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ABSTRACT
Emotion recognition in the wild is a very challenging task.
In this paper, we propose a multiple models fusion method
to automatically recognize the expression in the video clip as
part of the third Emotion Recognition in the Wild Challenge
(EmotiW 2015). In our method, we first extract dense SIFT,
LBP-TOP and audio features from each video clip. For
dense SIFT features, we use the bag of features (BoF) model
with two different encoding methods (locality-constrained
linear coding and group saliency based coding) to further
represent it. During the classification process, we use par-
tial least square regression to calculate the regression value
of each model. By learning the optimal weight of each model
based on the regression value, we fuse these models together.
We conduct experiments on the given validation and test
datasets, and achieve superior performance. The best recog-
nition accuracy of our fusion method is 52.50% on the test
dataset, which is 13.17% higher than the challenge baseline
accuracy of 39.33%.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications; I.4.m [Image
Processing and Computer Vision]: [Miscellaneous]

Keywords
Emotion Recognition; Multiple Models Fusion; Bag of Fea-
tures; EmotiW 2015 Challenge

1. INTRODUCTION
Automatic facial expression recognition has become a hot

research topic in computer vision because of its significant
role in many applications, such as psychological research and
human computer interaction (HCI). The primary task of
emotion recognition is to classify the given facial images or
videos into seven basic expression types, such as angry (AN),
disgust (DI), fear (FE), happy (HA), neutral (NE), sad (SA)
and surprise (SU). A variety of methods have been proposed
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towards this problem during the past decade. One may re-
fer to [24] and [33] for a comprehensive survey. However,
most existing works focus on expression recognition from
static facial images [35, 21, 18]. When it comes to video
based emotion recognition or expression recognition in the
wild, the recognition results of previous methods are not
very satisfactory. Compared with static facial images based
emotion recognition, dynamic images based emotion recog-
nition is more complicated.

In recent years, several emotion recognition competitions
such as Audio Video Emotion Challenges (AVEC) [25] and
Emotion Recognition in the Wild (EmotiW) [4, 6] greatly
promoted the development of video based expression recog-
nition. A few methods have been proposed to automati-
cally recognize expression from video clips. For instance,
Zhao et al. [34] used LBP-TOP to extract patterns from dy-
namic facial image sequences. Kahou et al. [11] proposed
a deep neural networks based method for emotion recogni-
tion. Sikka et al. [22] fused multiple features using multiple
kernel learning. Liu et al. [14] represented image set models
of video clip with Riemannian kernels. By fusing multiple
features through different approach, these methods achieved
the state-of-the-art performance.

As these video clips contain rich spatio-temporal infor-
mation, it is of great importance for video based emotion
recognition to combine multiple visual and acoustical fea-
tures. Feature extraction and classification are two critical
processes for recognition. It is vital to select appropriate
feature extraction methods and classification combination
method. For feature extraction, as LBP-TOP [34] features
are robust to variations of grayscale and dense SIFT [16]
features are invariant to scale and rotation transformation,
we extract both LBP-TOP [34] and dense SIFT [16] fea-
tures from each video clip. For audio information, we use
openSMILE [7] to extract audio features. While the ex-
tracted dense SIFT [16] features are redundant and high-
dimensional, we adopt bag of features (BoF) [2] model to
further represent the SIFT [16] features. According to [32]
and [9], both locality and saliency are very essential for im-
age feature encoding. Therefore, we use two corresponding
types of encoding methods in BoF to encode features, re-
spectively. During the classification process, compared with
feature level and prediction level fusion, score level fusion
can better capture the contribution of each model and is
more effective. So we first use partial least square regres-
sion to calculate the regression value as the score, and then
learn the optimal coefficients to fuse these models. Based on
above characteristics, in this paper, we construct a multiple
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Figure 1: Framework of the proposed multiple models fusion method.

models fusion method for video based emotion recognition
in the wild. The proposed method can extract discrimina-
tive features for video representation and commendably fuse
them for classification.

The rest of this paper is organized as follows. We first
introduce the details of BoF model and extracted features
in Section 2. Then we present the regression method and
our multiple models fusion method in Section 3. In Section
4, we conduct emotion recognition experiments on the given
dataset. Finally, Section 5 concludes our paper.

2. VIDEO REPRESENTATION

2.1 Visual Features Extracted with BoF
In this subsection, we first introduce the pipeline of com-

monly used BoF [2]. Then we present the detailed processes
of dense SIFT [16] features extraction and two kinds of en-
coding methods used in this paper.

2.1.1 The BoF Framework
BoF [2] is one of the most popular and effective image

classification frameworks in the recent literature. It is devel-
oped from the bag-of-words model in document analysis [10]
and has achieved the state-of-the-art performance in many
classification tasks, including emotion recognition [23]. As
shown in Figure 2, the commonly used BoF framework gen-
erally consists of the following three basic modules:
1. Local features extraction: In this module, we first
divide each input image into many landmark points or dense
overlapped patches, and then extract local features such as
SIFT [16], HoG [3], and LBP [19] from each block or key
point to represent the image. In this paper, we extract SIFT
features from dense blocks to represent the facial expression
image first.
2. Descriptors encoding: Based on the local features of
the previous step, we learn a dictionary with the classical
K-means [15] clustering algorithm. Each descriptor is en-
coded into a code vector with codewords in the codebook.
By utilizing different encoding methods such as sparse cod-
ing [31], saliency coding [8], and LLC [27], we can acquire
code vectors with different properties. For a literature sur-
vey on encoding methods, one can refer to [12] and [9]. In
this paper, we use LLC [27] and GSC [29] to code the de-
scriptors, respectively.

Feature extraction 

Feature encoding 

Concatenating

Feature vectors

Image

Descriptors

Codes

SPM

Pooling

Figure 2: Basic pipeline of the BoF framework.

3. Spatial pyramid pooling: In this step, the spatial
pyramid matching (SPM) [13] method partitions the im-
age into increasingly finer spatial subregions. Then, pooling
process integrates all responses on each codeword in a spe-
cific subregion into one value. Max pooling [31] and average
pooling [2] are two main pooling methods. We adopt max
pooling [31] in this paper. By pooling code vectors in each
spatial subregion across different spatial scales, we obtain
the local description of every block. The final representa-
tion of the image is obtained by concatenating descriptions
of all blocks.

476



2.1.2 Dense SIFT
Scale Invariant Feature Transform (SIFT) [16] is wildly

used for feature extraction and image representation. It first
detects and selects appropriate keypoints over all scales and
image locations, and then computes features in the region
around each keypoint. The extracted features are invariant
to image scale and rotation. For dense SIFT, we first divide
the image into many overlapped grid blocks with a fixed step
size, and then compute features on each block. Compared
with the original SIFT, dense SIFT does not need to detect
keypoints any longer, but the dimension of the extracted
features are relatively high. In this case, we adopt BoF [2]
for deeper representation.

2.1.3 LLC
LetX = [x1, x2, · · · , xN ] ∈ RD×N be a set ofD-dimensional

local features extracted from an image. B = [b1, b2, · · · , bM ] ∈
RD×M denotes the codebook with M codewords. Encoded
by an encoding algorithm, local features X is converted to
N coding vectors C = [c1, c2, · · · , cN ] ∈ RM×N .

The core idea of locality-constrained linear coding (LLC) [27]
is to reconstruct features with codewords via resolving a
least square based optimization problem with locality con-
straints on the codewords. The objective function of LLC is
listed as follows:

arg min
C

N∑
i=1

(‖xi −Bci‖2 + λ‖di � ci‖2),

s.t. 1T ci = 1, ∀i,

(1)

where 1 ∈ RM×1 is a column vector of all ones, � denotes the

element-wise multiplication and di = exp(dist(xi,B)
σ

) ∈ RM
is the locality adaptor. Specifically, dist(xi, B) = [‖xi −
b1‖2, · · · , ‖xi − bM‖2]T . σ is used for adjusting the weight
decay speed. The problem defined in Eq. (1) has a closed-
form solution:

ĉi = ((BT − 1xTi )(BT − 1xTi )T + λdiag2(di))
−11,

ci = ĉi/(1
T ĉi).

(2)

As the solution of LLC only has a few significant values,
we can simply use the K(K < D < M) nearest neighbours

of xi in the codebook as the local base B̃ to reconstruct the
descriptor xi, which can speed up the coding process.

2.1.4 GSC
Different from reconstruction based coding method LLC,

group saliency coding (GSC) [29] is developed from the saliency
based coding [8]. As we use max pooling method to process
those encoded features, we believe that saliency is very im-
portant for feature coding. We first select K codewords
groups for each descriptor x. For each group, GSC [29] cal-
culates the saliency response ψk(x), which is then fed back
to all the codewords in the group. The final coding result of
a feature on each codeword is the maximum response across
different group sizes. The computing process of GSC can be

formulated as follows:

ci = max
k
{ski }, k = 1, 2, · · · ,K,

ski =

{
ψk(x), if bi ∈ g(x, nk),

0, otherwise,
(3)

ψk(x) =

K+1−k∑
j=1

(‖x− b̃k+j‖2 − ‖x− b̃k‖2),

where ski is the coding result for the kth group and g(x, nk)
denotes the nk closest codewords set of x for the kth group.

2.1.5 Dimension Reduction
After feature extraction of the BoF [2] model, the dimen-

sion of extracted feature vectors is very high, especially when
the number of spatial pyramids levels is large. High dimen-
sional features will influence both the efficiency and accuracy
of classification. In this case, it is necessary to reduce the
dimension of features before classification. We use the clas-
sical principle component analysis (PCA) [17] for dimension
reduction. The core idea of PCA [17] is to maximize the
total variance of projection.

2.2 Visual Features Extracted with LBP-TOP
Local Binary Patterns from Three Orthogonal Planes (LBP-

TOP) [34], an extension of the widely used LBP [19] opera-
tor, is proposed to handle the influence of varying rotation
and lighting condition on dynamic textures. This method
considers only the co-occurrence statistics of dynamic tex-
tures in three directions, concatenating LBP on three or-
thogonal planes: XY, XT, and YT, where the XY plane
provides the spatial texture information, and the XT and
YT planes provide information about the spacetime transi-
tions. Features of LBP-TOP [34] are robust to gray-scale
and rotations variations. It has been successfully applied
to video facial expression recognition while the video can
be regarded as a sequence of dynamic facial expression im-
ages. We adopt LBP-TOP to extract video features for video
based expression recognition.

2.3 Audio Features
Audio information plays an important role in video based

emotion recognition [1]. We use the openSMILE toolkit [7],
an open-source feature extractor that unites feature extrac-
tion algorithms from the speech processing and the Music In-
formation Retrieval communities, to extract audio features.
We use 21 energy & spectral related functionals and 19 voic-
ing related functionals to extract corresponding low-level
descriptors and delta regression coefficients. By adding 2
voiced/unvoiced durational features, there are 1582 dimen-
sional features in total. For detailed information, please refer
to [4].

3. FUSION OF MULTIPLE MODELS
The framework of our proposed method is shown in Fig-

ure 1. We first construct four different models to extract
features from each facial expression video. For classifica-
tion, we use the partial least square regression (PLSR) [28]
to calculate the regression value of each test sample. Based
on the regression value of these four models, we learn the
optimal coefficients to fuse them. The final predicted label
is the category with the maximum fusion regression value.
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Table 1: Performance comparisons of different methods on both validation and test datasets. BoFLLC stands
for the LLC based BoF method and BoFGSC stands for the GSC based BoF method.

Methods
Accuracy

Val Test

Baseline (LBP-TOP) 36.08% 39.33%

Audio Audio 33.96% –

Video

BoFLLC 47.44% –

BoFGSC 45.82% –

LBP-TOP+BoFLLC+BoFGSC 48.52% –

Audio+

Video

Audio+LBP-TOP+BoFLLC+BoFGSC 49.87% 49.35%

Audio+LBP-TOP+BoFLLC+BoFGSC (Customized) – 52.50%

3.1 Partial Least Squares Regression
We adopt the same PLSR manner as that in [14]. For

each category, we design an one-vs-all PLSR to calculate
the regression value. Let X be feature variables and Y be
the 0-1 labels. According to [20], PLSR decomposes these
variables into:

X = TPT + E,

Y = UQT + F,
(4)

where T and U contain the extracted score vectors, P and Q
are orthogonal loading matrices, and E and F are residuals.
PLSR tries to find the optimal weights wx and wy to get the
maximum covariance such that:

[cov(t, u)]2 = max
|wx|=|wy|=1

[cov(Xwx, Y wy)]2. (5)

Then we can get the regression coefficients B as:

B = XTU(TTXXTU)−1TTY. (6)

The regression value can be estimated by:

V = XB. (7)

Following the above process, we can calculate the regression
value of test samples for each class.

3.2 Fusion Strategy
For each of these four kinds of feature extraction models

(audio, LBP-TOP, LLC based BoF and GSC based BoF),
we utilize the PLSR to calculate its corresponding regression
value, respectively. Then we adopt the score level fusion
method and assign specific weight to each of four previous
models:

V fusion = αV audio+βV LBP−TOP +γV LLC + θV GSC , (8)

where V represents the regression value. The weight which
varies from model to model is relevant to the performance of
each model. We learn the optimal weights on the validation
dataset.

4. EXPERIMENTS

4.1 Dataset and Parameter Setting
We evaluate the performance of the proposed method on

the given AFEW 5.0 dataset [5, 6], which includes 723 train
video clips, 383 validation video clips and 539 test video

Figure 3: Some example frames of expression videos
in the wild.

clips. All these video clips are collected from movies that
show close-to-real-world conditions. Figure 3 shows example
images of seven expressions taken from video clips.

For each video clip, organizers apply pre-trained face mod-
els [36] for face detection and initialization. Then, the in-
traface tracking library [30] is adopted to align the detected
facial images. Each facial image is aligned to size 128× 128.
LBP-TOP [34] features are extracted from non-overlapping
spatial 4×4 blocks [6]. We directly use the aligned facial im-
ages as well as the extracted audio and LBP-TOP features
provided by organizers. During the process of BoF based
feature extraction, we set the parameters as follows. We di-
vide each facial image into overlapped blocks with step 1 and
size 16 × 16. For each block, we use Vlfeat [26] to extract
128-dimensional SIFT features. The dictionary is learned
by the K-means [15] clustering algorithm with 1024 centres.
Both the nearest neighbours number for LLC [27] and groups
number for GSC [29] are set to 5. During the pooling pro-
cess, we employ the SPM with levels of [1×1, 2×2, 4×4, 8×8].
Under the above settings, dimension of the final BoF repre-
sentation for each frame is 1024 × 85 = 87040. We adopt
max pooling to process all the frames of each video to get
the video representation. We further use PCA [17] to re-
duce dimension with principle components ratio 97%. For
the fusion process, we set the optimal weights as α = 0.25,
β = 0.15, γ = 1.00 and θ = 0.50, which is learned on the
validation dataset.
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(a) Confusion matrix on the validation dataset (b) Confusion matrix on the test dataset

Figure 4: Confusion matrices of multiple models fusion method for facial expressions on both validation and
test datasets.

4.2 Results
In Table 1, we present the recognition results of our pro-

posed method. Our proposed method achieves competitive
results. The baseline recognition rates given by the EmotiW
2015 organizers on validation dataset and test dataset are
36.08% and 39.33%, respectively. We first test the perfor-
mance of all the single model on the validation dataset.
Among these single models, LLC based BoF achieves the
best result, with accuracy 47.44%, while the recognition rate
of GSC based BoF is 45.82% on the validation dataset. Both
BoF models get satisfactory results. For video only emotion
recognition, we fuse the regression values of these three video
image set based methods (LBP-TOP, LLC based BoF and
GSC based BoF), and achieve 48.52% accuracy. Finally, we
fuse all the single models with optimal weights. The recog-
nition rate is further improved to 49.87%, which is 13.79%
higher than that of the baseline. On the test dataset, our
proposed multiple models fusion method achieves 49.35%,
which largely surpasses the baseline. For the customized
method shown in Table 1, we will explain it in Section 4.3.

Figure 4 shows the confusion matrices of our multiple
models fusion method on both validation and test datasets.
From these two matrices, we can easily find that angry,
happy and neutral expressions are easily to be recognized
correctly, while other expressions such as disgust, fear, sad
and surprise are more likely to be misclassified.

4.3 Discussion
According to the confusion matrix (computed by the chal-

lenge organizers) on the test dataset shown in Figure 4(b),
it is difficult to recognize surprise expression, and fear ex-
pression samples are easily misclassified to surprise. Few
train samples of surprise and high correlation between sur-
prise and fear may account for this phenomenon. We need
to note that total sample numbers of fear and surprise ex-
pressions on the test dataset are 66 and 26, respectively. By
analyzing the statistics in Figure 4(b), we further customize
our method slightly. For predicted surprise expression, we
use the category with the second largest fusion regression
value instead of the largest value as the predicted label. The
corresponding recognition result is shown in Figure 5, and
the overall recognition accuracy become 52.5%. Comparing
the result in Figure 5 with that in Figure 4(b), we can easily

Figure 5: Confusion matrix of customized method
on the test dataset.

see that the improvement of customized method mainly lies
in the fact that more than 22% of fear samples, which are
misclassified before, are classified correctly this time.

5. CONCLUSIONS
In this paper, we propose a multiple models fusion method

for video based emotion recognition in the wild. We first ex-
tract audio features from the video clips. Then dense SIFT
and LBP-TOP visual features are extracted from aligned fa-
cial image set of each clip. For dense SIFT features, we fur-
ther use LLC based BoF and GSC based BoF models to rep-
resent them. In the classification process, we first use par-
tial least square regression to calculate the regression value
of each single model, and then fuse these models together
with the optimal coefficients based on the regression values.
We validate the performance of our proposed method on
the AFEW 5.0 dataset as part of the third Emotion Recog-
nition in the Wild Challenge (EmotiW 2015). Our method
achieves excellent performances on both validation and test
datasets. As feature extraction and classification are two
key processes for video based emotion recognition, in the fu-
ture, on the one hand, we will further investigate and mine
the connection between frames of video clip. On the other
hand, we will try to find effective multi-model fusion method
for classification.
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