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Abstract

Subspace recovery from noisy or even corrupted data is crit-
ical for various applications in machine learning and data
analysis. To detect outliers, Robust PCA (R-PCA) via Out-
lier Pursuit was proposed and had found many successful ap-
plications. However, the current theoretical analysis on Out-
lier Pursuit only shows that it succeeds when the sparsity of
the corruption matrix is of O(n/r), where n is the number
of the samples and r is the rank of the intrinsic matrix which
may be comparable to n. Moreover, the regularization param-
eter is suggested as 3/(7

√
γn), where γ is a parameter that

is not known a priori. In this paper, with incoherence condi-
tion and proposed ambiguity condition we prove that Outlier
Pursuit succeeds when the rank of the intrinsic matrix is of
O(n/ logn) and the sparsity of the corruption matrix is of
O(n). We further show that the orders of both bounds are
tight. Thus R-PCA via Outlier Pursuit is able to recover in-
trinsic matrix of higher rank and identify much denser cor-
ruptions than what the existing results could predict. More-
over, we suggest that the regularization parameter be chosen
as 1/

√
logn, which is definite. Our analysis waives the ne-

cessity of tuning the regularization parameter and also sig-
nificantly extends the working range of the Outlier Pursuit.
Experiments on synthetic and real data verify our theories.

Introduction
It is well known that many real-world datasets, e.g., mo-
tion (Gear 1998; Yan and Pollefeys 2006; Rao et al. 2010),
face (Liu et al. 2013), and texture (Ma et al. 2007), can be
approximately characterized by low-dimensional subspaces.
So recovering the intrinsic subspace that the data distribute
on is a critical step in many applications in machine learning
and data analysis. There has been a lot of work on robust-
ly recovering the underlying subspace. Probably the most
widely used one is Principal Component Analysis (PCA).
Unfortunately, the standard PCA is known to be sensitive
to outliers: even a single but severe outlier may degrade the
effectiveness of the model. Note that such a type of data cor-
ruption commonly exists because of sensor failures, uncon-
trolled environments, etc.

To overcome the drawback of PCA, several efforts have
been devoted to robustifying PCA (Croux and Haesbroeck
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2000; De La Torre and Black 2003; Huber 2011), among
which Robust PCA (R-PCA) (Wright et al. 2009; Candès et
al. 2011; Chen et al. 2011; Xu, Caramanis, and Sanghav-
i 2012) is probably the most attractive one due to its the-
oretical guarantee. It has been shown (Wright et al. 2009;
Candès et al. 2011; Chen et al. 2011; Xu, Caramanis, and
Sanghavi 2012) that under mild conditions R-PCA exactly
recovers the ground-truth subspace with an overwhelming
probability. Nowadays, R-PCA has been applied to various
tasks, such as video denoising (Ji et al. 2010), background
modeling (Wright et al. 2009), subspace clustering (Zhang
et al. 2014), image alignment (Peng et al. 2010), photomet-
ric stereo (Wu et al. 2011), texture representation (Zhang et
al. 2012), and spectral clustering (Xia et al. 2014).

Related Work
R-PCA was first proposed by Wright et al. (2009) and Chan-
drasekaran et al. (2011). Suppose we are given a data ma-
trix M = L0 + S0 ∈ Rm×n, where each column of M is
an observed sample vector and L0 and S0 are the intrinsic
and the corruption matrices, respectively, R-PCA recover-
s the ground-truth structure of the data by decomposing M
into a low rank component L and a sparse one S. R-PCA
achieves this goal by Principal Component Pursuit, formu-
lated as follows (please refer to Table 1 for explanation of
notations):

min
L,S
||L||∗ + λ||S||1, s.t. M = L+ S. (1)

Candès et al. (2011) proved that when the locations of
nonzero entries (a.k.a. support) of S0 are uniformly dis-
tributed, the rank of L0 is no larger than ρrn(2)/(log n(1))

2,
and the number of nonzero entries (a.k.a. sparsity) of S0 is
less than ρsmn, Principal Component Pursuit with a regular-
ization parameter λ = 1/

√
n(1) exactly recovers the ground

truth matrices L0 and S0 with an overwhelming probability,
where ρr and ρs are both numerical constants.

Although Principal Component Pursuit has been applied
to many tasks, e.g., face repairing (Candès et al. 2011) and
photometric stereo (Wu et al. 2011), it breaks down when
the noises or outliers are distributed columnwise, i.e., large
errors concentrate only on a number of columns of S0 rather
than scattering uniformly across S0. Such a situation com-
monly occurs, e.g., in abnormal hand writing (Xu, Carama-
nis, and Sanghavi 2012) and traffic anomalies data (Liu et



al. 2013). To address this issue, Chen et al. (2011), McCoy
and Tropp (2011), and Xu, Caramanis, and Sanghavi (2012)
proposed replacing the `1 norm in model (1) with the `2,1
norm, resulting in the following Outlier Pursuit model:

min
L,S
||L||∗ + λ||S||2,1, s.t. M = L+ S. (2)

The formulation of model (2) looks similar to that of mod-
el (1). However, theoretical analysis on Outlier Pursuit is
more difficult than that on Principal Component Pursuit. The
most distinct difference is that we cannot expect Outlier Pur-
suit to exactly recover L0 and S0. Rather, only the column
space of L0 and the column support of S0 can be exactly
recovered (Chen et al. 2011; Xu, Caramanis, and Sanghavi
2012). This is because a corrupted sample can be addition
of any vector in the column space of L0 and another appro-
priate vector. This ambiguity cannot be resolved if no trust-
worthy information from the sample can be utilized. Fur-
thermore, theoretical analysis on Outlier Pursuit (Chen et al.
2011; Xu, Caramanis, and Sanghavi 2012) imposed weaker
conditions on the incoherence of the matrix, which makes
the proofs harder to complete.

Nowadays, a large number of applications have testified
to the validity of Outlier Pursuit, e,g., meta-search (Pan et
al. 2013), image annotation (Dong et al. 2013), and collab-
orative filtering (Chen et al. 2011). However, current results
for Outlier Pursuit are not satisfactory in some aspects:
• Chen et al. (2011) and Xu, Caramanis, and Sanghav-

i (2012) proved that Outlier Pursuit exactly recovers the
column space of L0 and identifies the column support of
S0 when the column sparsity (i.e., the number of the cor-
rupted columns) of S0 is of O(n/r), where r is the rank
of the intrinsic matrix. When r is comparable to n, the
working range of Outlier Pursuit is limited.

• McCoy and Tropp (2011) suggested to choose λ within
the range [

√
T/n, 1] and Xu, Caramanis, and Sanghavi

(2012) suggested to choose λ as 3/(7
√
γn), where un-

known parameters, i.e., the number of principal compo-
nents T and the outlier ratio γ, are involved. So a practi-
tioner has to tune the unknown parameters by cross vali-
dation, which is inconvenient and time consuming.

Our Contributions
This paper is concerned with the exact recovery problem of
Outlier Pursuit. Our contributions are as follows:
• With incoherence condition on the low rank term and pro-

posed ambiguity condition on the column sparse term,
we prove that Outlier Pursuit succeeds at an overwhelm-
ing probability when the rank of L0 is no larger than
ρ̃rn(2)/ log n and the column sparsity of S0 is no greater
than ρ̃sn, where ρ̃r and ρ̃s are numerical constants. We
also demonstrate that the orders of both bounds are tight.

• We show that in theory λ = 1/
√

log n is suitable for mod-
el (2). This result is useful because it waives the necessi-
ty of tuning the regularization parameter in the existing
work. We will show by experiments that our choice of λ
not only works well but also extends the working range of
Outlier Pursuit (see Figure 1).

Table 1: Summary of main notations used in this paper.

Notations Meanings
m, n Size of the data matrix M .

n(1), n(2) n(1) = max{m,n}, n(2) = min{m,n}.
Θ(n) Grows in the same order of n.
O(n) Grows equal to or less than the order of n.
ei Vector whose ith entry is 1 and others are 0s.
M:j The jth column of matrix M .
Mij The entry at the ith row and jth column ofM .
|| · ||2 `2 norm for vector, ||v||2 =

√∑
i v

2
i .

|| · ||∗ Nuclear norm, the sum of singular values.
|| · ||0 `0 norm, number of nonzero entries.
|| · ||2,0 `2,0 norm, number of nonzero columns.
|| · ||1 `1 norm, ||M ||1 =

∑
i,j |Mij |.

|| · ||2,1 `2,1 norm, ||M ||2,1 =
∑

j ||M:j ||2.
|| · ||2,∞ `2,∞ norm, ||M ||2,∞ = maxj ||M:j ||2.
|| · ||F Frobenious norm, ||M ||F =

√∑
i,j M

2
ij .

|| · ||∞ Infinity norm, ||M ||∞ = maxij |Mij |.
||P|| (Matrix) operator norm.
Û , V̂ Left and right singular vectors of L̂.
U0, Û , U∗ Column space of L0, L̂, L∗.
V0, V̂ , V∗ Row space of L0, L̂, L∗.
T̂ Space T̂ ={ÛXT+Y V̂ T ,∀X,Y ∈Rn×r}.
X⊥ Orthogonal complement of the space X .
PÛ , PV̂ PÛM = Û ÛTM , PV̂M = MV̂ V̂ T .
PT̂ ⊥ PT̂ ⊥M = PÛ⊥PV̂⊥M .
I0, Î, I∗ Index of outliers of S0, Ŝ, S∗.
B(Ŝ) Operator normalizing nonzero columns of Ŝ,

B(Ŝ)={H:PÎ⊥(H)=0;H:j=
Ŝ:j

||Ŝ:j ||2
, j∈Î}.

∼ Ber(p) Bernoulli distribution with parameter p.
N (a, b2) Gaussian distribution (mean a,variance b2).

So in both aspects, we extend the working range of Outlier
Pursuit. We validate our theoretical analysis by simulated
and real experiments. The experimental results match our
theoretical results nicely.

Problem Setup
In this section, we set up the problem by making some defi-
nitions and assumptions.

Exact Recovery Problem
This paper focuses on the exact recovery problem of Outlier
Pursuit as defined below.

Definition 1 (Exact Recovery Problem). Suppose we are
given an observed data matrix M = L0 + S0 ∈ Rm×n,
where L0 is the ground-truth intrinsic matrix and S0 is the
real corruption matrix with sparse nonzero columns, the ex-
act recovery problem investigates whether the column space
of L0 and the column support of S0 can be exactly recov-
ered.



A similar problem has been proposed for Principal Com-
ponent Pursuit (Candès et al. 2011; Zhang, Lin, and Zhang
2013). However, Definition 1 for Outlier Pursuit has its own
characteristic: one can only expect to recover the column s-
pace of L0 and the column support of S0, rather than the
whole L0 and S0 themselves. This is because a corrupted
sample can be addition of any vector in the column space of
L0 and another appropriate vector.

Incoherence Condition on Low Rank Term
In general, the exact recovery problem has an identifiability
issue. As an extreme example, imagine the case where the
low rank term has only one nonzero column. Such a matrix
is both low rank and column sparse. So it is hard to identify
whether this matrix is the low rank component or the colum-
n sparse one. Similar situation occurs for Principal Compo-
nent Pursuit (Candès et al. 2011).

To resolve the identifiability issue, Candès et al. proposed
the following three µ-incoherence conditions (Candès and
Recht 2009; Candès and Tao 2010; Candès et al. 2011) for a
matrix L ∈ Rm×n with rank r:

max
i
||V T ei||2 ≤

√
µr

n
, (avoid column sparsity) (3a)

max
i
||UT ei||2 ≤

√
µr

m
, (avoid row sparsity) (3b)

||UV T ||∞ ≤
√

µr

mn
, (3c)

where the first two conditions are for avoiding a matrix to
be column sparse and row sparse, respectively, and UΣV T

is the skinny SVD of L. As discussed in (Candès and Recht
2009; Candès and Tao 2010; Gross 2011), the incoherence
conditions imply that for small values of µ, the singular vec-
tors of the matrix are not sparse.

Chen et al. (2011) assumed conditions (3a) and (3b) for
matricesL0 andM . However, a row sparse matrix most like-
ly should be the low rank component, rather than the column
sparse one. So condition (3b) is actually redundant for re-
covering the column space of L0, and we adopt condition
(3a) and an ambiguity condition on the column sparse ter-
m (see the next subsection) instead of condition (3b). With
our reasonable conditions, we are able to extend the working
range of Outlier Pursuit.

Ambiguity Condition on Column Sparse Term
Similarly, the column sparse term S has the identifiability
issue as well. Imagine the case where S has rank 1, Θ(n)
columns are zeros, and other Θ(n) columns are nonzeros.
Such a matrix is both low rank and sparse. So it is hard to
identify whether S is the column sparse term or the low rank
one. Therefore, Outlier Pursuit fails in such a case without
any additional assumptions (Xu, Caramanis, and Sanghavi
2012). To resolve the issue, we propose the following ambi-
guity condition on S:

||B(S)|| ≤
√

log n/4. (4)

Note that the above condition is feasible, e.g., it holds if the
nonzero columns of B(S) obey i.i.d. uniform distribution

on the unit `2 sphere (Eldar and Kutyniok 2012). Moreover,
the uniformity is not a necessary assumption. Geometrically,
condition (4) holds as long as the directions of the nonzero
columns of S scatter sufficiently randomly. Thus it guaran-
tees that matrix S cannot be low rank when the column s-
parsity of S is comparable to n.

Probability Model
Our main results are based on the assumption that the col-
umn support of S0 is uniformly distributed among all sets
of cardinality s. Such an assumption is reasonable since we
have no further information on the outlier positions. By the
standard arguments in (Candès and Tao 2010) and (Candès
et al. 2011), any guarantee proved for the Bernoulli distri-
bution, which takes the value 0 with probability 1 − p and
the value 1 with probability p, equivalently holds for the u-
niform distribution of cardinality s, where p = Θ(1) implies
s = Θ(n). Thus for convenience we assume I0 ∼ Ber(p).
More specifically, we assume [S0]:j = [δ0]j [Z0]:j through-
out our proof, where [δ0]j ∼ Ber(p) determines the out-
lier positions and [Z0]:j determines the outlier values. We
also call any event which holds with a probability at least
1−Θ(n−10) to happen with an overwhelming probability.

Main Results
Our theory shows that Outlier Pursuit (2) succeeds in the
exact recovery problem under mild conditions, even though
a fraction of the data are severely corrupted. We summarize
our results in the following theorem.
Theorem 1 (Exact Recovery of Outlier Pursuit). Suppose
m = Θ(n), Range(L0) = Range(PI⊥0 L0), and [S0]:j 6∈
Range(L0) for ∀j ∈ I0. Then any solution (L0+H,S0−H)
to Outlier Pursuit (2) with λ = 1/

√
log n exactly recovers

the column space of L0 and the column support of S0 with a
probability at least 1−cn−10, if the column support I0 of S0

is uniformly distributed among all sets of cardinality s and

rank(L0) ≤ ρr
n(2)

µ log n
and s ≤ ρsn, (5)

where c, ρr, and ρs are constants, L0 + PI0PU0H satisfies
µ-incoherence condition (3a), and S0 − PI0PU0H satisfies
ambiguity condition (4).

The incoherence and ambiguity conditions on L̂ = L0 +

PI0PU0H and Ŝ = S0 − PI0PU0H are not surprising.
Note that L̂ has the same column space as Range(L0) and
Ŝ has the same column index as that of S0. Also, notice that
L̂ + Ŝ = M . So it is natural to consider L̂ and Ŝ as the
underlying low-rank and sparse terms, i.e.,M is constructed
by L̂ + Ŝ, and we assume incoherence and ambiguity con-
ditions on them instead of L0 and S0.

Theorem 1 has several advantages: first, while the param-
eter λs in the previous literatures are related to some un-
known parameters, such as the outlier ratio, our choice of
parameter is simple and precise. Second, with incoherence
or ambiguity conditions, we push the bound on the column
sparsity of S0 from O(n/r) to O(n), where r is the rank of
L0 (or the dimension of the underlying subspace) and may



be comparable to n. The following theorem shows that our
bounds in (5) are optimal, whose proof can be found in the
supplementary material.

Theorem 2. The orders of the upper bounds given by in-
equalities (5) are tight.

Experiments also testify to the tightness of our bounds.

Outline of Proofs
In this section, we sketch the outline of proving Theorem 1.
For the details of proofs, please refer to the supplementary
materials. Without loss of generality, we assume m = n.
The following theorem shows that Outlier Pursuit succeeds
for easy recovery problem.

Theorem 3 (Elimination Theorem). Suppose any solution
(L∗, S∗) to Outlier Pursuit (2) with input M = L∗ + S∗

exactly recovers the column space of L0 and the colum-
n support of S0, i.e., Range(L∗) = U0 and {j : S∗:j 6∈
Range(L∗)} = I0. Then any solution (L′∗, S′∗) to (2) with
input M ′=L∗+PIS∗ succeeds as well, where I ⊆ I∗=I0.

Theorem 3 shows that the success of the algorithm is
monotone on the cardinality of set I0. Thus by standard ar-
guments in (Candès et al. 2011), (Candès, Romberg, and Tao
2006), and (Candès and Tao 2010), any guarantee proved for
the Bernoulli distribution equivalently holds for the unifor-
m distribution. For completeness, we give the details in the
appendix. In the following, we will assume I0 ∼ Ber(p).

There are two main steps in our following proofs: 1. find
dual conditions under which Outlier Pursuit succeeds; 2.
construct dual certificates which satisfy the dual conditions.

Dual Conditions
We first give dual conditions under which Outlier Pursuit
succeeds.

Lemma 1 (Dual Conditions for Exact Column Space).
Let (L∗, S∗) = (L0 + H,S0 − H) be any solution to
Outlier Pursuit (2), L̂ = L0 + PI0PU0H and Ŝ =
S0 − PI0PU0H , where Range(L0) = Range(PI⊥0 L0) and
[S0]:j 6∈ Range(L0) for ∀j ∈ I0. Assume that ||PÎPV̂ || < 1,
λ > 4

√
µr/n, and L̂ obeys incoherence (3a). Then L∗

has the same column space as that of L0 and S∗ has the
same column indices as those of S0 (thus I0 = {j : S∗:j 6∈
Range(L∗)}), provided that there exists a pair (W,F ) obey-
ing

W = λ(B(Ŝ) + F ), (6)

with PV̂W = 0, ||W || ≤ 1/2, PÎF=0 and ||F ||2,∞≤1/2.

Remark 1. There are two important modifications in our
conditions compared with those of (Xu, Caramanis, and
Sanghavi 2012): 1. The space T̂ (see Table 1) is not involved
in our conclusion. Instead, we restrict W in the complemen-
tary space of V̂ . The subsequent proofs benefit from such
a modification. 2. Our conditions slightly simplify the con-
straint Û V̂ T +W = λ(B(Ŝ) + F ) in (Xu, Caramanis, and
Sanghavi 2012), where Û is another dual certificate which
needs to be constructed. Moreover, our modification enables

us to build the dual certificateW by least squares and great-
ly facilitates our proofs.

By Lemma 1, to prove the exact recovery of Outlier Pur-
suit, it is sufficient to find a suitable W such that

W ∈ V̂⊥,
||W || ≤ 1/2,

PÎW = λB(Ŝ),

||PÎ⊥W ||2,∞ ≤ λ/2.

(7)

As shown in the following proofs, our dual certificateW can
be constructed by least squares.

Certification by Least Squares
The remainder of the proofs is to construct W which sat-
isfies dual conditions (7). Note that Î = I0 ∼ Ber(p). To
constructW , we consider the method of least squares, which
is

W = λPV̂⊥
∑
k≥0

(PÎPV̂PÎ)kB(Ŝ). (8)

Note that we have assumed ||PÎPV̂ || < 1. Thus
||PÎPV̂PÎ || = ||PÎPV̂(PV̂PÎ)|| = ||PÎPV̂ ||2 < 1 and
equation (8) is well defined. We want to highlight the advan-
tage of our construction over that of (Candès et al. 2011). In
our construction, we use a smaller space V̂ ⊂ T̂ instead of
T̂ in (Candès et al. 2011). Such a utilization significantly fa-
cilitates our proofs. To see this, notice that Î ∩ T̂ 6= 0. Thus
||PÎPT̂ || = 1 and the Neumann series

∑
k≥0(PÎPT̂ PÎ)k

in the construction of (Candès et al. 2011) diverges. Howev-
er, this issue does not exist for our construction. This benefits
from our modification in Lemma 1. Moveover, our follow-
ing theorem gives a good bound on ||PÎPV̂ ||, whose proof
takes into account that the elements in the same column of
Ŝ are not independent. The complete proof can be found in
the supplementary material.
Theorem 4. For any I ∼ Ber(a), with an overwhelming
probability

||PV̂ − a
−1PV̂PIPV̂ || < ε, (9)

provided that a ≥ C0ε
−2(µr log n)/n for some numerical

constant C0 > 0 and other assumptions in Theorem 1 hold.
By Theorem 4, our bounds in Theorem 1 guarantee that

a is always larger than a constant when ρr is selected small
enough.

We now bound ||PÎPV̂ ||. Note Î⊥ ∼ Ber(1−p). Then by
Theorem 4, we have ||PV̂ − (1 − p)−1PV̂PÎ⊥PV̂ || < ε, or
equivalently (1− p)−1||PV̂PÎPV̂ − pPV̂ || < ε. Therefore,
by the triangle inequality

||PÎPV̂ ||2 = ||PV̂PÎPV̂ ||
≤ ||PV̂PÎPV̂ − pPV̂ ||+ ||pPV̂ ||
≤ (1− p)ε+ p.

(10)

Thus we establish the following bound on ||PÎPV̂ ||.
Corollary 1. Assume that Î ∼ Ber(p). Then with an over-
whelming probability ||PÎPV̂ ||2 ≤ (1 − p)ε + p, provided
that 1 − p ≥ C0ε

−2(µr log n)/n for some numerical con-
stant C0 > 0.



Note that PÎW = λB(Ŝ) and W ∈ V̂⊥. So to prove the
dual conditions (7), it is sufficient to show that

(a) ||W || ≤ 1/2,

(b) ||PÎ⊥W ||2,∞ ≤ λ/2.
(11)

Proofs of Dual Conditions
Since we have constructed the dual certificates W , the re-
mainder is to prove that the construction satisfies our dual
conditions (11), as shown in the following lemma.

Lemma 2. Assume that Î ∼ Ber(p). Then under the other
assumptions of Theorem 1, W given by (8) obeys the dual
conditions (11).

The proof of Lemma 2 is in the supplementary material,
which decomposes W in (8) as

W = λPV̂⊥B(Ŝ) + λPV̂⊥
∑
k≥1

(PÎPV̂PÎ)k(B(Ŝ)), (12)

and proves that the first and the second terms can be bounded
with high probability, respectively.

Since Lemma 2 shows thatW satisfies the dual conditions
(11), the proofs of Theorem 1 are completed.

Experiments
This section aims at verifying the validity of our theories
by numerical experiments. We solve Outlier Pursuit by the
alternating direction method (Lin, Liu, and Su 2011), which
is probably the most efficient algorithm for solving nuclear
norm minimization problems. Details can be found in the
supplementary material.

Validity of Regularization Parameter
We first verify the validity of our choice of regularization
parameter λ = 1/

√
log n. Our data are generated as follows.

We construct L0 = XY T as a product of n×r i.i.d.N (0, 1)
matrices. The nonzero columns of S0 are uniformly selected,
whose entries follow i.i.d.N (0, 1). Finally, we construct our
observation matrix M = L0 + S0. We solve the Outlier
Pursuit (2) to obtain an optimal solution (L∗, S∗) and then
compare with (L0, S0). The distance between the column
spaces are measured by ||PU∗ − PU0 ||F and the distance
between the column supports is measured by the Hamming
distance. We run the experiment by 10 times and report the
average results. Table 2 shows that our choice of λ can make
Outlier Pursuit exactly recover the column space of L0 and
the column support of S0.

To verify that the success of Outlier Pursuit (2) is robust
to various noise magnitudes, we test the cases where the en-
tries of S0 follow i.i.d. N (0, 1/n), N (0, 1), and N (0, 100),
respectively. We specifically adopt n = 1, 500, while all the
other settings are the same as the experiment above. Table
3 shows that Outlier Pursuit (2) could exactly recover the
ground truth subspace and correctly identify the noise index,
no matter what magnitude the noises are.

We also compare our parameter with those of other or-
ders, e.g., λ = c1/

√
n and λ = c2/ log n. The coeffi-

cients c1 and c2 are calibrated on a 200 × 200 matrix, i.e.,

Table 2: Exact recovery on problems with different sizes.
Here rank(L0)=0.05n, ||S0||2,0=0.1n, and λ = 1/

√
log n.

n dist(Range(L∗),Range(L0)) dist(I∗, I0)

500 2.46× 10−7 0
1,000 8.92× 10−8 0
2,000 2.30× 10−7 0
3,000 3.15× 10−7 0

Table 3: Exact recovery on problems with different noise
magnitudes. Here n=1, 500, rank(L0)=0.05n, ||S0||2,0 =
0.1n, and λ = 1/

√
log n.

Magnitude dist(Range(L∗),Range(L0)) dist(I∗, I0)

N (0, 1/n) 4.36× 10−7 0
N (0, 1) 6.14× 10−7 0
N (0, 100) 2.56× 10−7 0

c1/
√

200 = 1/
√

log 200 and c2/ log 200 = 1/
√

log 200,
and we fix the obtained c1 and c2 for other sizes of prob-
lems. For each size of problem, we test with different rank
and outlier ratios. For each choice of rank and outlier ratios,
we record the distances between the column spaces and be-
tween the column supports as did above. The experiment is
run by 10 times, and we define the algorithm succeeds if the
distance between the column spaces is below 10−6 and the
Humming distance between the column supports is exact 0
for 10 times. As shown in Figure 1, λ = 1/

√
log n consis-

tently outperforms Θ(1/
√
n) and Θ(1/ log n). The advan-

tage of our parameter is salient. Moreover, a phase transition
phenomenon, i.e., when the rank and outlier ratios are below
a curve Outlier Pursuit strictly succeeds and when they are
above the curve Outlier Pursuit fails, can also be observed.

Tightness of Bounds
We then test the tightness of our bounds. We repeat the exact
recovery experiments by increasing the data size successive-
ly. Each experiment is run by 10 times, and Figure 2 plots
the fraction of correct recoveries: white denotes perfect re-
covery in all experiments, and black represents failures in all
experiments. It shows that the intersection point of the phase
transition curve with the vertical axes is almost unchanged
and that with the horizontal axes moves leftwards very slow-
ly. These are consistent with our forecasted orders O(n) and
O(n/ log n), respectively. So our bounds are tight.

Experiment on Real Data
To test the performance of Outlier Pursuit (2) on the real da-
ta, we conduct an experiment on the Hopkins 155 database1.
The Hopkins 155 data set is composed of multiple data
points drawn from two or three motion objects. The data
points (trajectory) of each object lie in a single subspace, so

1http://www.vision.jhu.edu/data/hopkins155
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Figure 1: Exact recovery under varying orders of the reg-
ularization parameter. White Region: Outlier Pursuit suc-
ceeds under λ = c1/

√
n. White and Light Gray Regions:

Outlier Pursuit succeeds under λ = c2/ log n. White, Light
Gray, and Dark Gray Regions: Outlier Pursuit succeeds
under λ = 1/

√
log n. Black Regions: Outlier Pursuit fails.

The success region of λ = 1/
√

log n strictly contains those
of other orders.
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Figure 2: Exact recovery of Outlier Pursuit on random prob-
lems of varying sizes. The success regions (white regions)
change very little when the data size changes.

Figure 3: Examples in Hopkins 155 (best viewed in color).
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Figure 4: Results on the Hopkins 155 database. The hori-
zontal axis represents serial number of the sample while the
vertical axis represents ||S∗:j ||2, where S∗ is the optimal so-
lution obtained by the algorithm. The last five samples are
the real outliers.

it is possible to separate different objects according to their
underlying subspaces. Figure 3 presents some examples in
the database. In particular, we select one object in the da-
ta set, which contains 50 points with 49-dimension feature,
as the intrinsic sample. We then adopt another 5 data points
from other objects as the outliers, so the outlier ratio is near-
ly 10%. Figure 4 shows ||S∗:j ||2 for each sample j, where S∗
is the optimal solution obtained by the algorithm. Note that
some of ||S∗:j ||2s for the intrinsic sample j ∈ {1, 2, ..., 50}
are not strictly zero. This is because the data is sampled from
real sensors and so there are small noises therein. Howev-
er, from the scale of ||S∗:j ||2, one can easily distinguish the
outliers from the ground truth data. So it is clear that Out-
lier Pursuit (2) correctly identifies the outlier index, which
demonstrates the effectiveness of the model on the real data.

Conclusion
We have investigated the exact recovery problem of R-PCA
via Outlier Pursuit. In particular, we push the upper bounds
on the allowed outlier number from O(n/r) to O(n), where
r is the rank of the intrinsic matrix and may be comparable
to n. We further suggest a global choice of the regularization
parameter, which is 1/

√
log n. This result waives the neces-

sity of tuning the regularization parameter in the previous
literature. Thus our analysis significantly extends the work-
ing range of Outlier Pursuit. Extensive experiments testify
to the validity of our choice of regularization parameter and
the tightness of our bounds.
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