschitz constant of h, guar-
antees the convergence of GPG as shown later. It can be seen
that solving (2) requires solving the following problem

Proxσg (B) = arg min
X

m∑
i=1

g(σi(X)) +
1

2
||X−B||2F . (3)

In this work, the mapping Proxσg (·) is called the Gener-
alized Singular Value Thresholding (GSVT) operator asso-
ciated with the function

∑m
i=1 g(·) defined on the singular

values. If g(x) = λx,
∑m
i=1 g(σi(X)) is degraded to the

convex nuclear norm λ||X||∗. Then (3) has a closed for-
m solution Proxσg (B) = UDiag(Dλ(σ(B)))VT , where
Dλ(σ(B)) = {(σi(B) − λ)+}mi=1, and U and V are from
the SVD of B, i.e., B = UDiag(σ(B))VT . This is the
known Singular Value Thresholding (SVT) operator associ-
ated with the convex nuclear norm (when g(x) = λx) (Cai,
Candès, and Shen 2010). More generally, for a convex g, the
solution to (3) is

Proxσg (B) = UDiag(Proxg(σ(B)))VT , (4)

where Proxg(·) is defined element-wise as follows,

Proxg(b) = arg min
x≥0

fb(x) = g(x) +
1

2
(x− b)2, 1 (5)

1For x < 0, g(x) = g(−x). If b ≥ 0, Proxg(b) ≥ 0. If b < 0,
Proxg(b) = −Proxg(−b). So we only need to discuss the case
b, x ≥ 0 in this work.

where Proxg(·) is the known proximal operator associat-
ed with a convex g (Combettes and Pesquet 2011). That is
to say, solving (3) is equivalent to performing Proxg(·) on
each singular value of B. In this case, the mapping Proxg(·)
is unique, i.e., (5) has a unique solution. More importantly,
Proxg(·) is monotone, i.e., Proxg(x1) ≥ Proxg(x2) for
any x1 ≥ x2. This guarantees to preserve the nonincreasing
order of the singular values after shrinkage and threshold-
ing by the mapping Proxg(·). For a nonconvex g, we still
call Proxg(·) as the proximal operator, but note that such
a mapping may not be unique. It is still an open problem
whether Proxg(·) is monotone or not for a nonconvex g.
Without proving the monotonity of Proxg(·), one cannot
simply perform it on the singular values of B to obtain the
solution to (3) as SVT. Even if Proxg(·) is monotone, since
it is not unique, one also needs to carefully choose the solu-
tion pi ∈ Proxg(σi(B)) such that p1 ≥ p2 ≥ · · · ≥ pm.
Another challenging problem is that there does not exist a
general solver to (5) for a general nonconvex g.

It is worth mentioning that some previous works stud-
ied the solution to (3) for some special choices of non-
convex g (Nie, Huang, and Ding 2012; Chartrand 2012;
Liu et al. 2013a). However, none of their proofs was rig-
orous since they ignored proving the monotone property of
Proxg(·). See the detailed discussions in the next section.
Another recent work (Gu et al. 2014) considered the follow-
ing problem related to the weighted nuclear norm:

min
X

fw,B(X) =

m∑
i=1

wiσi(X) +
1

2
||X−B||2F , (6)

where wi ≥ 0, i = 1, · · · ,m. Problem (6) is a little more
general than (3) by taking different gi(x) = wix. It is
claimed in (Gu et al. 2014) that the solution to (6) is
X∗ = UDiag ({Proxgi(σi(B)), i = 1, · · · ,m})VT , (7)

where B = UDiag(σ(B))VT is the SVD of B, and
Proxgi(σi(B)) = max{σi(B) − wi, 0}. However, such a
result and their proof are not correct. A counterexample is
as follows:

B =

[
0.0941 0.4201
0.5096 0.0089

]
, w =

[
0.5
0.25

]
,

X∗ =

[
−0.0345 0.1287
0.0542 −0.0512

]
, X̂ =

[
0.0130 0.1938
0.1861 −0.0218

]
,

where X∗ is obtained by (7). The solution X∗ is not op-
timal to (6) since there exists X̂ shown above such that
fw,B(X̂) = 0.2262 < fw,B(X∗) = 0.2393. The reason
behind is that
(Prox gi(σi(B))−Prox gj (σj(B)))(σi(B)−σj(B)) ≥ 0,

(8)
does not guarantee to hold for any i 6= j. Note that (8) holds
when 0 ≤ w1 ≤ · · · ≤ wm, and thus (7) is optimal to (6) in
this case.

In this work, we give the first rigorous proof that
Proxg(·) is monotone for any lower bounded function (re-
gardless of the convexity of g). Then solving (3) is degener-
ated to solving (5) for each b = σi(B). The Generalized Sin-
gular Value Thresholding (GSVT) operator Proxσg (·) asso-
ciated with any lower bounded function in (3) is much more



general than the known SVT associated with the convex nu-
clear norm (Cai, Candès, and Shen 2010). In order to com-
pute GSVT, we analyze the solution to (5) for certain types
of g (some special cases are shown in Table 1) in theory, and
propose a general solver to (5). At last, with GSVT, we can
solve (1) by the Generalized Proximal Gradient (GPG) al-
gorithm shown in (2). We test both Iteratively Reweighted
Nuclear Norm (IRNN) and GPG on the matrix completion
problem. Both synthesis and real data experiments show that
GPG outperforms IRNN in terms of the recovery error and
the objective function value.

Generalized Singular Value Thresholding
Problem Reformulation
A main goal of this work is to compute GSVT (3), and uses
it to solve (1). We will show that, if Proxg(·) is monotone,
problem (3) can be reformulated into an equivalent problem
which is much easier to solve.
Lemma 1. (von Neumann’s trace inequality (Rhea 2011))
For any matrices A, B ∈ Rm×n (m ≤ n), Tr(ATB) ≤∑m
i=1 σi(A)σi(B), where σ1(A) ≥ σ2(A) ≥ · · · ≥ 0 and

σ1(B) ≥ σ2(B) ≥ · · · ≥ 0 are the singular values of A
and B, respectively. The equality holds if and only if there
exist unitaries U and V such that A = UDiag(σ(A))VT

and B = UDiag(σ(B))VT are the SVDs of A and B,
simultaneously.
Theorem 1. Let g : R+ → R+ be a function such that
Proxg(·) is monotone. Let B = UDiag(σ(B))VT be the
SVD of B ∈ Rm×n. Then an optimal solution to (3) is

X∗ = UDiag(%∗)VT , (9)

where %∗ satisfies %∗1 ≥ %∗2 ≥ · · · ≥ %∗m, i = 1, · · · ,m, and

%∗i ∈ Proxg(σi(B)) = argmin
%i≥0

g(%i) +
1

2
(%i − σi(B))2.

(10)

Proof. Denote σ1(X) ≥ · · · ≥ σm(X) ≥ 0 as the singular
values of X. Problem (3) can be rewritten as

min
%:%1≥···≥%m≥0

{
min

σ(X)=%

m∑
i=1

g(%i) +
1

2
||X−B||2F

}
.

(11)
By using the von Neumann’s trace inequality in Lemma 1,
we have

||X−B||2F = Tr (XTX)− 2 Tr(XTB) + Tr(BTB)

=

m∑
i=1

σ2
i (X)− 2 Tr(XTB) +

m∑
i=1

σ2
i (B)

≥
m∑
i=1

σ2
i (X)− 2

m∑
i=1

σi(X)σi(B) +

m∑
i=1

σ2
i (B)

=

m∑
i=1

(σi(X)− σi(B))2.

Note that the above equality holds when X admits the sin-
gular value decomposition X = UDiag(σ(X))VT , where

U and V are the left and right orthonormal matrices in the
SVD of B. In this case, problem (11) is reduced to

min
%:%1≥···≥%m≥0

m∑
i=1

(
g(%i) +

1

2
(%i − σi(B))2

)
. (12)

Since Proxg(·) is monotone and σ1(B) ≥ σ2(B) ≥ · · · ≥
σm(B), there exists %∗i ∈ Proxg(σi(B)), such that %∗1 ≥
%∗2 ≥ · · · ≥ %∗m. Such a choice of %∗ is optimal to (12), and
thus (9) is optimal to (3).

From the above proof, it can be seen that the monotone
property of Proxg(·) is a key condition which makes prob-
lem (12) separable conditionally. Thus the solution (9) to
(3) shares a similar formulation as the known Singular Val-
ue Thresholding (SVT) operator associated with the convex
nuclear norm (Cai, Candès, and Shen 2010). Note that for a
convex g, Proxg(·) is always monotone. Indeed,

(Prox g(b1)−Prox g(b2)) (b1 − b2)

≥ (Proxg(b1)−Proxg(b2))
2 ≥ 0, ∀ b1, b2 ∈ R+.

The above inequality can be obtained by the optimality of
Proxg(·) and the convexity of g.

The monotonicity of Proxg(·) for a nonconvex g is stil-
l unknown. There were some previous works (Nie, Huang,
and Ding 2012; Chartrand 2012; Liu et al. 2013a) claiming
that the solution (9) is optimal to (3) for some special choices
of nonconvex g. However, their results are not rigorous since
the monotone property of Proxg(·) is not proved. Surpris-
ingly, we find that the monotone property of Proxg(·) holds
for any lower bounded function g.
Theorem 2. For any lower bounded function g, its prox-
imal operator Proxg(·) is monotone, i.e., for any p∗i ∈
Proxg(xi), i = 1, 2, p∗1 ≥ p∗2, when x1 > x2.

Note that it is possible that σi(B) = σj(B) for some i <
j in (10). Since Proxg(·) may not be unique, we need to
choose %∗i ∈ Proxg(σi(B)) and %∗j ∈ Proxg(σj(B)) such
that %∗i ≤ %∗j . This is the only difference between GSVT and
SVT.

Proximal Operator of Nonconvex Function
So far, we have proved that solving (3) is equivalent to solv-
ing (5) for each b = σi(B), i = 1, · · · ,m, for any lower
bounded function g. For a nonconvex g, only for some spe-
cial cases, the candidate solutions to (5) have a closed form
(Gong et al. 2013). There does not exist a general solver for
a more general nonconvex g. In this section, we analyze the
solution to (5) for a broad choice of the nonconvex g. Then
a general solver will be proposed in the next section.
Assumption 1. g : R+ → R+, g(0) = 0. g is concave, non-
decreasing and differentiable. The gradient∇g is convex.

In this work, we are interested in the nonconvex surrogate
of `0-norm. Except the differentiablity of g and the convexi-
ty of∇g, all the other assumptions in Assumption 1 are nec-
essary for constructing a surrogate of `0-norm. As we will
see later, these two additional assumptions make our analy-
sis much easier. Note that the assumptions for the noncon-
vex function considered in Assumption 1 are quite general.



Algorithm 1: A General Solver to (5) in which g satisfying
Assumption 1

Input: b ≥ 0.
Output: Identify an optimal solution, 0 or

x̂b = max{x|∇fb(x) = 0, 0 ≤ x ≤ b}.
if∇g(b) = 0 then

return x̂b = b;
else

// find x̂b by fixed point iteration.
x0 = b. // Initialization.
while not converge do

xk+1 = b−∇g(xk);
if xk+1 < 0 then

return x̂b = 0;
break;

end
end

end
Compare fb(0) and fb(x̂b) to identify the optimal one.

It is easy to verify that many popular surrogate functions of
`0-norm shown in Table 1 satisfy Assumption 1, including
`p-norm, Logarithm, MCP, Geman and Laplace penalties.
Only the SCAD penalty violates the convex∇g assumption,
as shown in Figure 1.
Proposition 1. Given g satisfying Assumption 1, the opti-
mal solution to (5) lies in [0, b].

The above fact is obvious since both g(x) and 1
2 (x − b)2

are nondecreasing on [b,+∞). Such a result limits the so-
lution space, and thus is very useful for our analysis. Our
general solver to (5) is also based on Proposition 1.

Note that the solutions to (5) lie in 0 or the local
points {x|∇fb(x) = ∇g(x) + x − b = 0}. Our analy-
sis is mainly based on the number of intersection points
of D(x) = ∇g(x) and the line Cb(x) = b − x. Let
b̄ = sup{b | Cb(x) and D(x) have no intersection}. We
have the solution to (5) in different cases. Please refer to the
supplementary material for the detailed proofs.
Proposition 2. Given g satisfying Assumption 1 and
∇g(0) = +∞. Restricted on [0,+∞), when b > b̄, Cb(x)
and D(x) have two intersection points, denoted as P b1 =
(xb1, y

b
1), P b2 = (xb2, y

b
2), and xb1 < xb2. If there does not exist

b > b̄ such that fb(0) = fb(x
b
2), then Proxg(b) = 0 for all

b ≥ 0. If there exists b > b̄ such that fb(0) = fb(x
b
2), let

b∗ = inf{b | fb(0) = fb(x
b
2) }. Then we have

Proxg(b) = argmin
x≥0

fb(x)

{
= xb2, if b > b∗,
3 0, if b ≤ b∗.

Proposition 3. Given g satisfying Assumption 1 and
∇g(0) < +∞. Restricted on [0,+∞), if we have
C∇g(0)(x) = ∇g(0) − x ≤ ∇g(x) for all x ∈ (0,∇g(0)),
then Cb(x) and D(x) have only one intersection point
(xb, yb) when b > ∇g(0). Furthermore,

Proxg(b) = argmin
x≥0

fb(x)

{
= xb, if b > ∇g(0),
3 0, if b ≤ ∇g(0).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
l1

b

P
ro

x g(b
)

(a) `1-norm

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
lp

b

P
ro

x g(b
)

(b) `p-norm

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
mcp

b

P
ro

x g(b
)

(c) MCP

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
logarithm

b

P
ro

x g(b
)

(d) Logarithm

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
laplace

b

P
ro

x g(b
)

(e) Laplace

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
geman

b

P
ro

x g(b
)

(f) Geman

Figure 2: Plots of b v.s. Proxg(b) for different choices of
g: convex `1-norm and popular nonconvex functions which
satisfy Assumption 1 in Table 1.

Suppose there exists 0 < x̂ < ∇g(0) such that C∇g(0)(x̂) =

∇g(0) − x̂ > ∇g(x̂). Then, when ∇g(0) ≥ b > b̄, Cb(x)
andD(x) have two intersection points, which are denoted as
P b1 = (xb1, y

b
1) and P b2 = (xb2, y

b
2) such that xb1 < xb2. When

∇g(0) < b, Cb(x) and D(x) have only one intersection
point (xb, yb). Also, there exists b̃ such that ∇g(0) > b̃ > b̄
and fb̃(0) = fb̃(x

b
2). Let b∗ = inf{b | fb(0) = fb(x

b
2) }. We

have

Proxg(b) = argmin
x≥0

fb(x)

 = xb, if b > ∇g(0),
= xb2, if ∇g(0) ≥ b > b∗,
3 0, if b ≤ b∗.

Corollary 1. Given g satisfying Assumption 1. Denote
x̂b = max{x|∇fb(x) = 0, 0 ≤ x ≤ b} and x∗ =
arg minx∈{0,x̂b} fb(x). Then x∗ is optimal to (5).

The results in Proposition 2 and 3 give the solution to (5)
in different cases, while Corollary 1 summarizes these re-
sults. It can be seen that one only needs to compute x̂b which
is the largest local minimum. Then comparing the objective
function value at 0 and x̂b leads to an optimal solution to (5).

Algorithms
In this section, we first give a general solver to (5) in which g
satisfies Assumption 1. Then we are able to solve the GSVT
problem (3). With GSVT, problem (1) can be solved by Gen-
eralized Proximal Gradient (GPG) algorithm as shown in
(2). We also give the convergence guarantee of GPG.

A General Solver to (5)
Given g satisfying Assumption 1, as shown in Corollary 1,
0 and x̂b = max{x|∇fb(x) = 0, 0 ≤ x ≤ b} are the can-
didate solutions to (5). The left task is to find x̂b which is
the largest local minimum point near x = b. So we can start
searching for x̂b from x0 = b by the fixed point iteration
algorithm. Note that it will be very fast since we only need
to search within [0, b]. The whole procedure to find x̂b can
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Figure 3: Experimental results of low rank matrix recovery on random data. (a) Frequency of Success (FoS) for a noise free
case. (b) Relative error for a noisy case. (c) Convergence curves of IRNN and GPG for a noisy case.

be found in Algorithm 1. In theory, it can be proved that the
fixed point iteration guarantees to find x̂b. Please refer to the
supplementary material for the detailed proof.

If g is nonsmooth or ∇g is nonconvex, the fixed point
iteration algorithm may also be applicable. The key is to find
all the local solutions with smart initial points. Also all the
nonsmooth points should be considered as the candidates.

All the nonconvex surrogates g except SCAD in Table 1
satisfy Assumption 1, and thus the solution Proxg(b) to
(5) can be obtained by Algorithm 1. Figure 2 illustrates the
shrinkage effect of proximal operators of these functions and
the convex `1-norm. The shrinkage and thresholding effect
of these proximal operators are similar when b is relative-
ly small. However, when b is relatively large, the proximal
operators of the nonconvex functions are nearly unbiased,
i.e., keeping b nearly the same as the `0-norm. On the con-
trast, the proximal operator of the convex `1-norm is biased.
In this case, the `1-norm may be over-penalized, and thus
may perform quite differently from the `0-norm. This also
supports the necessity of using nonconvex penalties on the
singular values to approximate the rank function.

Generalized Proximal Gradient Algorithm for (1)
Given g satisfying Assumption 1, we are now able to get
the optimal solution to (3) by (9) and Algorithm 1. Now we
have a better solver than IRNN to solve (1) by the updating
rule (2), or equivalently

Xk+1 = Proxσ1
µ g

(
Xk − 1

µ
∇h(Xk)

)
.

The above updating rule is named as Generalized Proximal
Gradient (GPG) for the nonconvex problem (1). It can be re-
garded as a generalization of previous methods (Beck and
Teboulle 2009; Gong et al. 2013). The main per-iteration
cost of GPG is to compute an SVD. Such per-iteration com-
plexity is the same as many convex methods (Toh and Yun
2010a; Lin, Chen, and Ma 2009). In theory, we have the fol-
lowing convergence results for GPG. Please refer to the de-
tailed convergence proof in the supplementary material.
Theorem 3. If µ > L(h), the sequence {Xk} generated by
(2) satisfies the following properties:
(1) F (Xk) is monotonically decreasing.

(2) lim
k→+∞

(Xk −Xk+1) = 0;

(3) If F (X) → +∞ when ||X||F → +∞, then any limit
point of {Xk} is a stationary point.

It is expected that GPG will decrease the objective func-
tion value faster than IRNN since it uses a tighter surrogate
function. This will be verified by the experiments.

Experiments
In this section, we conduct some experiments on the matrix
completion problem to test our proposed GPG algorithm

min
X

m∑
i=1

g(σi(X)) +
1

2
||PΩ(X)− PΩ(M)||2F , (13)

where Ω is the index set, and PΩ : Rm×n → Rm×n is a lin-
ear operator that keeps the entries in Ω unchanged and those
outside Ω zeros. Given PΩ(M), the goal of matrix comple-
tion is to recover M which is of low rank. Note that we have
many choices of g which satisfies Assumption 1, and we
simply test on the Logarithm penalty, since it is suggest-
ed in (Lu et al. 2014; Candès, Wakin, and Boyd 2008) that
it usually performs well by comparing with other noncon-
vex penalties. Problem (13) can be solved by GPG by using
GSVT (9) in each iteration. We compared GPG with IRNN
on both synthetic and real data. The continuation technique
is used to enhance the low rank matrix recovery in GPG. The
initial value of λ in the Logarithm penalty is set to λ0, and
dynamically decreased till reaching λt.

Low-Rank Matrix Recovery on Random Data
We conduct two experiments on synthetic data without and
with noises (Lu et al. 2014). For the noise free case, we gen-
erate M = M1M2, where M1 ∈ Rm×r, M2 ∈ Rr×n are
i.i.d. random matrices, and m = n = 150. The underlying
rank r varies from 20 to 33. Half of the elements in M are
missing. We set λ0 = 0.9||PΩ(M)||∞, and λt = 10−5λ0.
The relative error RelErr= ||X∗ −M||F /||M||F is used to
evaluate the recovery performance. If RelErr is smaller than
10−3, X∗ is regarded as a successful recovery of M. We
repeat the experiments 100 times for each r. We compare
GPG by using GSVT with IRNN and the convex Augment-
ed Lagrange Multiplier (ALM) (Lin, Chen, and Ma 2009).
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Figure 4: Image inpainting by APGL, IRNN, and GPG.

Figure 3 (a) plots r v.s. the frequency of success. It can be
seen that GPG is slightly better than IRNN when r is rela-
tively small, while both IRNN and GPG fail when r ≥ 32.
Both of them outperform the convex ALM method, since the
nonconvex logarithm penalty approximates the rank func-
tion better than the convex nuclear norm.

For the noisy case, the data matrix M is generated in
the same way, but are added some additional noises 0.1E,
where E is an i.i.d. random matrix. For this task, we set
λ0 = 10||PΩ(M)||∞, and λt = 0.1λ0 in GPG. The con-
vex APGL algorithm (Toh and Yun 2010b) is compared
in this task. Each method is run 100 times for each r ∈
{15, 18, 20, 23, 25, 30}. Figure 3 (b) shows the mean relative
error. It can be seen that GPG by using GSVT in each itera-
tion significantly outperforms IRNN and APGL. The reason
is that λt is not that small as in the noise free case. Thus,
the upper bound surrogate of g in IRNN will be much more
loose than that in GPG. Figure 3 (c) plots some convergence
curves of GPG and IRNN. It can be seen that GPG without
relaxing g will decrease the objective function value faster.

Applications on Real Data
Matrix completion can be applied to image inpainting since
the main information is dominated by the top singular val-
ues. For a color image, assume that 40% of pixels are uni-
formly missing. They can be recovered by applying low rank
matrix completion on each channel (red, green and blue) of
the image independently. Besides the relative error defined
above, we also use the Peak Signal-to-Noise Ratio (PSNR)
to evaluate the recovery performance. Figure 4 shows two
images recovered by APGL, IRNN and GPG, respectively.
It can be seen that GPG achieves the best performance, i.e.,
the largest PSNR value and the smallest relative error.

We also apply matrix completion for collaborative filter-
ing. The task of collaborative filtering is to predict the un-
known preference of a user on a set of unrated items, ac-
cording to other similar users or similar items. We test on the
MovieLens data set (Herlocker et al. 1999) which includes
three problems, “movie-100K”, “movie-1M” and “movie-
10M”. Since only the entries in Ω of M are known, we
use Normalized Mean Absolute Error (NMAE) ||PΩ(X∗)−

PΩ(M)||1/|Ω| to evaluate the performance as in (Toh and
Yun 2010b). As shown in Table 2, GPG achieves the best
performance. The improvement benefits from the GPG al-
gorithm which uses a fast and exact solver of GSVT (9).

Table 2: Comparison of NMAE of APGL, IRNN and GPG
for collaborative filtering.

Problem size of M: (m,n) APGL IRNN GPG
moive-100K (943, 1682) 2.76e-3 2.60e-3 2.53e-3
moive-1M (6040, 3706) 2.66e-1 2.52e-1 2.47e-1
moive-10M (71567, 10677) 3.13e-1 3.01e-1 2.89e-1

Conclusions
This paper studied the Generalized Singular Value Thresh-
olding (GSVT) operator associated with the nonconvex
function g on the singular values. We proved that the prox-
imal operator of any lower bounded function g (denoted
as Proxg(·)) is monotone. Thus, GSVT can be obtained
by performing Proxg(·) on the singular values separate-
ly. Given b ≥ 0, we also proposed a general solver to
find Proxg(b) for certain type of g. At last, we applied the
generalized proximal gradient algorithm by using GSVT as
the subroutine to solve the nonconvex low rank minimiza-
tion problem (1). Experimental results showed that it out-
performed previous method with smaller recovery error and
objective function value.

For nonconvex low rank minimization, GSVT plays the
same role as SVT in convex minimization. One may extend
other convex low rank models to nonconvex cases, and solve
them by using GSVT in place of SVT. An interesting fu-
ture work is to solve the nonconvex low rank minimization
problem with affine constraint by ALM (Lin, Chen, and Ma
2009) and prove the convergence.
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