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1 Ananlysis of the Proximal Operator of Nonconvex Function

In the following development, we consider the following problem

Proxg(b) = arg min
x≥0

fb(x) = g(x) +
1

2
(x− b)2, (1)

where g(x) satisfies the following assumption.
Assumption 1. g : R+ → R+, g(0) = 0. g is concave, nondecreasing and differentiable. The gradient∇g is convex.

Set Cb(x) = b − x and D(x) = ∇g(x). Let b̄ = sup{b | Cb(x) and D(x) have no intersection}, and xb̄2 =
inf{ x | (x, y) is the intersection point of Cb̄(x) and D(x)}.

1.1 Proof of Proposition 2

Proposition 2. Given g satisfying Assumption 1 and ∇g(0) = +∞. Restricted on [0,+∞), when b > b̄, Cb(x) and
D(x) have two intersection points, denoted as P b

1 = (xb1, y
b
1), P b

2 = (xb2, y
b
2), and xb1 < xb2. If there does not exist

b > b̄ such that fb(0) = fb(x
b
2), then Proxg(b) = 0 for all b ≥ 0. If there exists b > b̄ such that fb(0) = fb(x

b
2), let

b∗ = inf{b | b > b̄, fb(0) = fb(x
b
2) }. Then we have

Proxg(b) = argmin
x≥0

fb(x)

{
= xb2, if b > b∗,
3 0, if b ≤ b∗. (2)

Remark: When b∗ exists and b > b∗, because D(x) = ∇g(x) is convex and decreasing, we can conclude that Cb(x)
and D(x) have exactly two intersection points. When b ≤ b∗, Cb(x) and D(x) may have multiple intersection points.

Proof. When b > b̄, since ∇fb(x) = D(x)− Cb(x), we can easily see that fb is increasing on (0, xb1), decreasing on
(xb1, x

b
2) and increasing on (xb2, b). So, 0 and xb2 are two local minimum points of fb(x) on [0, b].

Case 1 : If there exists b > b̄ such that fb(0) = fb(x
b
2), denote b∗ = inf{b | b > b̄, fb(0) = fb(x

b
2) }.

First, we consider b > b∗. Let b = b∗ + ε for some ε > 0. We have

fb(x
b∗

2 )− fb(0)

=
1

2
(xb

∗

2 − b∗ − ε)2 + g(x∗)− 1

2
(b∗ + ε)2

=
1

2
(xb

∗

2 − b∗)2 − 1

2
(b∗)2 − ε(xb

∗

2 − b∗)− εb∗

=fb∗(xb
∗

2 )− fb∗(0)− εx∗2
=− εx∗2 < 0.

Since fb is decreasing on [xb
∗

2 , x
b
2], we conclude that fb(0) > fb(x

b∗

2 ) ≥ fb(x
b
2). So, when b > b∗, xb2 is the global

minimum of fb(x) on [0, b].
∗Corresponding author.
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Second, we consider b̄ < b ≤ b∗. We show that fb(0) ≤ fb(xb2) by contradiction. Suppose that there exists b such that
fb(0) > fb(x

b
2). Since fb̄ is strictly increasing on (0, xb̄2), we have fb̄(x

b̄
2) > fb̄(0). Because we have{

fb̄(x
b̄
2) > fb̄(0),

fb(x
b
2) < fb(0),

by a direct computation, we get {
g(xb̄2)− xb̄2∇g(xb̄2)− 1

2 (xb̄2)2 > 0,
g(xb2)− xb2∇g(xb2)− 1

2 (xb2)2 < 0.

According to the intermediate value theorem, there exists x̃ such that xb̄2 < x̃ < xb2 and g(x̃)− x̃∇g(x̃)− 1
2 (x̃)2 = 0.

Let b̃ = ∇g(x̃) + x̃. Then, (x̃, b̃ − x̃) is the intersection point of Cb̃(x) and D(x) such that fb̃(x̃) = fb̃(0). Since
xb̄2 < x̃ < xb2 and∇g is convex and nonincreasing, we conclude that b̄ < b̃ < b ≤ b∗, which contradicts the minimality
of b∗.

Also, when b ≤ b̄, we have ∇fb(x) = D(x)− Cb(x) ≥ 0, because D(x) is above Cb(x). So, the global minimum of
fb(x) on [0, b] is 0.

Case 2 : Suppose for all b∗ > b̄, fb∗(0) 6= fb∗(xb
∗

2 ). Since fb̄ is increasing on (0, xb̄2), we have fb̄(x
b̄
2) > fb̄(0).

We now show that for all b > b̄, fb(xb2) ≥ fb(0). Suppose this is not true and there exists b such that b > b̄ and
fb(x

b
2) < fb(0). Because we have {

fb̄(x
b̄
2) > fb̄(0),

fb(x
b
2) < fb(0),

by a direct computation, we get {
g(xb̄2)− xb̄2∇g(xb̄2)− 1

2 (xb̄2)2 > 0,
g(xb2)− xb2∇g(xb2)− 1

2 (xb2)2 < 0.

So, according to the intermediate value theorem, there exists x̃ such that g(x̃) − x̃∇g(x̃) − 1
2 (x̃)2 = 0. Let b̃ =

∇g(x̃) + x̃. Then, (x̃, b̃− x̃) is the intersection point of Cb̃(x) and D(x) such that fb̃(x̃) = fb̃(0). Since xb̄2 < x̃ < xb2
and∇g is convex and nonincreasing, we conclude that b̄ < b̃ < b, which contradicts fb∗(0) 6= fb∗(xb

∗

2 ) for all b∗ > b̄.
So, for all b > b̄, 0 is the minimum of fb(x) on [0, b]. Similarly, when b ≤ b̄, we have ∇fb(x) = D(x)− Cb(x) ≥ 0,
because D(x) is above Cb(x). So, the global minimum of fb(x) on [0, b] is 0. The proof is completed.

1.2 Proof of Proposition 3

Proposition 3. Given g satisfying Assumption 1 and ∇g(0) < +∞. Restricted on [0,+∞), if we have C∇g(0)(x) =

∇g(0) − x ≤ ∇g(x) for all x ∈ (0,∇g(0)), then Cb(x) and D(x) have only one intersection point (xb, yb) when
b > ∇g(0). Furthermore,

Proxg(b) = argmin
x≥0

fb(x)

{
= xb, if b > ∇g(0),
3 0, if b ≤ ∇g(0).

(3)

Suppose there exists 0 < x̂ < ∇g(0) such that C∇g(0)(x̂) = ∇g(0) − x̂ > ∇g(x̂). Then, when ∇g(0) ≥ b > b̄,
Cb(x) and D(x) have two intersection points, which are denoted as P b

1 = (xb1, y
b
1) and P b

2 = (xb2, y
b
2) such that

xb1 < xb2. When ∇g(0) < b, Cb(x) and D(x) have only one intersection point (xb, yb). Also, there exists b̃ such that
∇g(0) > b̃ > b̄ and fb̃(0) = fb̃(x

b̃
2). Let b∗ = inf{b | ∇g(0) > b̃ > b̄, fb(0) = fb(x

b
2) }. We have

Proxg(b) = argmin
x≥0

fb(x)

 = xb, if b > ∇g(0),
= xb2, if ∇g(0) ≥ b > b∗,
3 0, if b ≤ b∗.

(4)

Remark: If b∗ exists, when b ≤ b∗, it is possible that Cb(x) and D(x) have more than two intersection points. If b∗
does not exist, when b ≤ ∇g(0), it is also possible that Cb(x) and D(x) have more than two intersection points.

Proof. Case 1 : Suppose we have Cg′(0)(x) = ∇g(0)−x ≤ ∇g(x) for all x on (0,∇g(0)). Notice for all b ≤ ∇g(0),
we have ∇g(x) = D(x) − Cb(x) ≥ 0, so the minimum point of fb(x) is 0. For all b > ∇g(0), Cb = b − x and
D(x) have only one intersection point denoted as (xb, yb). Then, we can easily see that fb is decreasing on (0, xb) and
increasing on (xb, b). So, when b > ∇g(0), the minimum point of fb(x) is xb.
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Case 2 : Suppose there exists 0 < x̂ < ∇g(0) such that C∇g(0)(x̂) = ∇g(0) − x̂ > ∇g(x̂). Then, D(x) and
Cb(x) have two intersection points, i.e., (0,∇g(0)) and (x

∇g(0)
2 , y

∇g(0)
2 ). It is easily checked that f∇g(0) is strictly

decreasing on (0, x
∇g(0)
2 ), so we have f∇g(0)(x

∇g(0)
2 ) < f∇g(0)(0). Also, since fb̄ is strictly increasing on (0, xb̄2), we

have fb̄(x
b̄
2) > fb̄(0).

Because we have {
fb̄(x

b̄
2) > fb̄(0),

f∇g(0)(x
∇g(0)
2 ) < f∇g(0)(0),

by a direct computation, we get{
g(xb̄2)− xb̄2∇g(xb̄2)− 1

2 (xb̄2)2 > 0,

g(x
∇g(0)
2 )− x∇g(0)

2 ∇g(x
∇g(0)
2 )− 1

2 (x
∇g(0)
2 )2 < 0.

So, according to the intermediate value theorem, there exists x̃ such that g(x̃)−x̃∇g(x̃)− 1
2 (x̃)2 = 0. Let b̃ = ∇g(x̃)+

x̃. Then, (x̃, b̃− x̃) is the intersection point of Cb̃(x) and D(x) such that fb̃(x̃) = fb̃(0). Since xb̄2 < x̃ < x
∇g(0)
2 and

∇g is convex and nonincreasing, we conclude that b̄ < b̃ < ∇g(0). Next, we set b∗ = inf{b | b̄ < b̃ < ∇g(0), fb(0) =
fb(x

b
2) }.

Given ∇g(0) ≥ b > b̄, we can easily see that fb is increasing on (0, xb1), decreasing on (xb1, x
b
2) and increasing on

(xb2, b). So, 0 and xb2 are two local minimum points of fb(x) on [0, b].

Next, for∇g(0) ≥ b > b∗, set b = b∗ + ε for some ε > 0. We have

fb(x
b∗

2 )− fb(0)

=
1

2
(xb

∗

2 − b∗ − ε)2 + g(x∗)− 1

2
(b∗ + ε)2

=
1

2
(xb

∗

2 − b∗)2 − 1

2
(b∗)2 − ε(xb

∗

2 − b∗)− εb∗

=fb∗(xb
∗

2 )− fb∗(0)− εx∗2
=− εx∗2 < 0.

Since fb is decreasing on (xb
∗

2 , x
b
2), we conclude that fb(0) > fb(x

b∗

2 ) ≥ fb(x
b
2). So, when b > b∗, xb2 is the global

minimum of fb(x) on [0, b].

Then, for all b̄ < b ≤ b∗, we show that fb(0) ≤ fb(x
b
2). We prove by contradiction. Suppose that there exists b such

that fb(0) > fb(x
b
2). Because we have {

fb̄(x
b̄
2) > fb̄(0),

fb(x
b
2) < fb(0),

by a direct computation, we get {
g(xb̄2)− xb̄2∇g(xb̄2)− 1

2 (xb̄2)2 > 0,
g(xb2)− xb2∇g(xb2)− 1

2 (xb2)2 < 0.

So, according to the intermediate value theorem, there exists x̃1 such that g(x̃1) − x̃1∇g(x̃1) − 1
2 (x̃1)2 = 0 and

xb̄2 < x̃1 < xb2. Let b̃1 = ∇g(x̃1) + x̃1. Then, (x̃1, b̃1 − x̃1) is the intersection point of Cb̃1
(x) and D(x) such that

fb̃1(x̃1) = fb̃1(0). Since xb̄2 < x̃ < xb2 and ∇g is convex and nonincreasing, we conclude that b̄ < b̃ < b ≤ b∗, which
contradicts the minimality of b∗.

Next, when b ≤ b̄, we have ∇fb(x) = D(x) − Cb(x) ≥ 0, so the global minimum of fb(x) on [0, b] is 0. Also,
when b > ∇g(0) , Cb = b− x and D(x) have only one intersection point (xb, yb). Then, we can easily see that fb is
decreasing on (0, xb) and increasing on (xb, b). So, when b > ∇g(0), the global minimum point of fb(x) is xb.

1.3 Proof of Corollary 1

Corollary 1. Given g satisfying Assumption 1 in problem (1). Denote x̂b = max{x|∇fb(x) = 0, 0 ≤ x ≤ b} and
x∗ = arg minx∈{0,x̂b} fb(x). Then x∗ is optimal to (1), i.e., x∗ ∈ Proxg(b).
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Proof. As shown in Proposition 2 and 3, when b is larger than a certain threshold, Proxg(b) (xb2 in (2)(4) or xb in
(3)(4)) is unique. Actually the unique solution is the largest intersection point of Cb(x) and ∇g(x), i.e., Proxg(b) =
x̂b = max{x|∇fb(x) = 0, 0 ≤ x ≤ b}. For all the other choices of b, 0 ∈ Proxg(b). Thus, 0 and x̂b, one of them
should be optimal to (1). Thus x∗ = arg minx∈{0,x̂b} fb(x) is optimal to (1).

2 Proof of Theorem 2

Theorem 2. For any lower bounded function g, its proximal operator Proxg(·) is monotone, i.e., for any p∗i ∈
Proxg(xi), i = 1, 2, p∗1 ≥ p∗2, when x1 > x2.

Proof. The lower bound assumption of g guarantees a finite solution to problem (1). By the optimality of p∗i , i = 1, 2,
we have

g(p∗2) +
1

2
(p∗2 − x1)2 ≥ g(p∗1) +

1

2
(p∗1 − x1)2, (5)

g(p∗1) +
1

2
(p∗1 − x2)2 ≥ g(p∗2) +

1

2
(p∗2 − x2)2. (6)

Summing them together gives

(p∗2 − x1)2 + (p∗1 − x2)2 ≥ (p∗1 − x1)2 + (p∗2 − x2)2. (7)

It reduces to
(p∗1 − p∗2)(x1 − x2) ≥ 0. (8)

Thus p∗1 ≥ p∗2 when x1 > x2.

3 Convergence Analysis of Algorithm 1

Assume there exists
x̂b = max{x|∇fb(x) = ∇g(x) + x− b = 0, 0 ≤ x ≤ b};

otherwise, 0 is a solution to (1).

We only need to prove that the fixed point iteration guarantees to find x̂b.

First, if∇g(b) = 0, then we have found x̂b = b.

For the case x̂b < b, we prove that, the fixed point iteration, starting from x0 = b, converges to x̂b. Indeed, we have

b−∇g(x) < x, for any x > x̂b.

We prove this by contradiction. Assume there exists x̃ > x̂b such that b−∇g(x̃) > x̃. Notice g satisfies Assumption
1. It is easy to see ∇g is continuous, decreasing and nonnegative. Then we have b − ∇g(b) < b (∇g(b) > 0 since
b > x̂b). Thus there must exist some x̂ ∈ (min(b, x̃),max(b, x̃)) > x̂b such that b − g(x̂) = x̂. This contradicts the
definition of x̂b.

So, we have
xk+1 = b−∇g(xk) < xk, if xk > x̂b.

On the other hand, {xk} is lower bounded by x̂b. So there must exist a limit of {xk}, denoted as x̄, which is no less
than x̂b. Let k → +∞ on both sides of

xk+1 = b−∇g(xk),

and we see that x̄ = b−∇g(x̄). So, x̄ = x̂b, i.e., lim
k→+∞

xk = x̂b.

4 Convergence Analysis of Generalized Proximal Gradient Algorithm

Consider the following problem

min
X

F (X) =

m∑
i=1

g(σi(X)) + h(X), (9)

4



where g : R+ → R+ is continuous, concave and nonincreasing on [0,+∞), and h : Rm×n → R+ has Lipschitz
continuous gradient with Lipschitz constant L(h). The Generalized Proximal Gradient (GPG) algorithm solves the
above problem by the following updating rule

Xk+1 = arg min
X

m∑
i=1

g(σi(X)) + h(Xk) + 〈∇h(Xk),X−Xk〉+
µ

2
||X−Xk||2F

= arg min
X

m∑
i=1

g(σi(X)) +
µ

2
||X−Xk +

1

µ
∇h(Xk)||2F .

(10)

Then we have the following results.
Theorem 3. If µ > L(h), the sequence {Xk} generated by (10) satisfies the following properties:

(1) F (Xk) is monotonically decreasing. Indeed,

F (Xk)− F (Xk+1) ≥ µ− L(h)

2
||Xk −Xk+1||2F ≥ 0;

(2) lim
k→+∞

(Xk −Xk+1) = 0;

(3) If F (X)→ +∞ when ||X||F → +∞, then any limit point of {Xk} is a stationary point.

Proof. Since Xk+1 is optimal to (10), we have
m∑
i=1

g(σi(X
k+1)) + h(Xk) + 〈∇h(Xk),Xk+1 −Xk〉+

µ

2
||Xk+1 −Xk||2F

≤
m∑
i=1

g(σi(X
k)) + h(Xk) + 〈∇h(Xk),Xk −Xk〉+

µ

2
||Xk −Xk||2F

=

m∑
i=1

g(σi(X
k)).

(11)

On the other hand, since h has Lipschitz continuous gradient, we have [1]

h(Xk+1) ≤ h(Xk) + 〈∇h(Xk),Xk+1 −Xk〉+
L(h)

2
||Xk+1 −Xk||2F . (12)

Combining (11) and (12) leads to

F (Xk)− F (Xk+1)

=

m∑
i=1

g(σi(X
k)) + h(Xk)−

m∑
i=1

g(σi(X
k+1))− h(Xk+1)

≥µ− L(h)

2
||Xk+1 −Xk||2F .

(13)

Thus µ > L(h) guarantees that F (Xk) ≥ F (Xk+1).

Summing (13) for k = 1, 2, · · · , we get

F (X1) ≥ µ− L(h)

2

+∞∑
k=1

||Xk+1 −Xk||2F . (14)

This implies that
lim

k→+∞
(Xk −Xk+1) = 0. (15)

Furthermore, since F (X)→ +∞ when ||X||F → +∞, {Xk} is bounded. There exist X∗ and a subsequence {Xkj}
such that lim

j→+∞
Xkj = X∗. By using (15), we get lim

j→+∞
Xkj+1 = X∗. Considering that Xkj is optimal to (10), and

−
∑m

i=1 g(σi(X)) is convex (since g is concave) [3] , there exists Qkj+1 ∈ −∂
(
−
∑m

i=1 g(σi(X
kj+1))

)
such that

Qkj+1 +∇h(Xkj ) + µ(Xkj+1 −Xkj ) = 0. (16)
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Let j → +∞ in (16). By the upper semi-continuous property of the subdifferential [2], there exists Q∗ ∈
−∂ (−

∑m
i=1 g(σi(X

∗))), such that
0 = Q∗ +∇h(X∗) ∈ ∇F (X∗). (17)

Thus X∗ is a stationary point to (9).
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