Supplementary Material of Generalized Singular Value Thresholding

Canyi Lu ${ }^{1}$, Changbo Zhu ${ }^{1}$, Chunyan $\mathbf{X u}^{2}$, Shuicheng Yan ${ }^{1}$, Zhouchen Lin ${ }^{3, *}$
${ }^{1}$ Department of Electrical and Computer Engineering, National University of Singapore
${ }^{2}$ School of Computer Science and Technology, Huazhong University of Science and Technology
${ }^{3}$ Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
canyilu@nus.edu.sg, zhuchangbo@gmail.com, xuchunyan01@gmail.com, eleyans@nus.edu.sg, zlin@pku.edu.cn

1 Ananlysis of the Proximal Operator of Nonconvex Function

In the following development, we consider the following problem

$$
\begin{equation*}
\operatorname{Prox}_{g}(b)=\arg \min _{x \geq 0} f_{b}(x)=g(x)+\frac{1}{2}(x-b)^{2}, \tag{1}
\end{equation*}
$$

where $g(x)$ satisfies the following assumption.
Assumption 1. $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, g(0)=0$. g is concave, nondecreasing and differentiable. The gradient ∇g is convex.
Set $C_{b}(x)=b-x$ and $D(x)=\nabla g(x)$. Let $\bar{b}=\sup \left\{b \mid C_{b}(x)\right.$ and $D(x)$ have no intersection $\}$, and $x_{2}^{\bar{b}}=$ $\inf \left\{x \mid(x, y)\right.$ is the intersection point of $C_{\bar{b}}(x)$ and $\left.D(x)\right\}$.

1.1 Proof of Proposition 2

Proposition 2. Given g satisfying Assumption 1 and $\nabla g(0)=+\infty$. Restricted on $[0,+\infty)$, when $b>\bar{b}, C_{b}(x)$ and $D(x)$ have two intersection points, denoted as $P_{1}^{b}=\left(x_{1}^{b}, y_{1}^{b}\right), P_{2}^{b}=\left(x_{2}^{b}, y_{2}^{b}\right)$, and $x_{1}^{b}<x_{2}^{b}$. If there does not exist $b>\bar{b}$ such that $f_{b}(0)=f_{b}\left(x_{2}^{b}\right)$, then $\operatorname{Prox}_{g}(b)=0$ for all $b \geq 0$. If there exists $b>b$ such that $f_{b}(0)=f_{b}\left(x_{2}^{b}\right)$, let $b^{*}=\inf \left\{b \mid b>\bar{b}, f_{b}(0)=f_{b}\left(x_{2}^{b}\right)\right\}$. Then we have

$$
\operatorname{Prox}_{g}(b)=\underset{x \geq 0}{\operatorname{argmin}} f_{b}(x) \begin{cases}=x_{2}^{b}, & \text { if } b>b^{*} \tag{2}\\ \ni 0, & \text { if } b \leq b^{*}\end{cases}
$$

Remark: When b^{*} exists and $b>b^{*}$, because $D(x)=\nabla g(x)$ is convex and decreasing, we can conclude that $C_{b}(x)$ and $D(x)$ have exactly two intersection points. When $b \leq b^{*}, C_{b}(x)$ and $D(x)$ may have multiple intersection points.

Proof. When $b>\bar{b}$, since $\nabla f_{b}(x)=D(x)-C_{b}(x)$, we can easily see that f_{b} is increasing on $\left(0, x_{1}^{b}\right)$, decreasing on $\left(x_{1}^{b}, x_{2}^{b}\right)$ and increasing on $\left(x_{2}^{b}, b\right)$. So, 0 and x_{2}^{b} are two local minimum points of $f_{b}(x)$ on $[0, b]$.
Case 1 : If there exists $b>\bar{b}$ such that $f_{b}(0)=f_{b}\left(x_{2}^{b}\right)$, denote $b^{*}=\inf \left\{b \mid b>\bar{b}, f_{b}(0)=f_{b}\left(x_{2}^{b}\right)\right\}$.
First, we consider $b>b^{*}$. Let $b=b^{*}+\varepsilon$ for some $\varepsilon>0$. We have

$$
\begin{aligned}
& f_{b}\left(x_{2}^{b^{*}}\right)-f_{b}(0) \\
= & \frac{1}{2}\left(x_{2}^{b^{*}}-b^{*}-\varepsilon\right)^{2}+g\left(x^{*}\right)-\frac{1}{2}\left(b^{*}+\varepsilon\right)^{2} \\
= & \frac{1}{2}\left(x_{2}^{b^{*}}-b^{*}\right)^{2}-\frac{1}{2}\left(b^{*}\right)^{2}-\varepsilon\left(x_{2}^{b^{*}}-b^{*}\right)-\varepsilon b^{*} \\
= & f_{b^{*}}\left(x_{2}^{b^{*}}\right)-f_{b^{*}}(0)-\varepsilon x_{2}^{*} \\
= & -\varepsilon x_{2}^{*}<0 .
\end{aligned}
$$

Since f_{b} is decreasing on $\left[x_{2}^{b^{*}}, x_{2}^{b}\right]$, we conclude that $f_{b}(0)>f_{b}\left(x_{2}^{b^{*}}\right) \geq f_{b}\left(x_{2}^{b}\right)$. So, when $b>b^{*}, x_{2}^{b}$ is the global minimum of $f_{b}(x)$ on $[0, b]$.

[^0]Second, we consider $\bar{b}<b \leq b^{*}$. We show that $f_{b}(0) \leq f_{b}\left(x_{2}^{b}\right)$ by contradiction. Suppose that there exists b such that $f_{b}(0)>f_{b}\left(x_{2}^{b}\right)$. Since $f_{\bar{b}}$ is strictly increasing on $\left(0, x_{2}^{\bar{b}}\right)$, we have $f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0)$. Because we have

$$
\left\{\begin{array}{l}
f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0) \\
f_{b}\left(x_{2}^{b}\right)<f_{b}(0)
\end{array}\right.
$$

by a direct computation, we get

$$
\left\{\begin{array}{l}
g\left(x_{2}^{\bar{b}}\right)-x_{2}^{\bar{b}} \nabla g\left(x_{2}^{\bar{b}}\right)-\frac{1}{2}\left(x_{2}^{\bar{b}}\right)^{2}>0, \\
g\left(x_{2}^{b}\right)-x_{2}^{b} \nabla g\left(x_{2}^{b}\right)-\frac{1}{2}\left(x_{2}^{b}\right)^{2}<0 .
\end{array}\right.
$$

According to the intermediate value theorem, there exists \tilde{x} such that $x_{2}^{\bar{b}}<\tilde{x}<x_{2}^{b}$ and $g(\tilde{x})-\tilde{x} \nabla g(\tilde{x})-\frac{1}{2}(\tilde{x})^{2}=0$. Let $\tilde{b}=\nabla g(\tilde{x})+\tilde{x}$. Then, $(\tilde{x}, \tilde{b}-\tilde{x})$ is the intersection point of $C_{\tilde{b}}(x)$ and $D(x)$ such that $f_{\tilde{b}}(\tilde{x})=f_{\tilde{b}}(0)$. Since $x_{2}^{\bar{b}}<\tilde{x}<x_{2}^{b}$ and ∇g is convex and nonincreasing, we conclude that $\bar{b}<\tilde{b}<b \leq b^{*}$, which contradicts the minimality of b^{*}.

Also, when $b \leq \bar{b}$, we have $\nabla f_{b}(x)=D(x)-C_{b}(x) \geq 0$, because $D(x)$ is above $C_{b}(x)$. So, the global minimum of $f_{b}(x)$ on $[0, b]$ is 0 .
Case 2: Suppose for all $b^{*}>\bar{b}, f_{b^{*}}(0) \neq f_{b^{*}}\left(x_{2}^{b^{*}}\right)$. Since $f_{\bar{b}}$ is increasing on $\left(0, x_{2}^{\bar{b}}\right)$, we have $f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0)$. We now show that for all $b>\bar{b}, f_{b}\left(x_{2}^{b}\right) \geq f_{b}(0)$. Suppose this is not true and there exists b such that $b>\bar{b}$ and $f_{b}\left(x_{2}^{b}\right)<f_{b}(0)$. Because we have

$$
\left\{\begin{array}{l}
f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0), \\
f_{b}\left(x_{2}^{b}\right)<f_{b}(0),
\end{array}\right.
$$

by a direct computation, we get

$$
\left\{\begin{array}{l}
g\left(x_{2}^{\bar{b}}\right)-x_{2}^{\bar{b}} \nabla g\left(x_{2}^{\bar{b}}\right)-\frac{1}{2}\left(x_{2}^{\bar{b}}\right)^{2}>0 \\
g\left(x_{2}^{b}\right)-x_{2}^{b} \nabla g\left(x_{2}^{b}\right)-\frac{1}{2}\left(x_{2}^{b}\right)^{2}<0
\end{array}\right.
$$

So, according to the intermediate value theorem, there exists \tilde{x} such that $g(\tilde{x})-\tilde{x} \nabla g(\tilde{x})-\frac{1}{2}(\tilde{x})^{2}=0$. Let $\tilde{b}=$ $\nabla g(\tilde{x})+\tilde{x}$. Then, $(\tilde{x}, \tilde{b}-\tilde{x})$ is the intersection point of $C_{\tilde{b}}(\underset{\tilde{b}}{x})$ and $D(x)$ such that $f_{\tilde{b}}(\tilde{x})=f_{\tilde{b}}(0)$. Since $x_{2}^{\bar{b}}<\tilde{x}<x_{2}^{b}$ and ∇g is convex and nonincreasing, we conclude that $\bar{b}<\tilde{b}<b$, which contradicts $f_{b^{*}}(0) \neq f_{b^{*}}\left(x_{2}^{b^{*}}\right)$ for all $b^{*}>\bar{b}$. So, for all $b>\bar{b}, 0$ is the minimum of $f_{b}(x)$ on $[0, b]$. Similarly, when $b \leq \bar{b}$, we have $\nabla f_{b}(x)=D(x)-C_{b}(x) \geq 0$, because $D(x)$ is above $C_{b}(x)$. So, the global minimum of $f_{b}(x)$ on $[0, b]$ is 0 . The proof is completed.

1.2 Proof of Proposition 3

Proposition 3. Given g satisfying Assumption 1 and $\nabla g(0)<+\infty$. Restricted on $[0,+\infty)$, if we have $C_{\nabla g(0)}(x)=$ $\nabla g(0)-x \leq \nabla g(x)$ for all $x \in(0, \nabla g(0))$, then $C_{b}(x)$ and $D(x)$ have only one intersection point $\left(x^{b}, y^{b}\right)$ when $b>\nabla g(0)$. Furthermore,

$$
\operatorname{Prox}_{g}(b)=\underset{x \geq 0}{\operatorname{argmin}_{x}} f_{b}(x) \begin{cases}=x^{b}, & \text { if } b>\nabla g(0), \tag{3}\\ \ni 0, & \text { if } b \leq \nabla g(0) .\end{cases}
$$

Suppose there exists $0<\hat{x}<\nabla g(0)$ such that $C_{\nabla g(0)}(\hat{x})=\nabla g(0)-\hat{x}>\nabla g(\hat{x})$. Then, when $\nabla g(0) \geq b>\bar{b}$, $C_{b}(x)$ and $D(x)$ have two intersection points, which are denoted as $P_{1}^{b}=\left(x_{1}^{b}, y_{1}^{b}\right)$ and $P_{2}^{b}=\left(x_{2}^{b}, y_{2}^{b}\right)$ such that $x_{1}^{b}<x_{2}^{b}$. When $\nabla g(0)<b, C_{b}(x)$ and $D(x)$ have only one intersection point $\left(x^{b}, y^{b}\right)$. Also, there exists \tilde{b} such that $\nabla g(0)>\tilde{b}>\bar{b}$ and $f_{\tilde{b}}(0)=f_{\tilde{b}}\left(x_{2}^{b}\right)$. Let $b^{*}=\inf \left\{b \mid \nabla g(0)>\tilde{b}>\bar{b}, f_{b}(0)=f_{b}\left(x_{2}^{b}\right)\right\}$. We have

$$
\operatorname{Prox}_{g}(b)=\underset{x \geq 0}{\operatorname{argmin}} f_{b}(x) \begin{cases}=x^{b}, & \text { if } b>\nabla g(0) \tag{4}\\ =x_{2}^{b}, & \text { if } \nabla g(0) \geq b>b^{*} \\ \ni 0, & \text { if } b \leq b^{*}\end{cases}
$$

Remark: If b^{*} exists, when $b \leq b^{*}$, it is possible that $C_{b}(x)$ and $D(x)$ have more than two intersection points. If b^{*} does not exist, when $b \leq \nabla g(0)$, it is also possible that $C_{b}(x)$ and $D(x)$ have more than two intersection points.

Proof. Case 1 : Suppose we have $C_{g^{\prime}(0)}(x)=\nabla g(0)-x \leq \nabla g(x)$ for all x on $(0, \nabla g(0))$. Notice for all $b \leq \nabla g(0)$, we have $\nabla g(x)=D(x)-C_{b}(x) \geq 0$, so the minimum point of $f_{b}(x)$ is 0 . For all $b>\nabla g(0), C_{b}=b-x$ and $D(x)$ have only one intersection point denoted as $\left(x^{b}, y^{b}\right)$. Then, we can easily see that f_{b} is decreasing on $\left(0, x^{b}\right)$ and increasing on $\left(x^{b}, b\right)$. So, when $b>\nabla g(0)$, the minimum point of $f_{b}(x)$ is x^{b}.

Case 2 : Suppose there exists $0<\hat{x}<\nabla g(0)$ such that $C_{\nabla g(0)}(\hat{x})=\nabla g(0)-\hat{x}>\nabla g(\hat{x})$. Then, $D(x)$ and $C_{b}(x)$ have two intersection points, i.e., $(0, \nabla g(0))$ and $\left(x_{2}^{\nabla g(0)}, y_{2}^{\nabla g(0)}\right)$. It is easily checked that $f_{\nabla g(0)}$ is strictly decreasing on $\left(0, x_{2}^{\nabla g(0)}\right)$, so we have $f_{\nabla g(0)}\left(x_{2}^{\nabla g(0)}\right)<f_{\nabla g(0)}(0)$. Also, since $f_{\bar{b}}$ is strictly increasing on $\left(0, x_{2}^{\bar{b}}\right)$, we have $f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0)$.
Because we have

$$
\left\{\begin{aligned}
f_{\bar{b}}\left(x_{2}^{\bar{b}}\right) & >f_{\bar{b}}(0) \\
f_{\nabla g(0)}\left(x_{2}^{\nabla g(0)}\right) & <f_{\nabla g(0)}(0),
\end{aligned}\right.
$$

by a direct computation, we get

$$
\left\{\begin{aligned}
g\left(x_{2}^{\bar{b}}\right)-x_{2}^{\bar{b}} \nabla g\left(x_{2}^{\bar{b}}\right)-\frac{1}{2}\left(x_{2}^{\bar{b}}\right)^{2} & >0 \\
g\left(x_{2}^{\nabla g(0)}\right)-x_{2}^{\nabla g(0)} \nabla g\left(x_{2}^{\nabla g(0)}\right)-\frac{1}{2}\left(x_{2}^{\nabla g(0)}\right)^{2} & <0 .
\end{aligned}\right.
$$

So, according to the intermediate value theorem, there exists \tilde{x} such that $g(\tilde{x})-\tilde{x} \nabla g(\tilde{x})-\frac{1}{2}(\tilde{x})^{2}=0$. Let $\tilde{b}=\nabla g(\tilde{x})+$ \tilde{x}. Then, $(\tilde{x}, \tilde{b}-\tilde{x})$ is the intersection point of $C_{\tilde{b}}(x)$ and $D(x)$ such that $f_{\tilde{b}}(\tilde{x})=f_{\tilde{b}}(0)$. Since $x_{2}^{\bar{b}}<\tilde{x}<x_{2}^{\nabla g(0)}$ and ∇g is convex and nonincreasing, we conclude that $\bar{b}<\tilde{b}<\nabla g(0)$. Next, we set $b^{*}=\inf \left\{b \mid \bar{b}<\tilde{b}<\nabla g(0), f_{b}(0)=\right.$ $\left.f_{b}\left(x_{2}^{b}\right)\right\}$.
Given $\nabla g(0) \geq b>\bar{b}$, we can easily see that f_{b} is increasing on $\left(0, x_{1}^{b}\right)$, decreasing on $\left(x_{1}^{b}, x_{2}^{b}\right)$ and increasing on $\left(x_{2}^{b}, b\right)$. So, 0 and x_{2}^{b} are two local minimum points of $f_{b}(x)$ on $[0, b]$.
Next, for $\nabla g(0) \geq b>b^{*}$, set $b=b^{*}+\varepsilon$ for some $\varepsilon>0$. We have

$$
\begin{aligned}
& f_{b}\left(x_{2}^{b^{*}}\right)-f_{b}(0) \\
= & \frac{1}{2}\left(x_{2}^{b^{*}}-b^{*}-\varepsilon\right)^{2}+g\left(x^{*}\right)-\frac{1}{2}\left(b^{*}+\varepsilon\right)^{2} \\
= & \frac{1}{2}\left(x_{2}^{b^{*}}-b^{*}\right)^{2}-\frac{1}{2}\left(b^{*}\right)^{2}-\varepsilon\left(x_{2}^{b^{*}}-b^{*}\right)-\varepsilon b^{*} \\
= & f_{b^{*}}\left(x_{2}^{b^{*}}\right)-f_{b^{*}}(0)-\varepsilon x_{2}^{*} \\
= & -\varepsilon x_{2}^{*}<0 .
\end{aligned}
$$

Since f_{b} is decreasing on $\left(x_{2}^{b^{*}}, x_{2}^{b}\right)$, we conclude that $f_{b}(0)>f_{b}\left(x_{2}^{b^{*}}\right) \geq f_{b}\left(x_{2}^{b}\right)$. So, when $b>b^{*}, x_{2}^{b}$ is the global minimum of $f_{b}(x)$ on $[0, b]$.
Then, for all $\bar{b}<b \leq b^{*}$, we show that $f_{b}(0) \leq f_{b}\left(x_{2}^{b}\right)$. We prove by contradiction. Suppose that there exists b such that $f_{b}(0)>f_{b}\left(x_{2}^{b}\right)$. Because we have

$$
\left\{\begin{array}{l}
f_{\bar{b}}\left(x_{2}^{\bar{b}}\right)>f_{\bar{b}}(0) \\
f_{b}\left(x_{2}^{b}\right)<f_{b}(0)
\end{array}\right.
$$

by a direct computation, we get

$$
\left\{\begin{array}{l}
g\left(x_{2}^{\bar{b}}\right)-x_{2}^{\bar{b}} \nabla g\left(x_{2}^{\bar{b}}\right)-\frac{1}{2}\left(x_{2}^{\bar{b}}\right)^{2}>0 \\
g\left(x_{2}^{b}\right)-x_{2}^{b} \nabla g\left(x_{2}^{b}\right)-\frac{1}{2}\left(x_{2}^{b}\right)^{2}<0
\end{array}\right.
$$

So, according to the intermediate value theorem, there exists \tilde{x}_{1} such that $g\left(\tilde{x}_{1}\right)-\tilde{x}_{1} \nabla g\left(\tilde{x}_{1}\right)-\frac{1}{2}\left(\tilde{x}_{1}\right)^{2}=0$ and $x_{2}^{\bar{b}}<\tilde{x}_{1}<x_{2}^{b}$. Let $\tilde{b}_{1}=\nabla g\left(\tilde{x}_{1}\right)+\tilde{x}_{1}$. Then, $\left(\tilde{x}_{1}, \tilde{b}_{1}-\tilde{x}_{1}\right)$ is the intersection point of $C_{\tilde{b}_{1}}(x)$ and $D(x)$ such that $f_{\tilde{b}_{1}}\left(\tilde{x}_{1}\right)=f_{\tilde{b}_{1}}(0)$. Since $x_{2}^{\bar{b}}<\tilde{x}<x_{2}^{b}$ and ∇g is convex and nonincreasing, we conclude that $\bar{b}<\tilde{b}<b \leq b^{*}$, which contradicts the minimality of b^{*}.
Next, when $b \leq \bar{b}$, we have $\nabla f_{b}(x)=D(x)-C_{b}(x) \geq 0$, so the global minimum of $f_{b}(x)$ on $[0, b]$ is 0 . Also, when $b>\nabla g(\overline{0}), C_{b}=b-x$ and $D(x)$ have only one intersection point $\left(x^{b}, y^{b}\right)$. Then, we can easily see that f_{b} is decreasing on $\left(0, x^{b}\right)$ and increasing on $\left(x^{b}, b\right)$. So, when $b>\nabla g(0)$, the global minimum point of $f_{b}(x)$ is x^{b}.

1.3 Proof of Corollary 1

Corollary 1. Given g satisfying Assumption 1 in problem (1). Denote $\hat{x}^{b}=\max \left\{x \mid \nabla f_{b}(x)=0,0 \leq x \leq b\right\}$ and $x^{*}=\arg \min _{x \in\left\{0, \hat{x}^{b}\right\}} f_{b}(x)$. Then x^{*} is optimal to (1), i.e., $x^{*} \in \operatorname{Prox}_{g}(b)$.

Proof. As shown in Proposition 2 and 3, when b is larger than a certain threshold, $\operatorname{Prox}_{g}(b)\left(x_{2}^{b}\right.$ in (2)(4) or x^{b} in (3)(4)) is unique. Actually the unique solution is the largest intersection point of $C_{b}(x)$ and $\nabla g(x)$, i.e., $\operatorname{Prox}_{g}(b)=$ $\hat{x}^{b}=\max \left\{x \mid \nabla f_{b}(x)=0,0 \leq x \leq b\right\}$. For all the other choices of $b, 0 \in \operatorname{Prox}_{g}(b)$. Thus, 0 and \hat{x}^{b}, one of them should be optimal to (1). Thus $x^{*}=\arg \min _{x \in\left\{0, \hat{x}^{b}\right\}} f_{b}(x)$ is optimal to (1).

2 Proof of Theorem 2

Theorem 2. For any lower bounded function g, its proximal operator $\operatorname{Prox}_{g}(\cdot)$ is monotone, i.e., for any $p_{i}^{*} \in$ $\operatorname{Prox}_{g}\left(x_{i}\right), i=1,2, p_{1}^{*} \geq p_{2}^{*}$, when $x_{1}>x_{2}$.

Proof. The lower bound assumption of g guarantees a finite solution to problem (1). By the optimality of $p_{i}^{*}, i=1,2$, we have

$$
\begin{align*}
& g\left(p_{2}^{*}\right)+\frac{1}{2}\left(p_{2}^{*}-x_{1}\right)^{2} \geq g\left(p_{1}^{*}\right)+\frac{1}{2}\left(p_{1}^{*}-x_{1}\right)^{2}, \tag{5}\\
& g\left(p_{1}^{*}\right)+\frac{1}{2}\left(p_{1}^{*}-x_{2}\right)^{2} \geq g\left(p_{2}^{*}\right)+\frac{1}{2}\left(p_{2}^{*}-x_{2}\right)^{2} \tag{6}
\end{align*}
$$

Summing them together gives

$$
\begin{equation*}
\left(p_{2}^{*}-x_{1}\right)^{2}+\left(p_{1}^{*}-x_{2}\right)^{2} \geq\left(p_{1}^{*}-x_{1}\right)^{2}+\left(p_{2}^{*}-x_{2}\right)^{2} \tag{7}
\end{equation*}
$$

It reduces to

$$
\begin{equation*}
\left(p_{1}^{*}-p_{2}^{*}\right)\left(x_{1}-x_{2}\right) \geq 0 \tag{8}
\end{equation*}
$$

Thus $p_{1}^{*} \geq p_{2}^{*}$ when $x_{1}>x_{2}$.

3 Convergence Analysis of Algorithm 1

Assume there exists

$$
\hat{x}^{b}=\max \left\{x \mid \nabla f_{b}(x)=\nabla g(x)+x-b=0,0 \leq x \leq b\right\}
$$

otherwise, 0 is a solution to (1).
We only need to prove that the fixed point iteration guarantees to find \hat{x}^{b}.
First, if $\nabla g(b)=0$, then we have found $\hat{x}^{b}=b$.
For the case $\hat{x}^{b}<b$, we prove that, the fixed point iteration, starting from $x_{0}=b$, converges to \hat{x}^{b}. Indeed, we have

$$
b-\nabla g(x)<x, \text { for any } x>\hat{x}^{b}
$$

We prove this by contradiction. Assume there exists $\tilde{x}>\hat{x}^{b}$ such that $b-\nabla g(\tilde{x})>\tilde{x}$. Notice g satisfies Assumption 1. It is easy to see ∇g is continuous, decreasing and nonnegative. Then we have $b-\nabla g(b)<b(\nabla g(b)>0$ since $\left.b>\hat{x}^{b}\right)$. Thus there must exist some $\hat{x} \in(\min (b, \tilde{x}), \max (b, \tilde{x}))>\hat{x}^{b}$ such that $b-g(\hat{x})=\hat{x}$. This contradicts the definition of \hat{x}^{b}.
So, we have

$$
x_{k+1}=b-\nabla g\left(x_{k}\right)<x_{k}, \text { if } x_{k}>\hat{x}^{b} .
$$

On the other hand, $\left\{x_{k}\right\}$ is lower bounded by \hat{x}^{b}. So there must exist a limit of $\left\{x_{k}\right\}$, denoted as \bar{x}, which is no less than \hat{x}^{b}. Let $k \rightarrow+\infty$ on both sides of

$$
x_{k+1}=b-\nabla g\left(x_{k}\right)
$$

and we see that $\bar{x}=b-\nabla g(\bar{x})$. So, $\bar{x}=\hat{x}^{b}$, i.e., $\lim _{k \rightarrow+\infty} x_{k}=\hat{x}^{b}$.

4 Convergence Analysis of Generalized Proximal Gradient Algorithm

Consider the following problem

$$
\begin{equation*}
\min _{\mathbf{X}} F(\mathbf{X})=\sum_{i=1}^{m} g\left(\sigma_{i}(\mathbf{X})\right)+h(\mathbf{X}), \tag{9}
\end{equation*}
$$

where $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous, concave and nonincreasing on $[0,+\infty)$, and $h: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{+}$has Lipschitz continuous gradient with Lipschitz constant $L(h)$. The Generalized Proximal Gradient (GPG) algorithm solves the above problem by the following updating rule

$$
\begin{align*}
\mathbf{X}^{k+1} & =\arg \min _{\mathbf{X}} \sum_{i=1}^{m} g\left(\sigma_{i}(\mathbf{X})\right)+h\left(\mathbf{X}^{k}\right)+\left\langle\nabla h\left(\mathbf{X}^{k}\right), \mathbf{X}-\mathbf{X}^{k}\right\rangle+\frac{\mu}{2}\left\|\mathbf{X}-\mathbf{X}^{k}\right\|_{F}^{2} \tag{10}\\
& =\arg \min _{\mathbf{X}} \sum_{i=1}^{m} g\left(\sigma_{i}(\mathbf{X})\right)+\frac{\mu}{2}\left\|\mathbf{X}-\mathbf{X}^{k}+\frac{1}{\mu} \nabla h\left(\mathbf{X}^{k}\right)\right\|_{F}^{2}
\end{align*}
$$

Then we have the following results.
Theorem 3. If $\mu>L(h)$, the sequence $\left\{\mathbf{X}^{k}\right\}$ generated by (10) satisfies the following properties:
(1) $F\left(\mathbf{X}^{k}\right)$ is monotonically decreasing. Indeed,

$$
F\left(\mathbf{X}^{k}\right)-F\left(\mathbf{X}^{k+1}\right) \geq \frac{\mu-L(h)}{2}\left\|\mathbf{X}^{k}-\mathbf{X}^{k+1}\right\|_{F}^{2} \geq 0
$$

(2) $\lim _{k \rightarrow+\infty}\left(\mathbf{X}^{k}-\mathbf{X}^{k+1}\right)=\mathbf{0}$;
(3) If $F(\mathbf{X}) \rightarrow+\infty$ when $\|\mathbf{X}\|_{F} \rightarrow+\infty$, then any limit point of $\left\{\mathbf{X}^{k}\right\}$ is a stationary point.

Proof. Since \mathbf{X}^{k+1} is optimal to (10), we have

$$
\begin{align*}
& \sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k+1}\right)\right)+h\left(\mathbf{X}^{k}\right)+\left\langle\nabla h\left(\mathbf{X}^{k}\right), \mathbf{X}^{k+1}-\mathbf{X}^{k}\right\rangle+\frac{\mu}{2}\left\|\mathbf{X}^{k+1}-\mathbf{X}^{k}\right\|_{F}^{2} \\
\leq & \sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k}\right)\right)+h\left(\mathbf{X}^{k}\right)+\left\langle\nabla h\left(\mathbf{X}^{k}\right), \mathbf{X}^{k}-\mathbf{X}^{k}\right\rangle+\frac{\mu}{2}\left\|\mathbf{X}^{k}-\mathbf{X}^{k}\right\|_{F}^{2} \tag{11}\\
= & \sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k}\right)\right) .
\end{align*}
$$

On the other hand, since h has Lipschitz continuous gradient, we have [1]

$$
\begin{equation*}
h\left(\mathbf{X}^{k+1}\right) \leq h\left(\mathbf{X}^{k}\right)+\left\langle\nabla h\left(\mathbf{X}^{k}\right), \mathbf{X}^{k+1}-\mathbf{X}^{k}\right\rangle+\frac{L(h)}{2}\left\|\mathbf{X}^{k+1}-\mathbf{X}^{k}\right\|_{F}^{2} \tag{12}
\end{equation*}
$$

Combining (11) and (12) leads to

$$
\begin{align*}
& F\left(\mathbf{X}^{k}\right)-F\left(\mathbf{X}^{k+1}\right) \\
= & \sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k}\right)\right)+h\left(\mathbf{X}^{k}\right)-\sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k+1}\right)\right)-h\left(\mathbf{X}^{k+1}\right) \tag{13}\\
\geq & \frac{\mu-L(h)}{2}\left\|\mathbf{X}^{k+1}-\mathbf{X}^{k}\right\|_{F}^{2} .
\end{align*}
$$

Thus $\mu>L(h)$ guarantees that $F\left(\mathbf{X}^{k}\right) \geq F\left(\mathbf{X}^{k+1}\right)$.
Summing (13) for $k=1,2, \cdots$, we get

$$
\begin{equation*}
F\left(\mathbf{X}^{1}\right) \geq \frac{\mu-L(h)}{2} \sum_{k=1}^{+\infty}\left\|\mathbf{X}^{k+1}-\mathbf{X}^{k}\right\|_{F}^{2} \tag{14}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left(\mathbf{X}^{k}-\mathbf{X}^{k+1}\right)=\mathbf{0} \tag{15}
\end{equation*}
$$

Furthermore, since $F(\mathbf{X}) \rightarrow+\infty$ when $\|\mathbf{X}\|_{F} \rightarrow+\infty,\left\{\mathbf{X}^{k}\right\}$ is bounded. There exist \mathbf{X}^{*} and a subsequence $\left\{\mathbf{X}^{k_{j}}\right\}$ such that $\lim _{j \rightarrow+\infty} \mathbf{X}^{k_{j}}=\mathbf{X}^{*}$. By using (15), we get $\lim _{j \rightarrow+\infty} \mathbf{X}^{k_{j}+1}=\mathbf{X}^{*}$. Considering that $\mathbf{X}^{k_{j}}$ is optimal to (10), and $-\sum_{i=1}^{m} g\left(\sigma_{i}(\mathbf{X})\right)$ is convex (since g is concave) [3] , there exists $\mathbf{Q}^{k_{j}+1} \in-\partial\left(-\sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{k_{j}+1}\right)\right)\right)$ such that

$$
\begin{equation*}
\mathbf{Q}^{k_{j}+1}+\nabla h\left(\mathbf{X}^{k_{j}}\right)+\mu\left(\mathbf{X}^{k_{j}+1}-\mathbf{X}^{k_{j}}\right)=\mathbf{0} \tag{16}
\end{equation*}
$$

Let $j \rightarrow+\infty$ in (16). By the upper semi-continuous property of the subdifferential [2], there exists $\mathbf{Q}^{*} \in$ $-\partial\left(-\sum_{i=1}^{m} g\left(\sigma_{i}\left(\mathbf{X}^{*}\right)\right)\right)$, such that

$$
\begin{equation*}
\mathbf{0}=\mathbf{Q}^{*}+\nabla h\left(\mathbf{X}^{*}\right) \in \nabla F\left(\mathbf{X}^{*}\right) \tag{17}
\end{equation*}
$$

Thus \mathbf{X}^{*} is a stationary point to (9).

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009.
[2] Frank Clarke. Nonsmooth analysis and optimization. In Proceedings of the International Congress of Mathematicians, 1983.
[3] Adrian S Lewis and Hristo S Sendov. Nonsmooth analysis of singular values. Part I: Theory. Set-Valued Analysis, 13(3):213241, 2005.

[^0]: * Corresponding author.

