
Determining Step Sizes in Geometric Optimization
Algorithms

Zhizhong Li1,2, Deli Zhao2, Zhouchen Lin3,4∗, Edward Y. Chang5
1School of Mathematics, Peking University, Beijing, China

2Advanced Algorithm Research Group, HTC, Beijing, China
3Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, Beijing, China

4Cooperative Medianet Innovation Center, Shanghai, China
5HTC Research

lizz@pku.edu.cn, zhaodeli@gmail.com, zlin@pku.edu.cn, eyuchang@gmail.com

Abstract—Optimization on Riemannian manifolds is an in-
tuitive generalization of the traditional optimization algorithms
in Euclidean spaces. In these algorithms, minimizing along a
search direction becomes minimizing along a search curve lying
on a manifold. Computing such a curve to be subsequently
searched upon is itself computational intensive. We propose a new
minimization scheme aiming to find a better step size utilizing the
first order information of the search curve. We prove that this
scheme can provide further reduction for the cost function when
the retraction and the vector transport are collinear. Then we
adapt this scheme to propose a heuristic strategy for line search.
In numerical experiments, we apply this heuristic strategy to one
of the geometric algorithms for matrix completion and show its
feasibility and the potential in accelerating computation.

I. INTRODUCTION

Geometric optimization algorithms are generalizations of
the traditional optimization methods in Euclidean spaces to
Riemannian manifolds. Geometric concepts such as geodesic,
Riemannian gradient, Riemannian Hessian and parallel trans-
port are employed to replace the usual notions of straight
line, gradient, Hessian and parallel translation. Thus, gradient
descent method, conjugate gradient method, Newton’s method
and trust-region methods can be applied to manifolds without
conceptual difficulties. Theories on optimizations over mani-
folds, especially on matrix manifolds, can be found in [1]–[6].
A Matlab toolbox for optimization on Riemannian manifolds
that implements several general solvers and provides some
familiar manifolds has also been developed [7].

One advantage of optimizing on manifolds is that it nat-
urally converts a constrained optimization problems to an
unconstrained one, given that the constraint conditions possess
some good properties. Since these constraints are used to
define manifold structures, they become invisible to solvers.
The fixed-rank constraint for matrices is one of the examples
that embrace manifold structures. Many geometric algorithms
have been proposed to solve problems such as the low-rank
matrix completion problem [8]–[11] and the regressions under
fixed-rank constraints [12], [13].

Suppose that M is a Riemannian manifold and f is a
continuously differentiable cost function defined on M . Our
work focuses on determining the step size s∗ along a descent
search direction η0 ∈ Tx0

M at an iterate point x0 ∈ M ,

∗Corresponding author.

where Tx0
M is the tangent space of M at point x0. This is

a common subtask among the various optimization algorithms
mentioned above and we refer to this step size selection task
by “line search” in this paper. Mathematically, given the search
curve φ(t) along direction η0 which satisfies φ(0) = x0 and
φ̇(0) = η0, we want to choose a step size s∗ such that the
point φ(s∗) gives a sufficient reduction of the cost function
compared to the value f(x0) at point x0.

The basic line search strategy is setting a fixed initial step
size s0 and backtracking to meet the Armijo condition [14,
Algorithm 3.1]. Another strategy to get the initial step size is
by interpolation as described in [14, Equation (3.60)], and then
backtracking. An adaptive step size strategy can also be used
[15, Equation (17)]. The key idea for this adaptive strategy
is to increase, keep, or decrease the step size based on the
number of backtrackings in the last iteration.

If the manifold M is a submanifold and the cost function
f can be extended to the ambient space M , then a better initial
guess for the step size could be made by taking the tangent
line γ(t) := x0 + tη0 passing through x0 as the first order
approximation for the search curve φ. This is based on the
assumption that the cost function f restricted on the straight
line γ is much easier to compute and minimize. Algorithms
in [8], [9], together with many other examples implementing
this line search strategy have shown its effectiveness.

We further extend this idea and propose a minimization
scheme (Algorithm 1), which aims to provide further reduction
of the cost function for the line search. We prove our scheme’s
validity under the assumption that the retraction and the vector
transport being collinear. For general cases, we present a
modified scheme (Algorithm 2), which is shown to be a good
heuristic for the step sizes in our numerical experiments.

The rest of the paper is organized as follows. Section II
elaborates the minimization scheme and Section III describes
the one-step-further heuristic based on that scheme. We show
an application of the heuristic strategy to matrix completion
in Section IV, and Section V concludes the paper.

II. MINIMIZING ALONG A DIRECTION

Developing practical geometric optimization algorithms
relies on some non-standard differential geometric concepts
such as retraction [6, Definition 4.1.1] and vector transport [6,
Definition 8.1.1]. They are analogues of the exponential map

1217978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015

and the parallel transport in Riemannian geometry, respective-
ly, and have the advantage of lowering the computation cost.

Let f : M → R be a continuously differentiable cost
function defined on a manifold M that is a submanifold of
the Euclidean space Rn. A Riemannian metric g is assigned
to M such that (M, g) becomes a Riemannian manifold. The
metric g may be problem-tailored and need not coincide with
the standard metric of the ambient Euclidean space. We denote
the vector transport by T and the associated retraction by R.
The domain of the cost function is extended to a neighborhood
of the submanifold M . Assume that this neighborhood is large
enough for our discussion. By an abuse of notation, we denote
this extended cost function by f .

Given a point x0 ∈M and a search direction η0 ∈ Tx0M ,
the search curve φ is defined as

φ(t) := Rx0
(tη0), (1)

where Rx0
(tη0) is the retraction of the vector tη0 at point

x0. We want to determine a step size s∗ such that the value
f(φ(s∗)) provides a sufficient reduction for the cost function.
Since minimizing directly on the curve is generally difficult,
one can use the assumption that M being a submanifold of a
Euclidean space and f being extended to the ambient space to
define the first order approximation of curve φ as

γ(t) := x0 + tη0, (2)

which is the tangent line to φ at point x0, and then minimize
the cost function f(γ(t)) on the staight line γ instead of on the
curve φ to get a candidate step size s∗. This method generally
gives a good initial value for the step size.

We may want to continue this approximation process and
get a better estimation of the step size. The initial idea is
illustrated in Figure 1.

Fig. 1. Minimizing along the direction η on a manifold M . Suppose that
the step size α is obtained by minimizing on the tangent line passing through
x ∈ M with direction η ∈ TxM . Instead of using x1 := Rx(αη) as the
next iterate point, the initial idea is to continue this minimizing process along
this curve to get a better estimation of the step size based on point x1. Vector
Tαηη is the direction η moved from x to x1 by vector transport T , which
will serve as the minimizing direction for x1.

Since definitions of retraction and vector transport focus
on their local behaviors, we have to deal with several issues in
order to make the above idea precise. The first one is that Tαηη
is not guaranteed to be a tangent vector of the curve φ(t) =
Rx(tη). This is fixed by introducing the notion of collinearity.
A vector transport T is collinear with the associated retraction
R given that vector Tαηη is collinear with the tangent vector
d
dtRx(tη)|t=α at pointRx(αη), where x ∈M is a point on M ,
η ∈ TxM is a tangent vector at point x, and α ∈ R is a scalar.
In Figure 1, if T is collinear with R, then Tαηη is tangent to

the curve φ(t) = Rx(tη) at point Rx(αη). Parallel transport
is collinear with exponential map on a Riemannian manifold.
Another class of examples of collinearity can be found in [6,
Section 8.1.2].

The second issue concerns with the non-degeneracy of R
and T in a large range. Consider the following conditions:

1) Retraction R is non-degenerate along radial directions for
all points x ∈M . i.e.,∥∥∥∥ d

dt

∣∣∣∣
t=α

Rx(tη)

∥∥∥∥ 6= 0, (3)

for all scalars α ∈ R and all directions η ∈ TxM .
2) Vector transport T is also non-degenerate along radial

directions for all points x ∈M in the sense that

‖Tαηη‖ 6= 0, (4)

where η ∈ TxM is a direction at x and α is a scalar.

With these conditions, we propose a general minimization
scheme in Algorithm 1.

Algorithm 1 Minimization scheme of Line Search
Input: Point x0 ∈ M , descent direction η0 ∈ Tx0

M with
‖η0‖ = 1, vector transport T that is collinear with
retraction R, and Equations (3) and (4) are satisfied.

Output: a sequence of step sizes {si}i≥0.
1: Initialize s0 = 0 and set i = 0.
2: Minimize f on the tangent line γi(t) := xi + tηi of curve
φ at point xi to get a step size ti+1, where ηi ∈ Txi

M .
3: Stop if ti+1 = 0, when xi is a minimizing point on γi.
4: Backtracking. Find the minimum integer j such that
f(Rx0

((si + ti+1/2
j)η0)) < f(xi).

5: Output si+1 = si + ti+1/2
j .

6: Set xi+1 = Rx0
(si+1η0).

7: Let ηi+1 = Tsi+1η0η0 and normalize it to be unit length.
8: Increase i by 1 and goto step 2.

Note that in Step 2 of the algorithm, an acceptable step
size ti+1 should be at the decreasing side of f(γi(t)), i.e.,
ti+1 > 0 if d

dtf(γi(t))|t=0 > 0 and vice versa. Also note that
all the new iterate points are obtained by retractions at point
x0. This ensures that these points fall on the search curve
starting at x0. The next Proposition proves that Algorithm 1
works as it claims.

Proposition 1. Under the specified conditions, Algorithm 1
either stop at a stationary point of f along the curve φ(t) :=
Rx0

(tη0), or generate a sequence of step size {si}i≥0 such
that the sequence of function values {f(xi)}i≥0 is a decreasing
sequence, where xi := φ(si) = Rx0

(siη0).

Proof: The current iterate point is xi and the current step
size is si in the i-th iteration of Algorithm 1. Suppose ti+1 6= 0
in Step 3. From the definition of the next iterate point xi+1

at Step 6, we can see that if the backtracking step (Step 4)
succeeds, then the expected inequality f(xi+1) < f(xi) holds.
To ensure that Step 4 is always feasible, we need to show that
ti+1 lies on the decreasing side of function f(φi(t)), where
φi(t) is defined as

φi(t) := φ(si + t) = Rx0
((si + t)η0). (5)

1218

This means that ti+1 > 0 if d
dtf(φi(t))|t=0 > 0 and vice versa.

Concerning the remark before this Proposition, it is equivalent
to show that the signs of d

dtf(φi(t))|t=0 and d
dtf(γi(t))|t=0

are the same.

It is trivial to verify that φi(0) = γi(0) = xi. For the given
si, the tangent vector of φi(t) and γi(t) at t = 0 are

φ̇i(0) =
d
dt
Rx0

((si + t)η0)|t=0 =
d
dt
Rx0

(tη0)|t=si , (6)

and
γ̇i(0) = ηi = Tsiη0η0, (7)

respectively. Since T is collinear with R, we know that φ̇i(0)
is collinear with γ̇i(0). According to Equations (3) and (4),
these two vectors have positive lengths, so there exists a
nonzero scalar k 6= 0 such that

φ̇i(0) = kγ̇i(0). (8)

Thus the following equation holds,

d
dt
f(φi(t))|t=0 = k

d
dt
f(γi(t))|t=0. (9)

If we continuously vary si, the scalar k in Equation (8) will
also change continuously. The facts that k never equals zero
and k = 1 when si = 0 tell us that k will keep positive
no matter how si changes. Equation (9) together with k > 0
guarantee that the signs of d

dtf(φi(t))|t=0 and d
dtf(γi(t))|t=0

are the same.

If ti+1 = 0 in Step 3, we can see that xi being a minimizing
point of f on γi implies that xi is a stationary point of f on
φi from Equation (9).

From the proof we can see that the collinearity condition
and the non-degeneracy conditions together ensure the long
range behaviors of the retraction and the vector transport,
otherwise, the algorithm may stop at a non-stationary point.
We illustrate Algorithm 1 in Figure 2. The manifold is the
unit circle S1 and the cost function

f(x) := ‖x− y0‖2 (10)

is the squared distance from x to a given point y0 on the
plane. So the minimum point of f restricted on a subset of
the plane is the point nearest to point y0. Retraction is defined
as Rx(η) := (x + η)/‖x + η‖, where η ∈ TxS1 is a tangent
vector at x. In the beginning, a point x0 ∈ S1 and a direction
η0 ∈ Tx0S

1 is given.

Fig. 2. The first two iterations of Algorithm 1 on S1. First minimize on the
tangent line γ0 and get the first step size t1 = s1. Retract Rx0 (s1η0) to
point x1. Then minimize on the tangent line γ1 to get a step size t2. So we
have s2 = t1 + t2 and the next point x2 = Rx0 (s2η0). We can see that x2
has a lower cost value than x1 and x2 is also closer to the global minimum
point x∗ on φ(t) = Rx0 (tη0).

III. ONE-STEP-FURTHER HEURISTIC

The minimization scheme described in Algorithm 1 pro-
vides a way of refining step sizes. However the requirement is
sometimes too strong in practice. Vector transport may not be
collinear with the retraction in real applications, such as the
example shown in Figure 3.

Fig. 3. Example of vector transport that is not collinear with retraction.
Consider a retraction defined for a cylinder M in the three-dimensional
Euclidean space as Rx(η) = ((a1 + b1)/c, (a2 + b2)/c, a3 + b3), where
x = (a1, a2, a3), η = (b1, b2, b3), and c = ((a1 + b1)2 + (a2 + b2)2)1/2.
Vector transport T is defined by parallel translating the vector in Euclidean
space and then projecting it to the tangent space of the target point. In this
example, η1 is the vector transport of η0 from point x0 to x1. From the
discrepancy of trajectories φ(t) = Rx0 (tη0) and φ1(t) = Rx1 (tη1), we can
see that η1 is not tangent to φ. So the vector transport T is not collinear with
the retraction R. This figure also provides a running example of Algorithm 2.

In addition, we also have to trade off between accuracy
and computation overhead. So based on our Algorithm 1,
we propose the following one-step-further heuristic strategy
in Algorithm 2 to keep things in balance.

Algorithm 2 One-Step-Further Heuristic
Input: Point x0 ∈M , direction η0 ∈ Tx0M , ‖η0‖ = 1.
Output: step sizes s∗.
1: Minimize f on the tangent line γ0(t) := x0 + tη0 of curve
φ at point x0 to get a step size t1.

2: Set x1 = Rx0
(t1η0),

3: Let η1 = Tt1η0η0 and normalize it to be unit length.
4: Minimize f on the tangent line γ1(t) := x1 + tη1 of curve
φ at point x1 to get a step size t2.

5: Set s∗ = t1 + t2.
6: Perform the Armijo backtracking. Modify s∗ if necessary.

Note that t2 serves as a modification of t1. To prevent
possible crashes, such as turning the step size s∗ to a negative
value, we restrict t2 in a reasonable range when implementing
Algorithm 2. For example, set t2 ∈ [b0t1, b1t1] where −1 <
b0 ≤ 0 and b1 ≥ 0; otherwise, we do not trust t2. The last step
ensures that the output step size satisfy the Armijo condition.

When the iterate point comes near to the optimal solution,
both the gradient and the step size become small. In this
case, the manifold locally resembles a flat Euclidean manifold
and the tangent line is good enough to represent the search
curve. We can check whether very small t2 (|t2| < ε for
some threshold ε) appears more than K times in a row to
detect whether the algorithm enters a ‘flat’ area so it can stop
computing t2 to save time. For example, in Case 1 of our
numerical experiments (Figure 4(b)), the algorithm enters a
flat area at iteration 35 of the total 46 iterations.

Compared to the traditional methods, Algorithm 2 com-
putes one more step, thus we expect a better estimation of

1219

step size. This is shown in the numerical experiments section
in which we apply it to a geometric algorithm called R3MC.

IV. APPLICATION TO MATRIX COMPLETION

R3MC [8] is one of the state-of-the-art geometric al-
gorithms for the low-rank matrix completion problem. The
manifold in consideration is the set of rank-r matrices Rn×mr
of size n × m for a fixed rank r. Let X∗ ∈ Rn×m be
the partially known matrix, then the cost function f for the
completion task can be written as

f(X) :=
1

|Ω|
‖PΩ(X)− PΩ(X∗)‖2F , (11)

where Ω := {(i, j)|X∗
i,j is given} is the index set for the

known entries of X∗, |Ω| is the cardinality of Ω, ‖A‖F is
the Frobenius norm of a matrix A, and PΩ is the orthogonal
sampling operator.

The fixed-rank manifold Rn×mr is homeomorphic to

M := (St(r, n)× GL(r)× St(r,m))/(O(r)×O(r)), (12)

where St(r, n) represents a Stiefel manifold [6, Section 3.3.2],
GL(r) is a general linear group and O(r) is an orthogonal
group. M is a quotient manifold formed by group action [8,
Equation (2)] with the canonical projection map

π : M → M
(U,R, V) 7→ URV T ,

(13)

where M := St(r, n) × GL(r) × St(r,m) is the total space
and (U,R, V) ∈ M. By Equation (13), the cost function can
be lifted to M as

f̄(U,R, V) =
1

|Ω|
‖PΩ(URV T)− PΩ(X∗)‖2F . (14)

Conceptually, R3MC performs a conjugate gradient method
on the abstract manifoldM. However, actual computations are
done in the total spaceM utilizing various lifted objects from
M. For example, A point x ∈ M can be represented by an
element (U,R, V) ∈ π−1(x) ⊂ M. Similarly, retraction and
vector transport in M can be computed through the retraction
and vector transport defined on the total space. The facts
that M being a submanifold of the ambient vector space
E := Rn×r × Rr×r × Rm×r and the lifted cost function f̄
can naturally be extended to the ambient space E permit the
application of Algorithm 2 to the line search subproblem.

Suppose that γ(t) = x̄+tη̄ is a line in the ambient space E
passing through a point x̄ = (U,R, V) ∈M towards direction
η̄ = (η̄U , η̄R, η̄V) ∈ Tx̄M. Then the lifted cost function f̄
restricted on γ is a degree-6 polynomial in variable t which
has a degree 2 polynomial approximation

f̃(t) =
1

|Ω|
‖PΩ(URV T −X∗+

t(η̄URV
T + Uη̄RV

T + URη̄TV))‖2F . (15)

R3MC uses the solution of s∗ = arg mint f̃(t) as the initial
guess for the step size. In the following numerical experiments,
we replace this line search method by the one-step-further
strategy described in Algorithm 2.

We conducted experiments using Matlab on a 2.90 GHz
Intel Core i7 laptop with 8G RAM. The ground truth matrix
X∗ was generated randomly with exponential decaying singu-
lar values, and CN denotes its condition number. Details of
the problem generation process can be found in [8, Section
V]. In the experiments, elements of the known entries Ω were
chosen uniformly randomly. The number of known entries was
represented by the over-sampling factor (OS), which is defined
as |Ω|/(nr + mr + r2) for a rank r matrix. Algorithms stop
when the cost function reduces below 10−10 or when they
reach the maximum iteration number 500.

Three different line search methods were compared.

• R3MC. The original line search method [8, Section IV]
in R3MC which computes the step size by minimizing the
degree 2 approximation (Equation (15)) on the tangent line
that passing through the iterate point.

• R3MC-2Step. The implementation of our one-step-
further heuristic method (Algorithm 2). We also utilized the
approximation polynomial for the cost function. Parameters
described in Section III were set to b0 = −0.2, b1 = 1,
ε = 0.005 and K = 5.

• R3MC-Adaptive. The adaptive step size procedure in
[15, Section 5.1] which updates the step size according to the
number of Armijo backtracking in the last step.

In Figure 4, three example cases with increasing sizes
and condition numbers are demonstrated. In these cases, we
fixed the ranks to be 10 and set OS to be 3. When measured
by total iteration numbers, Figures 4(b), 4(d) and 4(f) imply
that our R3MC-2Step performs best among these methods.
Since R3MC-2Step has to carry out an extra estimation for
the second step size t2, computation time required for each
iterate is a little more than that of R3MC. Figure 4(a) illustrates
the effect of this overhead. However, as the complexity of
the problem increases, the advantage of better convergence
per iteration compensates the cost due to extra computations
and we can see from Figures 4(c) and 4(e) that R3MC-
2Step outperforms R3MC and R3MC-Adaptive. This makes
it suitable for large scale and ill-conditioned scenarios.

We now dig into details of R3MC-2Step in these examples.
First, we compare the value ofRx0(t1η0) andRx0((t1+t2)η0)
(using notations from Algorithm 1) to see whether the second
step t2 successfully decreases the cost function against the
first step t1. The success rate (SR) is listed in Table I and
it shows that the second step seldom fails. Then, how good
is this extra step? We compute the exact solution ŝ in the
range [(1 + b0)t1, (1 + b1)t1] using Matlab’s fminbnd function
and compare it with the estimation of Algorithm 2, (t1 + t2).
Figure 4(g) illustrates this comparison for Case 2. Note that all
the lengths are divided by t1. So the values of (t1 + t2) and
ŝ are represented by relative ratios (2-Step Ratio and Exact
Ratio, respectively). They match very well in Figure 4(g) and
there a trend that the closer to the solution, the better is the
estimation. The mean absolute error (MAE) is listed in Table I.
The average iterations (MI) for the fminbnd function is also
listed in the Table which shows the efficiency of the heuristic
strategy. Three other items (MB1, MB2, and MB3) in Table I
are the average number of backtrackings per iterate for R3MC,
R3MC-2Step and R3MC-Adaptive, respectively.

1220

0 0.5 1 1.5 2 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Time in seconds

C
o
s
t

5000 by 5000, rank 10, OS 3, CN. 10

R3MC
R3MC−2Step
R3MC−Adaptive

(a) Case 1: Time

0 20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

C
o

s
t

5000 by 5000, rank 10, OS 3, CN. 10

R3MC
R3MC−2Step
R3MC−Adaptive

(b) Case 1: Iteration

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Time in seconds

C
o

s
t

50000 by 50000, rank 10, OS 3, CN. 1000

R3MC
R3MC−2Step
R3MC−Adaptive

(c) Case 2: Time

0 100 200 300 400 500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

C
o

s
t

50000 by 50000, rank 10, OS 3, CN. 1000

R3MC
R3MC−2Step
R3MC−Adaptive

(d) Case 2: Iteration

0 1000 2000 3000 4000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Time in seconds

C
o

s
t

500000 by 500000, rank 10, OS 3, CN. 1000000

R3MC
R3MC−2Step
R3MC−Adaptive

(e) Case 3: Time

0 100 200 300 400 500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

C
o

s
t

500000 by 500000, rank 10, OS 3, CN. 1000000

R3MC
R3MC−2Step
R3MC−Adaptive

(f) Case 3: Iteration

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

1.4

1.6

1.8

2

Number of iterations

S
te

p
2

 R
a

ti
o

50000 by 50000, rank 10, OS 3, CN. 1000

2Step Ratio
Exact Ratio
Base Line

(g) Case 2: Heuristic Step v.s. Exact Step

Fig. 4. Comparing three line search methods, R3MC, R3MC-2Step and R3MC-Adaptive, in three cases. The sizes are 5000 × 5000, 50000 × 50000,
500000× 500000 and the condition numbers (CN) are 10, 1000 and 1000000, respectively.

SR MAE MI MB1 MB2 MB3

Case 1 100% 0.0191 11.41 0 0 1.012
Case 2 99.5% 0.0402 14.08 0 0 1.010
Case 3 100% 0.0609 15.75 0 0 1.155

TABLE I. STATISTICS OF THE THREE LINE SEARCH METHODS

V. CONCLUSION

The search curve in geometric optimization algorithms
generally lacks closed-form expressions. This restricts the
development of effective line search strategies that exploit
higher order information of the search curve. To circumvent
this difficulty, we use the concept of collinearity and the
assistance of linear approximations of the curve to propose a
minimization scheme which produces a series of refining step
sizes. We prove its validity theoretically. To put it into practical
use, we propose a one-step-further heuristic strategy, which is a
modification of the minimization scheme. This heuristic can be
used to replace the line search part of existing algorithms. We
apply it to one of the state-of-the-art geometric algorithms for
matrix completion R3MC and show its potential in accelerating
the performance of existing algorithms.

ACKNOWLEDGMENT

Z. Lin is supported by 973 Program of China (grant
no. 2015CB352502), NSF China (grant nos. 61272341 and
61231002), and Microsoft Research Asia Collaborative Re-
search Program.

REFERENCES

[1] D. Gabay, “Minimizing a differentiable function over a differential
manifold,” Journal of Optimization Theory and Applications, vol. 37,
no. 2, pp. 177–219, 1982.

[2] S. T. Smith, “Optimization techniques on Riemannian manifolds,” in
Hamiltonian and gradient flows, algorithms and control, ser. Fields
Inst. Commun., 1994, vol. 3, pp. 113–136.

[3] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,” SIAM J. MATRIX ANAL. APPL, vol. 20,
no. 2, pp. 303–353, 1998.

[4] W. Ring and B. Wirth, “Optimization methods on Riemannian manifolds
and their application to shape space,” SIAM Journal on Optimization,
vol. 22, no. 2, pp. 596–627, 2012.

[5] P.-A. Absil, C. Baker, and K. Gallivan, “Trust-region methods on
Riemannian manifolds,” Foundations of Computational Mathematics,
vol. 7, no. 3, pp. 303–330, 2007.

[6] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2009.

[7] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a
Matlab toolbox for optimization on manifolds,” Journal of Machine
Learning Research, vol. 15, pp. 1455–1459, 2014.

[8] B. Mishra and R. Sepulchre, “R3MC: A Riemannian three-factor
algorithm for low-rank matrix completion,” in Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, 2014.

[9] B. Vandereycken, “Low-rank matrix completion by Riemannian opti-
mization,” SIAM Journal on Optimization, vol. 23, no. 2, p. 1214, 2013.

[10] N. Boumal and P.-A. Absil, “RTRMC: A Riemannian trust-region
method for low-rank matrix completion,” in Advances in Neural In-
formation Processing Systems 24 (NIPS), 2011, pp. 406–414.

[11] T. Ngo and Y. Saad, “Scaled gradients on Grassmann manifolds for
matrix completion,” in Advances in Neural Information Processing
Systems 24 (NIPS), 2012, pp. 1412–1420.

[12] G. Meyer, S. Bonnabel, and R. Sepulchre, “Linear regression under
fixed-rank constraints: A Riemannian approach,” in Proceedings of the
28th International Conference on Machine Learning (ICML-11), 2011,
pp. 545–552.

[13] ——, “Regression on fixed-rank positive semidefinite matrices: a Rie-
mannian approach,” JMLR, vol. 12, pp. 593–625, 2011.

[14] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New
York: Springer, 2006.

[15] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, “Fixed-rank
matrix factorizations and Riemannian low-rank optimization,” Compu-
tational Statistics, vol. 29, no. 3-4, pp. 591–621, 2014.

1221

