Supplementary Material of
Exact Recoverability of Robust PCA via Outlier Pursuit
with Relatively Dense Qutliers

Paper ID 1532

Robust PCA via Outlier Pursuit:
I£11§I||LH*+)\||S| 2,1, S.t. M=L+S. (1)

p-incoherence condition on matrix L = UXV 7.

max||VTe7;H2 < \/W, (avoid column sparsity) (la)
) n

max |[UTe;|]2 < 4/ ﬂ, (avoid row sparsity) (1b)
7 m

UV oo < 4/ 2. (1)
mn

Ambiguity condition on matrix S:

IB(S)]] < v/logn/4. 2
Main Results:

Theorem 1 (Exact Recovery of Outlier Pursuit). Suppose
m = ©(n), Range(Lo) = Range(Pr1 L), and [Sol:; ¢
Range(Lyg) forVj € Zy. Then any solution (Lo+H, So—H)
to Outlier Pursuit (1) with A = 1/+/logn exactly recovers
the column space of Ly and the column support of Sy with
a probability at least 1 — cn™ 10, if the column support T
of Sy is uniformly distributed among all sets of cardinality s
and
n(2)

ulogn
where ¢, py, and ps are constants, Lo + Pz, Pu,H satisfies
u-incoherence condition (1a), and Sy — Pz, Py, H satisfies
ambiguity condition (2).

rank(Lg) < p, and s < psn, 3)

Architecture of Proofs

This section is devoted to proving Theorem 1. Without loss
of generality, we assume m = n. The following theorem
presents a good characteristic of Outlier Pursuit.

Theorem 2 (Elimination Theorem). Suppose any solution
(L*,8%) to Outlier Pursuit (1) with input M = L* + S*
exactly recovers the column space of Lo and the colum-
n support of Sy, i.e., Range(L*) = Range(Ly) and {j :
S% & Range(L*)} = Zo. Then any solution (L™, S™) to
(1) with input M' = L* + PzS* succeeds as well, where
I CTI* =1,
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Table 1: Summary of main notations used in the supplemen-
tary material.

Notations | Meanings

m,n Size of the data matrix M.
Ny, N2y | Ny = max{m,n}, ni) = min{m,n}.
O(n) Grows in the same order of n.
O(n) Grows equal to or less than the order of n.
€; Vector whose 7th entry is 1 and others are 0s.

M.; The jth column of matrix M.
M The entry at the ith row and jth column of M.

i
[l |2 {5 norm for vector, |[v||2 = />, vZ.

[l -]« Nuclear norm, the sum of singular values.
[l 1lo £y norm, number of nonzero entries.

[l -1l2,0 | £2,0 norm, number of nonzero columns.
-1l | €norm, [[M]ly = 32, 5 [ M.

[+ fl2 | 2.0 morm, [[M |2y = /37 [[M]3.

|- ll2.00 | £2,00 nOrM, ||M|3,00 = max; ||M.;]|.
|-l | Frobenious norm, |[M||r = />, s M},
[ [loo Infinity norm, || M||sc = max;; |M;;|.
|P]] (Matrix) operator norm.

L* S* Optimal solutions to Outlier Pursuit.
Lo, So Ground Truth.

Uu,v Left and right singular vectors of L.
Up, L?, U* | Column space of L, i, L*.
Row space of Ly, ﬁ, Lx.
T T={UXT +YVT VXY € R"*"}.
X+ Orthogonal complement of the space X.

Py Py | PgM =UUTM, PyM = MVVT.
,P:ZA-J_ P’f’J_M:P];{J_IPf;J_MA
To,Z, Z* | Index of outliers of Sy, S, S*.

|Zo| Outliers number of Sp.
Xel The column support of X is a subset of Z.

N N S . -
B(S) B(S)Z{Hi’PjL(H):O;H;j:m,] EI}.
Obeys Bernoulli distribution with parameter p.
Gaussian distribution (mean a and variance b?).




Proof. Let (L'*, 5") be the solution of (1) with input matrix
M’ and (L*, S*) be the solution of (1) with input matrix M.
Then we have

[IE™ [l + AllS™]

2,1 < L[|« + A|[PzS™|2,1-
Therefore
L™ Ml + AIIS™ + Pronz, Sz
SIL™ [l + MIS™ (2,1 + A[Priz,S*ll21
<Ll + MIPzS™ (|21 + AlPrenz, S |2,
= [|L*[[« 4+ AllS™]|2,1-

Note that
L/* + SI* + PIJ_QIOS* - MI + PIJ-QIOS* = M

Thus (L™, 8" + Pr1~7,S5*) is optimal to problem with in-
put M and by assumption we have

Range(L*) = Range(L*) = Range(Ly),

{4+ [8" + Pz, S7],; & Range(Lo)} = Supp(So).
The second equation implies Z C {j : S; ¢ Range(Lo)}.
Suppose Z # {j : S!f ¢ Range(Lo)}. Then there exists
an index k such that S/} ¢ Range(Lo) and k ¢ Z, ie.,
M}, = L} € Range(Lo). Note that L’} € Range(Lo).
Thus S’ € Range(L,) and we have a contradiction. Thus
T {j% 7 ¢ Range(Lo)} = {j : S ¢ Range(L")} and
the algorithm succeeds. O

Theorem 2 shows that the success of the algorithm is
monotone on |Zy|. Thus by standard arguments in (Candes
et al. 2011), (Candes, Romberg, and Tao 2006), and (Can-
des and Tao 2010), any guarantee proved for the Bernoulli
distribution equivalently holds for the uniform distribution.
For completeness, we give the details in the appendix. In the
following, we will assume Zy ~ Ber(p).

There are two main steps in our following proofs: 1. find
dual conditions under which Outlier Pursuit succeeds; 2.
construct dual certificates which satisfy the dual conditions.

Dual Conditions

We first give dual conditions under which Outlier Pursuit
succeeds.

Lemma 1 (Dual Conditions for Exact Column Space).
Let (L*,58*) = (Lo + H,Sy — H) be any solution to
Outlier Pursuit (1), L = Ly + Pz, Pu,H and S =
So — Pz, Pu, H, where Range(Lo) = Range(Pr: Lo) and
[Sol:; & Range(Lo) for¥j € Ty. Assume that ||P;Py|| < 1,
A > 4\/ur/n, and L obeys incoherence (la). Then L*
has the same column space as that of Lo and S* has the

same column indices as those of Sy (thus Ty = {j : S &
Range(L*)}), provided that there exists a pair (W, F') obey-
ing

W = A(B(3) + F), )

with Py W = 0, [|W]|| < 1/2, P;F = 0 and ||F||2,00 <
1/2.

Proof. We first recall that the subgradients of nuclear norm
and /> 1 norm are as follows:

LIl ={UVT +Q: Qe TH Q| <1},
051821 ={B(S) + E: E € T, ||E||2,00 < 1},
Let H; = PIOPZ/IOH and Hy, = ,PIOL,PZ/IOH""_,PIUL,PZ/{OLH‘F

Pz, PMOL H, and note that i = Uy and Z = Zo. By the defi-
nition of the subgradient, the inequality follows

[[Lo + H||.« + A|[So — Hl|2.1
> LI« + AlISll21 + ({UVT + Q. Ha) — MB(S) + E, Ha)
= |[L]+ + Al[S]l21 + (UVT, PrL H) +(Q, Py H)—
NB(S), Pys H) — ME, Pz H)

~ ~ T ~
> (1Ll + M8z = /1P H 21 + (Q. Pugg H)
MB(S), Pyg H) = ME, Py H).

Now adopt @ such that <Q,PM&H> = ||Pp. Py HI| and
(B, Py H) = —|[Pry Hll2,1". We have

[[Lo + H||« + A|[So — H]|2,1

~ ~ ur
> ||L|[« + Ml|S|[21 — ;HPIOLH| 21+ |[Ppr Py HI|—

)\<B(S)»PL{OLH> + APz Hl|2,1

. “ A ur
2 1+ Ml + (3 /) 1Pz 1

3A
HP{;LPMOLHH* - )\<B(S)>PMOLH> + ZHPjLHHm

. A A r
2 0+ M8l + (5 = 2 ) IPgg Hllaa+

N 3\
1Pps Pug Hllx = MB(S), Py H) + - |1Pz Py Hl21-

2,1+

Notice that
[(=AB(S), Py H)| = |[(\F — W, Py H)|
< [(W, Py H)| + AI(F, Pyys H)|

1 A
< §H7D9LPMOLHH* + §|\P24PU§HH271~
Hence

[[Lo + HI|« + Al[So — H||2,1

. N A wr
2 1+ Ml + (3~ /2 ) 1Pz Hllaa+

1 A
§||P9LPM;HH* + ZHPiLPuOiHHz,l-
'By the duality between the nuclear norm and the operator nor-
m, there exists a Q such that (Q, Py, Py H) =||Ppy Py H|l.
and ||Q|| < 1. Thus we take @ = P Pp.Q € T It holds

similarly for E.



Since (L*,S*) = (Lo + H, Sy — H) is optimal, above in-
equality shows [Py, Py Hll« = [Pz Py Hll21 = 0,
ie., Py H € Z NV. Also notice that ||P;Pp|| < 1 im-
plies Z NV = {0}. We conclude Py H = 0. Furthermore,
|[Pz+ Hl[2,1 = 0 implies H € Zo. Thus H € Uy N Ly, ie.,
u* - U() and Z* - I().

We now prove U* = Uy. According to the assump-
tion Range(Lo) = Range(P;1Lo) and H € Uy N o,
Range(L*) = Range(Lo+ H) = Range(Ly), i.e.,U* = Up.
We then prove Z* = Z;. Assume that 7* # 7, i.e., there
exists a j € Zo such that S7; = 0. Note that [So],; &
Range(Lg). Thus M:j = [L()];j + [S()];j = L*_] € U(), which
contradicts UU* C Uy. So Z* = 1. O

Remark 1. There are two important modifications in our
conditions compared with those of (Xu, Caramanis, and
Sanghavi 2012): 1. The space T (see Table 1) is not involved
in our conclusion. Instead, we restrict W' in the complemen-
tary space of V. The subsequent proofs benefit from such
a modification. 2. Our conditions slightly simplify the con-
straint UVT + W = N(B(S) + F) in (Xu, Caramanis, and
Sanghavi 2012), where U is another dual certificate which
need to be constructed. Moreover, our modification enables
us to build the dual certificate W by least squares and great-
ly facilitates our proofs.

By Lemma 1, to prove the exact recovery of Outlier Pur-
suit, it is sufficient to find a suitable T/ such that

W e v+,

Wl <1/2, )
P = AB(S),

[P W]l2,00 < A/2.

As shown in the following proofs, our dual certificate W can
be constructed by least squares.

Certification by Least Squares

The remainder of the proofs is to construct W which sat-
isfies dual conditions (5). Note that Z = Zy ~ Ber(p). To
construct W, we consider the method of least squares, which
is

W =XPy. > (PzPyP2) B(S). ©)

k>0

Note that we have assumed |[[P;Py|| < 1. Thus
1Pz PyPzll = [PsPy(PyP2)ll = [[PzPy|> < 1 and
equation (6) is well defined. We want to highlight the advan-
tage of our construction over that of (Candes et al. 2011). In
our construction, we use a smaller space V C T instead of
7 in (Candes et al. 201 1). Such a utilization significantly fa-
cilitates our proofs. To see this, notice that nT # 0. Thus
||P;P5+|| = 1 and the Neumann series Y, - (P;P+Pz)*
in the construction of (Candes et al. 2011) diverges. Howev-
er, this issue does not exist for our construction. This benefits
from our modification in Lemma 1. Moveover, our follow-
ing theorem gives a good bound on ||P;Py; ||, whose proof

considers that the elements in the same column of S are not
independent. A complete proof can be found in Appendices.

Theorem 3. For any T ~ Ber(a), with an overwhelming
probability

||’P\> — ailpf)'PIP‘;H <e, (7)

provided that a > Coe~2(urlogn)/n for some numerical
constant Cy > 0 and other assumptions in Theorem 1 hold.

By Theorem 3, our bounds in Theorem 1 guarantee a is
larger than a constant when p, is selected small enough.

We now bound ||P; Py, ||. Note 7+ ~ Ber(1—p). Then by
Theorem 3, we have ||Py, — (1 — p) '"PpPz. Pyl| < e, or
equivalently (1 — p)~!||PyP; Py, — pPy|| < e. Therefore,
by the triangle inequality

PPy |2 [Py P: Pyl
||PyP: Py — pPyl| + |[pPy ] (®)
(1 —p)e +p.

INIA I

Thus we establish the following bound on ||P; Py ||.

Corollary 1. Assume that T ~ Ber(p). Then with an over-
whelming probability ||P;Py|[> < (1 — p)e + p, provided
that 1 — p > Coe2(urlogn)/n for some numerical con-
stant Cy > 0.

Note that P; W = AB(S) and W € V. So to prove the
dual conditions (5), it is sufficient to show that
@ (W] <1/2,

(®) [Pz W]l2,00 < A/2. ©)

Proofs of Dual Conditions

Since we have constructed the dual certificates W, the re-
mainder is to prove that such a construction satisfies our dual
conditions (9), as shown in the following lemma.

Lemma 2. Assume that T ~ Ber(p). Then under the other
assumptions of Theorem 1, W given by (6) obeys the dual
conditions (9).

Proof. Let R = Zk21(7)i7)f)732)k' Then

W = XPp. Y (P;PyP;)*B(S)
>0 (10)

= APy B(S) + APy R(B(S)),
Now we check the two conditions in (9).

(a) By the assumption, we have ||B(S)|| < +logn/4.
Thus the first term in (10) obeys

M|PpB(S)|| < NIB(S)|| < (11)

=

Now we focus on the second term in (10). Let A represent
the 1/2-net of the unit ball S"~1, whose cardinality || is
at most 6" (see Eldar and Kutyniok 2012). Then a standard
argument in (Eldar and Kutyniok 2012) showed that

IRBEI < 4zs?}1€13v<y,73(5(5))$>- (12)



Note that the operator R is self-adjoint. Now let
X(w,y) = (y, R(B(S))z)
= <R(yxT) B(S)>

— Z ,B(S).5)
— Z j>05B.j)
- Z@-B?; [R(yz™)].;,

where B is a matrix such that ||B.;||; = 1 and B(S).; =
0;B.;, and §; is a random variable such that

s={o wnis, )
Notice that
10;B5[R(ya™)]51* < ||1Byl[311[R(yx™)]5113
= IR (y=")]113,
and
Z sll3 = 1R (y2")II%

< [[RIP|lya™ 1%

= IRIllyl13ll=]13

=IRII*.
Also note that EX (x,y) = 0. Thus, by the Hoeffding in-
equality, we have

. +2
P(IX (2, y)| > t|Z) < 2exp (_2||R|2> .

As aresult,

N t2
P( sup |X(z,y)| > t|T) < 2|N|%exp <—2> )
x,yE QHRH

Namely, by inequality (12),
N R +2
< 2 — .
P(IR(B(S)| > tiE) < 21N Pexp ( 32||R|2)

Now suppose ||P;Py|| < o. Then

ok o2 Al
RII<Y o =T 2,
E>1 v

where vy can be sufficient large, and we have

P(/R(B(S))l| > 1)
< P(IRBEI >t | 1Pz Pyll < o) + B([[PzPyl| > 0)

< 2|NV)%exp ) +P(|[P; Pyl > o)

< 2|N|%exp

( 32HRII2
(-

) + (PPl > o),

where P(||P;Py|| > o) is tiny. Adopt t = 1/(4\) =
VIogn/4. Then A||R(B(S))|| < 1/4 holds with an over-
whelming probability. This together with (10) and (11)
proves ||W|| < 1/2.

(b) Let G stand for G = 37y (P;PyPs ;)" Then W =

APy, G(B(S $)). Notice that G(B(S)) € Z. Thus
P W = AP;. Py, G(B(S))
= \P;.G(B(S)) — A\P;. PyG(B(S))
= —A\P;. PG (B(S)).

Now denote Q £ P,G(B(S 5)). Note that G is an operator
functioning at the right hand side of a matrix and

1Q:511* = ZQ?J» = Z(PVG(B(S‘)% eiej )
-ZZ B(S)].jo GPy (eie] )ejy)?
=22 (el B0, GPy (€] )eso)?
—Zi B(8)]:50, 9P Py (€] )ejo)?
< ZIIQP Pyl )esoll3

= IIQ%%(@T)IIQ

J

o S|
< <>, Vi
_<1—02> =y Y

Thus [Pz Wll2,00 = Al[P7.Qll2,00 < Al[Ql]2,00 < A/2.
O

= s =

Now we have proved that W satisfies the dual conditions
(9). So our proofs finish.

Tightness of Bounds

The following theorem shows a good property of our bounds
in inequalities (3).

Theorem 4. The orders of the upper bounds given by in-
equalities (3) are tight.

Proof. Since O(n) is the highest order for the possible num-
ber of corruptions, the order of our bound for the corruption
cardinality s is tight.

We then demonstrate that our bound for rank(Lg) is tight.
McCoy and Tropp (2011) showed that the optimal solution
L* to model (1) satisfies

rank(L*) < n/logn. (14)

If the order of rank(Lyg) is strictly higher than ©(n/logn),
then according to (14) it is impossible for L* to exactly re-
cover the column space of Ly due to their different ranks. So
rank (L) should be no larger than ©(n/ log n) and the order
of our bound is tight. O



Algorithm

In this section, we give the algorithm for Robust PCA (R-
PCA) via Outlier Pursuit. To solve the model, we apply the
alternating direction method (ADM) (Lin, Chen, and Ma
2009), which is probably the most widely used method for
solving nuclear norm minimization problems.

Given the Outlier Pursuit model

min L]l + AlIS][20, st M=L+S, (15

whose augmented Lagrangian formulation corresponds to
L(L,S,Y,u)

= ||LH* + )\HSH2,1 + <M —L— S,Y> +

(16)

ADM solves model (15) by updating one argument in (16)
and fixing others in each step. For any matrix X, denote S.
and . the soft-thresholding operators on X such that

Xij—e, ifX; >e
[Sg(X)]U = X’L] +€, le” < —&;
0, otherwise,
and
[HE(X)]Zj = X512 Xy i [[X]l2 > &
0, otherwise.

The detailed procedures of the ADM are listed in the follow-
ing algorithm:

Algorithm 1 The ADM for R-PCA via Outlier Pursuit
Input: Observation matrix M € R™*", X\ = 1/y/logn.
Initialize: Yo = 0; Lo = M; So = 0; g > 0; k = 0.

1: while not converged do

2: //Line 3-4 solve L1 = argming, L(L, Sk, Yi, ug)-
3 (U,S,V)=svd(M — S + ;" Y);

4: Ly = USﬂ;l(S)VT.

5: //Line 6 solves Sy =argming £(Lgy1, .5, Yi, k).

6.

7

8

Sky1 = Hy, 1 [M = L1 + 1, Y],
Yig1 =Y+ pu(M — Ly 1 — Spy1)-
¢ Update piy to prg+1.-
9: k< k+1.
10: end while
Output: (L*, S*).

Appendices
Equivalence of Probabilistic Models

We show that the exact recovery result proved for the
Bernoulli distribution holds for the uniform distribution as
well. Let “success” be the event that the algorithm suc-

ceeds, i.e., Range(Lo) = Range(L*) and {j : S} ¢
Range(L*)} = Zy. Notice the fact that
IP’Ber(p)(Success| |Z| = k) = IP’Unif(k)(Success),

W
Liiar -1 — S|l

and Theorem 2 implies that for k > ¢,
Puie(r) (Success) < Puyigr) (Success).

Thus we have

IP’Ber( (Success)

Z ]P)Ber

(Success| |Z| = k)Pge(p) (|Z| = k)

t—1

<Y P (121 = k) + ZIP’BC,(,)) (Success| |Z| = k)Pyep) (1Z] = k)

k=0 k=t
< ZPBer @ (2] = k) + ZIP’Umf (Success)Pye () (|1Z] = k)
k=0

<Py (IZ] < t) + IP’Unif(t)(Success).

Taking p = t/n + € gives Py ) (|Z] < t) < exp(— e ”),
which completes the proof.

Proof of Theorem 3

We proceed to prove Theorem 3. The following lemma is
critical.

Lemma 3. Assume HE” Yij @ Yij ‘ < 1fory;; € R and
d;s are i.i.d. Bernoulli variables with P(§; = 1) = a. Then

E |a? Z(éj—a)ZyijG@yij <C
7 A

provided that C/log d/amax;; ||y;;|| < 1.
Proof. Let

Y = Z(%‘ - a)Zyi]‘ ® Yijs

and let Y’ = 3 °.(6; — a)>_, yi; ® yi; be an independent

copy of Y. Since 5 — &} is symmetric, Y — Y has the same
distribution as

Y.-Y/ & Z%

where €;;s are i.i.d. Rademacher variables and

Y. = Z5ij5jyij @ Yij-

ij

ogd
max ||y;; |,
ij

yzg & Yij,

Notice that || - || is a convex function and Es/ Y’ = 0. Thus
by Jensen’s inequality, we have

Es||[Y|| = Es||Y — Es Y|
= Es||Es (Y = Y)|
< EsEs||Y — Y|
= E|[Y. - Y/||
< E[Ye|| +E|[Y/]]
= 2E||Y||

=2E Zgijéjyij ® Yij

j



According to Rudelson’s lemma in (Rudelson 1999), which
states that

Z €ij05Yij ® Yij

ij

Nl

SC\/@mgXIIyin > i @ uig||
i

we have

EsEe || Y 2005015 © yig

ij

Nl=

< Cy/logd max i || Bs || 6506 © i
i

Hence

N

E|lY[] < 2CV/logd max|[yi;|| Es > 8y @y

< 2C+/logd HE;‘XH%JH E Z5jy¢j®yij

= 20+/logd rry;.lXIIyin E|D 6 v @y
7 7

= 2C+/logd max||y;|| |E Y+a2yij & Yij
ij

ij

< 20V/logd max |lys;|l, |EIYI[+a |3 v @ iy

ij

Thus we have
a”'E[Y]]

< 2OVIORd |
< 2OV
< 2R ey [ TV 1
When 2Cv/Iog d max;; ||yi;||/+/a < 1, then
20/log d
e eyl

logd
= O/ —— max |y;]],
a (%]

a Y]+ |Dvij @ uij

ij

a'E||Y]| <2

and the proof finishes.

The following concentration inequality is also important
to our proof of Theorem 3.

Theorem 5 (Talagrand (1996)). Assume that |f| < B and
Ef(Y;) = 0 for every f in F, where i = 1,...,n and F is a
countable family of functions such that if f € F then —f €
F.LetY, =supscr y iy f(Y;). Then for any t > 0,

; Bi
P(|Y.—EY.| > t) < 3exp <—K310g (1 - mm)) ’

where 0° = sup e 7 1 Ef*(Y;), and K is a constant.

Now we are ready to prove Theorem 3.

Proof. For any matrix X, we have

PpX =3 (PpX, eie] )eie] .
ij
Thus PrPpX = 3, 0;(PpX, eie] )eie] , where where d;s
are i.i.d. Bernoulli Varlables with parameter a. Then

’P{;,PI’P]}X Z(S 7) X ez >P (61 )
_Z(s (X, Pyleiel))Py(esel).

Namely, P, PPy,
let

= 2_i;0iPypleie; ) @ Py(eie]). Now

= a”!||PyPrPy, — aPy ]

= a7 |3 (6 — a)Pp(eie]) ® Py(eie])

ij
We first prove the upper bound of EZ. Adopt y;; =
Pv(ezej ) in Lemma 3. Since

Py = Pyleie]) ® Pyleie]),
iJ

we have

P\;(eie?) =1

> Pyleie]) ®
ij

Thus by Lemma 3 and incoherence (1a),

~ 11 2 1
EZ < Oy 28 [H" 5 o [HTI08T
a n na

We then prove the upper bound of Z at an overwhelming

probability. Let
DJ = a*l((Sj - CI,) Z 'P\;(ele]T) (39

Pp(eiejr),

and

D= ZD_a

(PyPrPy — aPy).



Notice that the operator D is self-adjoint. Denote the set more,
g ={||X1]|lFr <£1,X5 = £X;}. Then we have

2
Ef*(5) = a'(1 - a) <Z<X1,Pv<eief ) (X2, Py (ese] >>>

%

Z = sup(X1, D(X2)) 2
9 5 v )
=sup 2”0 =) 3 Pyene ) (X Polese] ) a0 <Z<X1,Pv<ez—e? ”2)

<a ! (Z<’P{;X1,eie?>2> <Z<PﬁX1’eiE?>2>

i i

Now let
a M [PpXal3 00 Y (PpXi,eie])?

f((sj) = <X17Dj(X2)> < /,LT’ Z<P X, el i >2

— a_l(éj —a) Z(Xl, 'P‘}(eit’:’?)><X2, ’P{;(eiejT».

i

and
2 2 HT 2
=K 0j) < — X1, €
To use Talagrand’s concentration inequality on Z, we should 7 ; F05) = na ;GD L €€ >
bound | £(8;)| and Ef2(8;). Since by assumption, L = Lo+ L )
Pz, Pu,H satlsﬁes 1ncoherence (la) and = %HP{;X 1|7
<&
na

Since we have proved EZ < 1 in the first part of the proof,
by Theorem 5,

P(|Z —EZ| > t) < 3exp (—K_Blog< ;))

PyX1|2 . = ma X1, e;eTVVT)2
Py X0 = ma S s i V)

T TYr{rT\2
= max e; Xq,e; VV
: El (e; X1,€; )

< max el X1 |)2||eT VY2
< max Y e X B VI3 nowz
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wr where the second inequality holds since log(l + u) >
=0 log 2 min(1, u) for any w > 0. Set
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where the first equality holds since Xo = =£X;. Further- Yo na



Note that we have proved EZ < C'y/purlogn/na. We have
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where Cy = (C + +/B/70)? and the first inequality holds s-
ince a > Coe~2(urlogn)/n by assumption. Thus the proof
completes. O
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