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1 Ananlysis of the Proximal Operator of Nonconvex Function

In the following development, we consider the following problem
1
Prox,(b) = argm>i€ fo(z) =g(x) + 5(3: —b)?%, ()
=z

where g(z) satisfies the following assumption.
Assumption 1. g : RT — R™, g(0) = 0. g is concave, nondecreasing and differentiable. The gradient V g is convex.

Set Cy(z) = b — x and D(z) = Vg(z). Let b = sup{b | Cy(z) and D(x) have no intersection}, and x5 =
inf{ « | (z,y) is the intersection point of Cj(z) and D(z)}.

1.1 Proof of Proposition 2

Proposition 2. Given g satisfying Assumption 1 and V g(0) = 4o0. Restricted on [0, +00), when b > b, Cy(x) and
D(x) have two intersection points, denoted as P? = (28,4%), P} = (25,v5), and 2% < 8. If there does not exist
b > b such that f,(0) = fy(x%), then Prox,(b) = 0 for all b > 0. If there exists b > b such that f,(0) = f,(25), let
b* =inf{b | b> b, f,(0) = fy(x5) }. Then we have

Prox,(b) = argmin f;,(z)
x>0

b . *
— b, ifb> b
{ 50, ifb<br &)

Remark: When b* exists and b > b*, because D(z) = Vg(x) is convex and decreasing, we can conclude that C(z)
and D(x) have exactly two intersection points. When b < b*, Cy(x) and D(x) may have multiple intersection points.

Proof. When b > b, since V f,(x) = D(x) — Cy(x), we can easily see that f;, is increasing on (0, %), decreasing on
(2%, 25) and increasing on (5, b). So, 0 and 4 are two local minimum points of f,(x) on [0, b].

Case 1 : If there exists b > b such that f;,(0) = f,(25), denote b* = inf{b | b > b, £,(0) = fi(5) }.

First, we consider b > b*. Let b = b* + ¢ for some € > 0. We have

Fo@5) = f5(0)

1 * * * 1 *
25(37!2) —b*—e)? + gz )—5(5 +e)?
1, -

1 «
= (2% —b*)? - 5(b*)2 —e(xh —b*) —eb*

=for (5 ) = for (0) — e}
=—ex3 <0.

Since f;, is decreasing on [z} , 3], we conclude that f,(0) > fy(25 ) > fi(25). So, when b > b*, 4 is the global
minimum of f,(z) on [0, ].
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Second, we consider b < b < b*. We show that f(0) < fo(xh) by contradiction. Suppose that there exists b such that
f5(0) > fy(2h). Since f; is strictly increasing on (0, 25), we have f;(23) > f;(0). Because we have
{ fa(xg) > [5(0),
fo(z3) < £1(0),

by a direct computation, we get

{ 9(95’5)) — 25 Vg(ah) — %( 5)2 >0,
g(23) — a8Vg(a}) — 3(25)* < 0.
According to the intermediate value theorem, there exists & such that #5 < & < #4 and ¢(i) — #Vg(&) — 3(@)?2=0.
Let b= Vg( ) + &. Then, (#,b — ) is the intersection point of Cj(x ) and D(x) such that f;(Z) = f;(0). Since

24 < # < 2} and Vg is convex and nonincreasing, we conclude that b < b < b < b*, which contradicts the minimality
of b*.

Also, when b < b, we have V f,(z) = D(z) — Cy(x) > 0, because D(x) is above Cy(x). So, the global minimum of
fo(z) on [0,0] is 0.

Case 2 : Suppose for all b* > b, fi-(0) # fy-(2}). Since f; is increasing on (0, 5), we have f;(23) > f;(0).
>

L (3
We now show that for all b > b, fi(x5) > f,(0). Suppose this is not true and there exists b such that b > b and
fo(z8) < £,(0). Because we have

by a direct computation, we get

So, according to the intermediate value theorem, there exists Z such that g(Z) — @Vg(Z) — 4(2)? = 0. Let b=
V(&) + &. Then, (Z,b — &) is the intersection point of Cj(z) and D(z) such that f;(Z) = f;(0). Since 24 < & < 23
and Vg is convex and nonincreasing, we conclude that b < b < b, which contradicts fy«(0) # fp- (2b") for all b* > b
So, for all b > b, 0 is the minimum of f,(x) on [0, b]. Similarly, when b < b, we have V fi,(z) = D(z) — Cp(x) >
because D(z) is above Cy(x). So, the global minimum of f;(x) on [0, b] is 0. The proof is completed.

1.2 Proof of Proposition 3

Proposition 3. Given g satisfying Assumption 1 and V g(0) < +oc. Restricted on [0, +00), if we have Cvy (o) () =
Vg(0) — x < Vg(z) for all = € (0,Vg(0)), then Cy(z) and D(z) have only one intersection point (z°,y®) when
b > Vg(0). Furthermore,
_ : =2, ifb> Vg(0),

Prox,(b) = arfgm fol@) { 50, ifb<Vg(0). 3)
Suppose there exists 0 < & < Vg(0) such that Cyy0)(2) = Vg(0) — & > Vg(&). Then, when Vg(0) > b > b,
Cy(z) and D(x) have two intersection points, which are denoted as P? = (2%,vy%) and P} = (xg,ySZsuch that
28 < 2. When Vg(0) < b, Cy(x ') and D(x) have only one intersection point (x®, y®). Also, there exists b such that
Vg(0) > b > band f;(0) = f;(x5). Let b* = inf{b | Vg(0) > b > b, £,(0) = fy(24) }. We have

=ab, ifb>Vyg(0),
Prox,(b) = argmin fy(z) < =25, ifVg(0) > b > b*, 4)
©20 30, ifb<br.

Remark: If b* exists, when b < b*, it is possible that Cy(z) and D(z) have more than two intersection points. If b*
does not exist, when b < Vg(0), it is also possible that Cy(x) and D(x) have more than two intersection points.

Proof. Case 1: Suppose we have C, ) (z) = Vg(0) —x < Vg(x) for all z on (0, Vg(0)). Notice for all b < Vg(0),
we have Vg(z) = D(z) — Cp(z) > 0, so the minimum point of f;(x) is 0. For all b > Vg(0), Cp, = b — z and
D(x) have only one intersection point denoted as (z”, y*). Then, we can easily see that f;, is decreasing on (0, z%) and
increasing on (2%, b). So, when b > Vg(0), the minimum point of f;,(x) is x°.



Case 2 : Suppose there exists 0 < & < Vg(0) such that Cy,)(2) = Vg(0) — & > Vg(Z). Then, D(x) and

Cy(x) have two intersection points, i.e., (0, Vg(())) and (z, Yo, Vg(O))

. It is easily checked that fg ) is strictly
decreasing on (0, =, v )) so we have fvg(o)(arzvg( ) < fvg(0)(0 ) Also, since f; is strictly increasing on (0, z5), we
have f;(«}) > f5(0).
Because we have
fi(zh) > f3(0),
{ Jvg(0) (22 590 )) < fvg0)(0),

by a direct computation, we get

) -3
Vg(0 Vg(0 Vg(0 \%
{gmﬂ<h—%g“vm%“>w—a%

So, according to the intermediate value theorem, there exists Z such that g(Z) —ZVg(Z)—1(#)? = 0. Let b=Vg(i)+
. Then, (&,b — &) is the intersection point of Cj;(x) and D(x) such that f;(Z) = f;(0). Since x2 <T< ng(o) and
Vg is convex and nonincreasing, we conclude that b < b < Vg(0). Next, we set b* = inf{b | b < b < Vg(0), f,(0) =
Jo(28) }.

Given Vg(0) > b > b, we can easily see that f; is increasing on (0,z%), decreasing on (z4,2%) and increasing on
(28, 0). So, 0 and x4 are two local minimum points of f;(z) on [0, b].

Next, for Vg(0) > b > b*, set b = b* + ¢ for some € > 0. We have

fol@y ) = £(0)

1 * * * 1 *
S b 7a2+mx>75@ tep

1 * * * * *
=gl ) = () (e —b) — b
=for (28 ) = for (0 )—El‘z
=—ex; <0.

Since f; is decreasing on (25, %), we conclude that f,(0) > fy(z5 ) > f5(x5). So, when b > b*, 4 is the global
minimum of f,(z) on [0, b].
Then, for all b < b < b*, we show that f,(0) < f;(2%). We prove by contradiction. Suppose that there exists b such
that f,(0) > fy(x5). Because we have i
{ s> 0,
folw3) < £1(0),
by a direct computation, we get )
{ ste—Avoteh —d(abe >0
g(x3) — 23Vg(a}) — 3(a)* < 0.
So, accordmg to the intermediate value theorem, there exists #; such that g(Z1) — #:Vg(#1) — 3(21)? = 0 and
xh < 71 < 2. Letby = Vg(&;) + #;1. Then, (&1,by — 1) is the intersection point of C; (z) and D(z) such that
f3, (@1) = f;,(0). Since 24 < ¥ < 2% and Vg is convex and nonincreasing, we conclude that b < b<b<b*, which
contradicts the minimality of b*.
Next, when b < b, we have V f,(z) = D(x) — Cy(z) > 0, so the global minimum of f;(x) on [0,b] is 0. Also,
when b > Vg(0) , C, = b — z and D(z) have only one intersection point (z°, y°). Then, we can easily see that f; is
decreasing on (0, 2) and increasing on (2%, ). So, when b > V¢(0), the global minimum point of f,(z) is 2°. O

1.3 Proof of Corollary 1

Corollary 1. Given g satisfying Assumption 1 in problem (1). Denote * = max{z|V fy(z) = 0,0 < < b} and
o = argmingc g g0y fo(v). Then x* is optimal to (1), i.e., z* € Proxy(b).



Proof. As shown in Proposition 2 and 3, when b is larger than a certain threshold, Prox,(b) (5 in (2)(4) or 2° in
(3)(4)) is unique. Actually the unique solution is the largest intersection point of Cy(z) and Vg(z), i.e., Prox,(b) =
#* = max{z|V fy(x) = 0,0 < = < b}. For all the other choices of b, 0 € Prox,(b). Thus, 0 and £°, one of them
should be optimal to (1). Thus x* = arg min,¢ 9 50} fo() is optimal to (1). O

2 Proof of Theorem 2

Theorem 2. For any lower bounded function g, its proximal operator Proxy(-) is monotone, i.e., for any p; €
Prox,(z;), i = 1,2, p} > p5, when x1 > xo.

Proof. The lower bound assumption of g guarantees a finite solution to problem (1). By the optimality of p}, ¢ =1, 2,
we have

* 1 * * 1 *
9(p3) + 5 (05 — 21)* = g(p1) + 5 (P — 21)*, (5)
* 1 * 2 * 1 * 2
9(p1) + 5 (P — 22)" 2 g(p2) + 5 (P2 — 22)" (6)
Summing them together gives
(py — 1)+ (P} — 22)* > (pf — 21) + (p} — 32)>. (N
It reduces to
(pT — p3)(z1 —x2) > 0. ®)
Thus p7 > p5 when 21 > . O

3 Convergence Analysis of Algorithm 1

Assume there exists
¥ = max{z|Vfy(z) = Vg(z) +z —b=10,0 <z < b};

otherwise, 0 is a solution to (1).
We only need to prove that the fixed point iteration guarantees to find &°.
First, if Vg(b) = 0, then we have found #° = b.

For the case #° < b, we prove that, the fixed point iteration, starting from xo = b, converges to #®. Indeed, we have
b—Vg(x) < x, forany 2 > 2°.

We prove this by contradiction. Assume there exists Z > #° such that b — Vg(Z) > &. Notice g satisfies Assumption
1. It is easy to see Vg is continuous, decreasing and nonnegative. Then we have b — Vg(b) < b (Vg(b) > 0 since
b > 2%). Thus there must exist some # € (min(b, ¥), max (b, #)) > #° such that b — g(&) = 2. This contradicts the
definition of 2.
So, we have
Tpy1 = b— Vg(a:k) < xg, if zp > :i‘b.

On the other hand, {z}} is lower bounded by #°. So there must exist a limit of {z}}, denoted as #, which is no less
than °. Let k — +o00 on both sides of
Tk+1 = b— vg(‘rk)7

b

and we see that = b — Vg(Z). So, T = 2°,i.e., lim xp = &°.
k—-+4oco

4 Convergence Analysis of Generalized Proximal Gradient Algorithm

Consider the following problem

min F(X) = Z g(0:(X)) + h(X), 9)



where g : Rt — RT is continuous, concave and nonincreasing on [0, +00), and h : R™*™ — R¥ has Lipschitz
continuous gradient with Lipschitz constant L(h). The Generalized Proximal Gradient (GPG) algorithm solves the
above problem by the following updating rule

X4 = argmin 3~ g(03(X)) + h(X*) + (VA(XF), X - X4) + £|X - X* |

i=1

m (10)
. . H . kyi(2
= argm)én;g(ci(X)) X =X+ SR
Then we have the following results.
Theorem 3. If ;1 > L(h), the sequence {X*} generated by (10) satisfies the following properties:
(1) F(X*) is monotonically decreasing. Indeed,
— L(h
R e e I EL
(2) lim (X¥—X*1) =0,
k—+o00
(3) If F(X) — +o0 when ||X||p — 00, then any limit point of {X*} is a stationary point.
Proof. Since X**1 is optimal to (10), we have
Zg (XF) - A(XF) + (VA(XF), X — XF) 4 DI - X
Z 0(X5)) + h(XF) + (VA(XF), X = XF) + 21X — XM % (11
n
=Y g(0i(X¥)).
i=1
On the other hand, since h has Lipschitz continuous gradient, we have [1]
L(h .
A < A(XE) 4 (TR, X4 ) - A e, (12)
Combining (11) and (12) leads to
F(Xk) _ F(Xk+1)
= g(oi(XF)) + h(XF) =Y g(os(XFF)) — (X (13)
i—1 i=1
p— L(h)
S S U
Thus p > L(h) guarantees that F(X*) > F(X*+1).
Summing (13) for k =1,2,---, we get
+oo
1 p — L(h) k41 k(2
F(XY) > =2y X - XH| I (14)
k=1
This implies that
lim (X*F — X*+1) = 0. (15)

k——+oo

Furthermore, since F'(X) — 400 when ||X||r — +o0, {Xk} is bounded. There exist X* and a subsequence {X*i}
such that lim X% = X*. By using (15), we get hm XFki+l = X*. Considering that X*s is optimal to (10), and

Jj—+o0

— >, g(0i(X)) is convex (since g is concave) [3] , there exists Q! € —0 (=327, g(0i(X"+1))) such that
QB4 VR(XE) 4 (X5 - XE) = 0. 16)



Let j — +oo in (16). By the upper semi-continuous property of the subdifferential [2], there exists Q* €
=0 (= >, g(0;(X*))), such that

1=

0=Q"+ Vh(X*) € VF(X¥). 17)
Thus X* is a stationary point to (9). O
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