Supplementary Material of Generalized Singular Value Thresholding

Canyi Lu¹, Changbo Zhu¹, Chunyan Xu², Shuicheng Yan¹, Zhouchen Lin^{3,*}

¹ Department of Electrical and Computer Engineering, National University of Singapore
 ² School of Computer Science and Technology, Huazhong University of Science and Technology
 ³ Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

canyilu@nus.edu.sg, zhuchangbo@gmail.com, xuchunyan01@gmail.com, eleyans@nus.edu.sg, zlin@pku.edu.cn

1 Ananlysis of the Proximal Operator of Nonconvex Function

In the following development, we consider the following problem

$$\mathbf{Prox}_g(b) = \arg\min_{x \ge 0} f_b(x) = g(x) + \frac{1}{2}(x-b)^2,$$
(1)

where g(x) satisfies the following assumption.

Assumption 1. $g : \mathbb{R}^+ \to \mathbb{R}^+$, g(0) = 0. g is concave, nondecreasing and differentiable. The gradient ∇g is convex.

Set $C_b(x) = b - x$ and $D(x) = \nabla g(x)$. Let $\overline{b} = \sup\{b \mid C_b(x) \text{ and } D(x) \text{ have no intersection}\}$, and $x_2^{\overline{b}} = \inf\{x \mid (x, y) \text{ is the intersection point of } C_{\overline{b}}(x) \text{ and } D(x)\}$.

1.1 **Proof of Proposition 2**

Proposition 2. Given g satisfying Assumption 1 and $\nabla g(0) = +\infty$. Restricted on $[0, +\infty)$, when $b > \overline{b}$, $C_b(x)$ and D(x) have two intersection points, denoted as $P_1^b = (x_1^b, y_1^b)$, $P_2^b = (x_2^b, y_2^b)$, and $x_1^b < x_2^b$. If there does not exist $b > \overline{b}$ such that $f_b(0) = f_b(x_2^b)$, then $\operatorname{Prox}_g(b) = 0$ for all $b \ge 0$. If there exists $b > \overline{b}$ such that $f_b(0) = f_b(x_2^b)$, then $\operatorname{Prox}_g(b) = 0$ for all $b \ge 0$. If there exists $b > \overline{b}$ such that $f_b(0) = f_b(x_2^b)$, let $b^* = \inf\{b \mid b > \overline{b}, f_b(0) = f_b(x_2^b)\}$. Then we have

$$\mathbf{Prox}_g(b) = \operatorname*{argmin}_{x \ge 0} f_b(x) \begin{cases} = x_2^b, & \text{if } b > b^*, \\ \ni 0, & \text{if } b \le b^*. \end{cases}$$
(2)

Remark: When b^* exists and $b > b^*$, because $D(x) = \nabla g(x)$ is convex and decreasing, we can conclude that $C_b(x)$ and D(x) have exactly two intersection points. When $b \le b^*$, $C_b(x)$ and D(x) may have multiple intersection points.

Proof. When $b > \overline{b}$, since $\nabla f_b(x) = D(x) - C_b(x)$, we can easily see that f_b is increasing on $(0, x_1^b)$, decreasing on (x_1^b, x_2^b) and increasing on (x_2^b, b) . So, 0 and x_2^b are two local minimum points of $f_b(x)$ on [0, b].

Case 1 : If there exists $b > \overline{b}$ such that $f_b(0) = f_b(x_2^b)$, denote $b^* = \inf\{b \mid b > \overline{b}, f_b(0) = f_b(x_2^b)\}$.

First, we consider $b > b^*$. Let $b = b^* + \varepsilon$ for some $\varepsilon > 0$. We have

$$\begin{aligned} f_b(x_2^{b^*}) &- f_b(0) \\ = &\frac{1}{2}(x_2^{b^*} - b^* - \varepsilon)^2 + g(x^*) - \frac{1}{2}(b^* + \varepsilon)^2 \\ = &\frac{1}{2}(x_2^{b^*} - b^*)^2 - \frac{1}{2}(b^*)^2 - \varepsilon(x_2^{b^*} - b^*) - \varepsilon b^* \\ = &f_{b^*}(x_2^{b^*}) - f_{b^*}(0) - \varepsilon x_2^* \\ = &-\varepsilon x_2^* < 0. \end{aligned}$$

Since f_b is decreasing on $[x_2^{b^*}, x_2^b]$, we conclude that $f_b(0) > f_b(x_2^{b^*}) \ge f_b(x_2^b)$. So, when $b > b^*$, x_2^b is the global minimum of $f_b(x)$ on [0, b].

^{*}Corresponding author.

Second, we consider $\bar{b} < b \le b^*$. We show that $f_b(0) \le f_b(x_2^b)$ by contradiction. Suppose that there exists b such that $f_b(0) > f_b(x_2^b)$. Since $f_{\bar{b}}$ is strictly increasing on $(0, x_2^{\bar{b}})$, we have $f_{\bar{b}}(x_2^{\bar{b}}) > f_{\bar{b}}(0)$. Because we have

$$\begin{cases} f_{\bar{b}}(x_2^b) > f_{\bar{b}}(0), \\ f_b(x_2^b) < f_b(0), \end{cases}$$

by a direct computation, we get

$$\begin{cases} g(x_2^b) - x_2^b \nabla g(x_2^b) - \frac{1}{2} (x_2^b)^2 > 0, \\ g(x_2^b) - x_2^b \nabla g(x_2^b) - \frac{1}{2} (x_2^b)^2 < 0. \end{cases}$$

According to the intermediate value theorem, there exists \tilde{x} such that $x_2^{\overline{b}} < \tilde{x} < x_2^b$ and $g(\tilde{x}) - \tilde{x}\nabla g(\tilde{x}) - \frac{1}{2}(\tilde{x})^2 = 0$. Let $\tilde{b} = \nabla g(\tilde{x}) + \tilde{x}$. Then, $(\tilde{x}, \tilde{b} - \tilde{x})$ is the intersection point of $C_{\overline{b}}(x)$ and D(x) such that $f_{\overline{b}}(\tilde{x}) = f_{\overline{b}}(0)$. Since $x_2^{\overline{b}} < \tilde{x} < x_2^b$ and ∇g is convex and nonincreasing, we conclude that $\overline{b} < \tilde{b} < b \le b^*$, which contradicts the minimality of b^* .

Also, when $b \leq \overline{b}$, we have $\nabla f_b(x) = D(x) - C_b(x) \geq 0$, because D(x) is above $C_b(x)$. So, the global minimum of $f_b(x)$ on [0, b] is 0.

Case 2 : Suppose for all $b^* > \overline{b}$, $f_{b^*}(0) \neq f_{b^*}(x_2^{b^*})$. Since $f_{\overline{b}}$ is increasing on $(0, x_2^{\overline{b}})$, we have $f_{\overline{b}}(x_2^{\overline{b}}) > f_{\overline{b}}(0)$. We now show that for all $b > \overline{b}$, $f_b(x_2^b) \ge f_b(0)$. Suppose this is not true and there exists b such that $b > \overline{b}$ and $f_b(x_2^b) < f_b(0)$. Because we have

$$\begin{cases} f_{\bar{b}}(x_2^{\bar{b}}) > f_{\bar{b}}(0), \\ f_b(x_2^{\bar{b}}) < f_b(0), \end{cases}$$

by a direct computation, we get

$$\left\{ \begin{array}{l} g(x_2^{\bar{b}}) - x_2^{\bar{b}} \nabla g(x_2^{\bar{b}}) - \frac{1}{2} (x_2^{\bar{b}})^2 > 0, \\ g(x_2^{b}) - x_2^{b} \nabla g(x_2^{b}) - \frac{1}{2} (x_2^{b})^2 < 0. \end{array} \right.$$

So, according to the intermediate value theorem, there exists \tilde{x} such that $g(\tilde{x}) - \tilde{x}\nabla g(\tilde{x}) - \frac{1}{2}(\tilde{x})^2 = 0$. Let $\tilde{b} = \nabla g(\tilde{x}) + \tilde{x}$. Then, $(\tilde{x}, \tilde{b} - \tilde{x})$ is the intersection point of $C_{\tilde{b}}(x)$ and D(x) such that $f_{\tilde{b}}(\tilde{x}) = f_{\tilde{b}}(0)$. Since $x_2^{\tilde{b}} < \tilde{x} < x_2^{b}$ and ∇g is convex and nonincreasing, we conclude that $\tilde{b} < \tilde{b} < b$, which contradicts $f_{b^*}(0) \neq f_{b^*}(x_2^{b^*})$ for all $b^* > \tilde{b}$. So, for all $b > \tilde{b}$, 0 is the minimum of $f_b(x)$ on [0, b]. Similarly, when $b \leq \tilde{b}$, we have $\nabla f_b(x) = D(x) - C_b(x) \geq 0$, because D(x) is above $C_b(x)$. So, the global minimum of $f_b(x)$ on [0, b] is 0. The proof is completed.

1.2 **Proof of Proposition 3**

Proposition 3. Given g satisfying Assumption 1 and $\nabla g(0) < +\infty$. Restricted on $[0, +\infty)$, if we have $C_{\nabla g(0)}(x) = \nabla g(0) - x \leq \nabla g(x)$ for all $x \in (0, \nabla g(0))$, then $C_b(x)$ and D(x) have only one intersection point (x^b, y^b) when $b > \nabla g(0)$. Furthermore,

$$\mathbf{Prox}_{g}(b) = \operatorname*{argmin}_{x \ge 0} f_{b}(x) \begin{cases} = x^{b}, & \text{if } b > \nabla g(0), \\ \ni 0, & \text{if } b \le \nabla g(0). \end{cases}$$
(3)

Suppose there exists $0 < \hat{x} < \nabla g(0)$ such that $C_{\nabla g(0)}(\hat{x}) = \nabla g(0) - \hat{x} > \nabla g(\hat{x})$. Then, when $\nabla g(0) \ge b > \bar{b}$, $C_b(x)$ and D(x) have two intersection points, which are denoted as $P_1^b = (x_1^b, y_1^b)$ and $P_2^b = (x_2^b, y_2^b)$ such that $x_1^b < x_2^b$. When $\nabla g(0) < b$, $C_b(x)$ and D(x) have only one intersection point (x^b, y^b) . Also, there exists \tilde{b} such that $\nabla g(0) > \tilde{b} > \bar{b}$ and $f_{\tilde{b}}(0) = f_{\tilde{b}}(x_2^{\tilde{b}})$. Let $b^* = \inf\{b \mid \nabla g(0) > \tilde{b} > \bar{b}, f_b(0) = f_b(x_2^b)\}$. We have

$$\mathbf{Prox}_{g}(b) = \operatorname*{argmin}_{x \ge 0} f_{b}(x) \begin{cases} = x^{b}, & \text{if } b > \nabla g(0), \\ = x^{b}_{2}, & \text{if } \nabla g(0) \ge b > b^{*}, \\ \ni 0, & \text{if } b \le b^{*}. \end{cases}$$
(4)

Remark: If b^* exists, when $b \le b^*$, it is possible that $C_b(x)$ and D(x) have more than two intersection points. If b^* does not exist, when $b \le \nabla g(0)$, it is also possible that $C_b(x)$ and D(x) have more than two intersection points.

Proof. Case 1 : Suppose we have $C_{g'(0)}(x) = \nabla g(0) - x \le \nabla g(x)$ for all x on $(0, \nabla g(0))$. Notice for all $b \le \nabla g(0)$, we have $\nabla g(x) = D(x) - C_b(x) \ge 0$, so the minimum point of $f_b(x)$ is 0. For all $b > \nabla g(0)$, $C_b = b - x$ and D(x) have only one intersection point denoted as (x^b, y^b) . Then, we can easily see that f_b is decreasing on $(0, x^b)$ and increasing on (x^b, b) . So, when $b > \nabla g(0)$, the minimum point of $f_b(x)$ is x^b .

Case 2 : Suppose there exists $0 < \hat{x} < \nabla g(0)$ such that $C_{\nabla g(0)}(\hat{x}) = \nabla g(0) - \hat{x} > \nabla g(\hat{x})$. Then, D(x) and $C_b(x)$ have two intersection points, i.e., $(0, \nabla g(0))$ and $(x_2^{\nabla g(0)}, y_2^{\nabla g(0)})$. It is easily checked that $f_{\nabla g(0)}$ is strictly decreasing on $(0, x_2^{\nabla g(0)})$, so we have $f_{\nabla g(0)}(x_2^{\nabla g(0)}) < f_{\nabla g(0)}(0)$. Also, since $f_{\bar{b}}$ is strictly increasing on $(0, x_2^{\bar{b}}) > f_{\bar{b}}(0)$.

Because we have

$$\begin{cases} f_{\bar{b}}(x_2^b) > f_{\bar{b}}(0), \\ f_{\nabla g(0)}(x_2^{\nabla g(0)}) < f_{\nabla g(0)}(0), \end{cases}$$

by a direct computation, we get

$$\begin{cases} g(x_2^{\bar{b}}) - x_2^{\bar{b}} \nabla g(x_2^{\bar{b}}) - \frac{1}{2} (x_2^{\bar{b}})^2 &> 0, \\ g(x_2^{\nabla g(0)}) - x_2^{\nabla g(0)} \nabla g(x_2^{\nabla g(0)}) - \frac{1}{2} (x_2^{\nabla g(0)})^2 &< 0. \end{cases}$$

So, according to the intermediate value theorem, there exists \tilde{x} such that $g(\tilde{x}) - \tilde{x} \nabla g(\tilde{x}) - \frac{1}{2} (\tilde{x})^2 = 0$. Let $\tilde{b} = \nabla g(\tilde{x}) + \tilde{x}$. Then, $(\tilde{x}, \tilde{b} - \tilde{x})$ is the intersection point of $C_{\tilde{b}}(x)$ and D(x) such that $f_{\tilde{b}}(\tilde{x}) = f_{\tilde{b}}(0)$. Since $x_2^{\tilde{b}} < \tilde{x} < x_2^{\nabla g(0)}$ and ∇g is convex and nonincreasing, we conclude that $\tilde{b} < \tilde{b} < \nabla g(0)$. Next, we set $b^* = \inf\{b \mid \bar{b} < \tilde{b} < \nabla g(0), f_b(0) = f_b(x_2^b)\}$.

Given $\nabla g(0) \ge b > \overline{b}$, we can easily see that f_b is increasing on $(0, x_1^b)$, decreasing on (x_1^b, x_2^b) and increasing on (x_2^b, b) . So, 0 and x_2^b are two local minimum points of $f_b(x)$ on [0, b].

Next, for $\nabla g(0) \ge b > b^*$, set $b = b^* + \varepsilon$ for some $\varepsilon > 0$. We have

$$f_b(x_2^{b^*}) - f_b(0)$$

= $\frac{1}{2}(x_2^{b^*} - b^* - \varepsilon)^2 + g(x^*) - \frac{1}{2}(b^* + \varepsilon)^2$
= $\frac{1}{2}(x_2^{b^*} - b^*)^2 - \frac{1}{2}(b^*)^2 - \varepsilon(x_2^{b^*} - b^*) - \varepsilon b^*$
= $f_{b^*}(x_2^{b^*}) - f_{b^*}(0) - \varepsilon x_2^*$
= $-\varepsilon x_2^* < 0.$

Since f_b is decreasing on $(x_2^{b^*}, x_2^b)$, we conclude that $f_b(0) > f_b(x_2^{b^*}) \ge f_b(x_2^b)$. So, when $b > b^*$, x_2^b is the global minimum of $f_b(x)$ on [0, b].

Then, for all $\bar{b} < b \le b^*$, we show that $f_b(0) \le f_b(x_2^b)$. We prove by contradiction. Suppose that there exists b such that $f_b(0) > f_b(x_2^b)$. Because we have

$$\begin{cases} f_{\bar{b}}(x_2^b) > f_{\bar{b}}(0), \\ f_b(x_2^b) < f_b(0), \end{cases}$$

by a direct computation, we get

$$\begin{cases} g(x_2^{\bar{b}}) - x_2^{\bar{b}} \nabla g(x_2^{\bar{b}}) - \frac{1}{2} (x_2^{\bar{b}})^2 > 0, \\ g(x_2^{b}) - x_2^{b} \nabla g(x_2^{b}) - \frac{1}{2} (x_2^{b})^2 < 0. \end{cases}$$

So, according to the intermediate value theorem, there exists \tilde{x}_1 such that $g(\tilde{x}_1) - \tilde{x}_1 \nabla g(\tilde{x}_1) - \frac{1}{2}(\tilde{x}_1)^2 = 0$ and $x_2^{\bar{b}} < \tilde{x}_1 < x_2^{\bar{b}}$. Let $\tilde{b}_1 = \nabla g(\tilde{x}_1) + \tilde{x}_1$. Then, $(\tilde{x}_1, \tilde{b}_1 - \tilde{x}_1)$ is the intersection point of $C_{\tilde{b}_1}(x)$ and D(x) such that $f_{\tilde{b}_1}(\tilde{x}_1) = f_{\tilde{b}_1}(0)$. Since $x_2^{\bar{b}} < \tilde{x} < x_2^{\bar{b}}$ and ∇g is convex and nonincreasing, we conclude that $\bar{b} < \tilde{b} < b \le b^*$, which contradicts the minimality of b^* .

Next, when $b \leq \overline{b}$, we have $\nabla f_b(x) = D(x) - C_b(x) \geq 0$, so the global minimum of $f_b(x)$ on [0, b] is 0. Also, when $b > \nabla g(0)$, $C_b = b - x$ and D(x) have only one intersection point (x^b, y^b) . Then, we can easily see that f_b is decreasing on $(0, x^b)$ and increasing on (x^b, b) . So, when $b > \nabla g(0)$, the global minimum point of $f_b(x)$ is x^b . \Box

1.3 Proof of Corollary 1

Corollary 1. Given g satisfying Assumption 1 in problem (1). Denote $\hat{x}^b = \max\{x | \nabla f_b(x) = 0, 0 \le x \le b\}$ and $x^* = \arg \min_{x \in \{0, \hat{x}^b\}} f_b(x)$. Then x^* is optimal to (1), i.e., $x^* \in \mathbf{Prox}_g(b)$.

Proof. As shown in Proposition 2 and 3, when b is larger than a certain threshold, $\mathbf{Prox}_g(b)$ $(x_2^b \text{ in } (2)(4) \text{ or } x^b \text{ in } (3)(4))$ is unique. Actually the unique solution is the largest intersection point of $C_b(x)$ and $\nabla g(x)$, i.e., $\mathbf{Prox}_g(b) = \hat{x}^b = \max\{x | \nabla f_b(x) = 0, 0 \le x \le b\}$. For all the other choices of $b, 0 \in \mathbf{Prox}_g(b)$. Thus, 0 and \hat{x}^b , one of them should be optimal to (1). Thus $x^* = \arg\min_{x \in \{0, \hat{x}^b\}} f_b(x)$ is optimal to (1). \Box

2 **Proof of Theorem 2**

Theorem 2. For any lower bounded function g, its proximal operator $\mathbf{Prox}_g(\cdot)$ is monotone, i.e., for any $p_i^* \in \mathbf{Prox}_g(x_i)$, $i = 1, 2, p_1^* \ge p_2^*$, when $x_1 > x_2$.

Proof. The lower bound assumption of g guarantees a finite solution to problem (1). By the optimality of p_i^* , i = 1, 2, we have

$$g(p_2^*) + \frac{1}{2}(p_2^* - x_1)^2 \ge g(p_1^*) + \frac{1}{2}(p_1^* - x_1)^2,$$
(5)

$$g(p_1^*) + \frac{1}{2}(p_1^* - x_2)^2 \ge g(p_2^*) + \frac{1}{2}(p_2^* - x_2)^2.$$
(6)

Summing them together gives

$$(p_2^* - x_1)^2 + (p_1^* - x_2)^2 \ge (p_1^* - x_1)^2 + (p_2^* - x_2)^2.$$
(7)

It reduces to

$$(p_1^* - p_2^*)(x_1 - x_2) \ge 0.$$
(8)

Thus $p_1^* \ge p_2^*$ when $x_1 > x_2$.

3 Convergence Analysis of Algorithm 1

(

Assume there exists

$$\hat{x}^{b} = \max\{x | \nabla f_{b}(x) = \nabla g(x) + x - b = 0, 0 \le x \le b\};$$

otherwise, 0 is a solution to (1).

We only need to prove that the fixed point iteration guarantees to find \hat{x}^b .

First, if $\nabla g(b) = 0$, then we have found $\hat{x}^b = b$.

For the case $\hat{x}^b < b$, we prove that, the fixed point iteration, starting from $x_0 = b$, converges to \hat{x}^b . Indeed, we have

$$b - \nabla g(x) < x$$
, for any $x > \hat{x}^b$.

We prove this by contradiction. Assume there exists $\tilde{x} > \hat{x}^b$ such that $b - \nabla g(\tilde{x}) > \tilde{x}$. Notice g satisfies Assumption 1. It is easy to see ∇g is continuous, decreasing and nonnegative. Then we have $b - \nabla g(b) < b$ ($\nabla g(b) > 0$ since $b > \hat{x}^b$). Thus there must exist some $\hat{x} \in (\min(b, \tilde{x}), \max(b, \tilde{x})) > \hat{x}^b$ such that $b - g(\hat{x}) = \hat{x}$. This contradicts the definition of \hat{x}^b .

So, we have

$$x_{k+1} = b - \nabla g(x_k) < x_k$$
, if $x_k > \hat{x}^b$.

On the other hand, $\{x_k\}$ is lower bounded by \hat{x}^b . So there must exist a limit of $\{x_k\}$, denoted as \bar{x} , which is no less than \hat{x}^b . Let $k \to +\infty$ on both sides of $x_{k+1} = b - \nabla g(x_k)$,

and we see that
$$\bar{x} = b - \nabla g(\bar{x})$$
. So, $\bar{x} = \hat{x}^b$, i.e., $\lim_{k \to +\infty} x_k = \hat{x}^b$.

4 Convergence Analysis of Generalized Proximal Gradient Algorithm

Consider the following problem

$$\min_{\mathbf{X}} F(\mathbf{X}) = \sum_{i=1}^{m} g(\sigma_i(\mathbf{X})) + h(\mathbf{X}), \tag{9}$$

where $g : \mathbb{R}^+ \to \mathbb{R}^+$ is continuous, concave and nonincreasing on $[0, +\infty)$, and $h : \mathbb{R}^{m \times n} \to \mathbb{R}^+$ has Lipschitz continuous gradient with Lipschitz constant L(h). The Generalized Proximal Gradient (GPG) algorithm solves the above problem by the following updating rule

$$\mathbf{X}^{k+1} = \arg\min_{\mathbf{X}} \sum_{i=1}^{m} g(\sigma_i(\mathbf{X})) + h(\mathbf{X}^k) + \langle \nabla h(\mathbf{X}^k), \mathbf{X} - \mathbf{X}^k \rangle + \frac{\mu}{2} ||\mathbf{X} - \mathbf{X}^k||_F^2$$

$$= \arg\min_{\mathbf{X}} \sum_{i=1}^{m} g(\sigma_i(\mathbf{X})) + \frac{\mu}{2} ||\mathbf{X} - \mathbf{X}^k + \frac{1}{\mu} \nabla h(\mathbf{X}^k)||_F^2.$$
(10)

Then we have the following results.

Theorem 3. If $\mu > L(h)$, the sequence $\{\mathbf{X}^k\}$ generated by (10) satisfies the following properties:

(1) $F(\mathbf{X}^k)$ is monotonically decreasing. Indeed,

$$F(\mathbf{X}^k) - F(\mathbf{X}^{k+1}) \ge \frac{\mu - L(h)}{2} ||\mathbf{X}^k - \mathbf{X}^{k+1}||_F^2 \ge 0;$$

(2) $\lim_{k \to +\infty} (\mathbf{X}^k - \mathbf{X}^{k+1}) = \mathbf{0};$

(3) If $F(\mathbf{X}) \to +\infty$ when $||\mathbf{X}||_F \to +\infty$, then any limit point of $\{\mathbf{X}^k\}$ is a stationary point.

Proof. Since \mathbf{X}^{k+1} is optimal to (10), we have

$$\sum_{i=1}^{m} g(\sigma_i(\mathbf{X}^{k+1})) + h(\mathbf{X}^k) + \langle \nabla h(\mathbf{X}^k), \mathbf{X}^{k+1} - \mathbf{X}^k \rangle + \frac{\mu}{2} ||\mathbf{X}^{k+1} - \mathbf{X}^k||_F^2$$

$$\leq \sum_{i=1}^{m} g(\sigma_i(\mathbf{X}^k)) + h(\mathbf{X}^k) + \langle \nabla h(\mathbf{X}^k), \mathbf{X}^k - \mathbf{X}^k \rangle + \frac{\mu}{2} ||\mathbf{X}^k - \mathbf{X}^k||_F^2$$

$$= \sum_{i=1}^{m} g(\sigma_i(\mathbf{X}^k)).$$
(11)

On the other hand, since h has Lipschitz continuous gradient, we have [1]

$$h(\mathbf{X}^{k+1}) \le h(\mathbf{X}^k) + \langle \nabla h(\mathbf{X}^k), \mathbf{X}^{k+1} - \mathbf{X}^k \rangle + \frac{L(h)}{2} ||\mathbf{X}^{k+1} - \mathbf{X}^k||_F^2.$$
(12)

Combining (11) and (12) leads to

$$F(\mathbf{X}^{k}) - F(\mathbf{X}^{k+1}) = \sum_{i=1}^{m} g(\sigma_{i}(\mathbf{X}^{k})) + h(\mathbf{X}^{k}) - \sum_{i=1}^{m} g(\sigma_{i}(\mathbf{X}^{k+1})) - h(\mathbf{X}^{k+1}) \\ \ge \frac{\mu - L(h)}{2} ||\mathbf{X}^{k+1} - \mathbf{X}^{k}||_{F}^{2}.$$
(13)

Thus $\mu > L(h)$ guarantees that $F(\mathbf{X}^k) \ge F(\mathbf{X}^{k+1})$.

Summing (13) for $k = 1, 2, \cdots$, we get

$$F(\mathbf{X}^{1}) \ge \frac{\mu - L(h)}{2} \sum_{k=1}^{+\infty} ||\mathbf{X}^{k+1} - \mathbf{X}^{k}||_{F}^{2}.$$
(14)

This implies that

$$\lim_{k \to +\infty} (\mathbf{X}^k - \mathbf{X}^{k+1}) = \mathbf{0}.$$
 (15)

Furthermore, since $F(\mathbf{X}) \to +\infty$ when $||\mathbf{X}||_F \to +\infty$, $\{\mathbf{X}^k\}$ is bounded. There exist \mathbf{X}^* and a subsequence $\{\mathbf{X}^{k_j}\}$ such that $\lim_{j \to +\infty} \mathbf{X}^{k_j} = \mathbf{X}^*$. By using (15), we get $\lim_{j \to +\infty} \mathbf{X}^{k_j+1} = \mathbf{X}^*$. Considering that \mathbf{X}^{k_j} is optimal to (10), and $-\sum_{i=1}^m g(\sigma_i(\mathbf{X}))$ is convex (since g is concave) [3], there exists $\mathbf{Q}^{k_j+1} \in -\partial \left(-\sum_{i=1}^m g(\sigma_i(\mathbf{X}^{k_j+1}))\right)$ such that $\mathbf{Q}^{k_j+1} + \nabla h(\mathbf{X}^{k_j}) + \mu(\mathbf{X}^{k_j+1} - \mathbf{X}^{k_j}) = \mathbf{0}.$ (16)

Let $j \to +\infty$ in (16). By the upper semi-continuous property of the subdifferential [2], there exists $\mathbf{Q}^* \in -\partial \left(-\sum_{i=1}^m g(\sigma_i(\mathbf{X}^*))\right)$, such that

$$\mathbf{0} = \mathbf{Q}^* + \nabla h(\mathbf{X}^*) \in \nabla F(\mathbf{X}^*).$$
(17)

Thus \mathbf{X}^* is a stationary point to (9).

References

- [1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2009.
- [2] Frank Clarke. Nonsmooth analysis and optimization. In Proceedings of the International Congress of Mathematicians, 1983.
- [3] Adrian S Lewis and Hristo S Sendov. Nonsmooth analysis of singular values. Part I: Theory. Set-Valued Analysis, 13(3):213– 241, 2005.