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a b s t r a c t

Learning-based partial differential equations (PDEs), which combine fundamental differential invariants
into a non-linear regressor, have been successfully applied to several computer vision tasks. In this paper,
we present a robust hybrid method that uses learning-based PDEs for detecting texts from natural scene
images. Our method consists of both top-down and bottom-up processing, which are loosely coupled.
We first use learning-based PDEs to produce a text confidence map. Text region candidates are then
detected from the map by local binarization and connected component clustering. In each text region
candidate, character candidates are detected based on their color similarity and then grouped into text
candidates by simple rules. Finally, we adopt a two-level classification scheme to remove the non-text
candidates. Our method has a flexible structure, where the latter part can be replaced with any
connected component based methods to further improve the detection accuracy. Experimental results
on public benchmark databases, ICDAR and SVT, demonstrate the superiority and robustness of our
hybrid approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Text detection and recognition in natural scene images have
received more and more attention in recent years [1–4]. This is
because text often provides critical information for understanding
the high-level semantics of multimedia content, such as street
view data [5,6]. Moreover, the demand of a growing number of
applications on mobile devices has brought great interest in this
problem. Text detection from natural scene images is very challen-
ging due to the complexity of background, uneven lighting,
blurring, degradation, distortion, and the diversity of text patterns.

There have been a lot of methods for scene text detection, which
can be roughly divided into three categories: sliding window based
methods [7–9], connected component (CC) based methods
[5,10,11], and hybrid methods [12]. Sliding window based methods
search for possible texts in multi-scale windows in an image and
then classify them into positives using a lot of texture features.
However, they are often computationally expensive when a large
number of windows, with various sizes, need to be checked and

complex classification methods are used. CC-based methods firstly
extract character candidates as connected components using some
low-level features, e.g., color similarity and spatial layout. Then the
character candidates are grouped into words after eliminating the
wrong ones by connected components analysis (CCA). The hybrid
method [12] creates a text region detector to estimate the prob-
abilities of text position at different scales and extract character
candidates (connected components) by local binarization. The CC-
based and the hybrid methods are more popular than the sliding
window based ones because they can achieve a high precision once
the candidate characters are correctly detected and grouped. How-
ever, such a condition is not often met: the low-level operations are
usually unreliable and sensitive to noise, which makes it difficult to
extract the right character candidates. The large number of wrong
character candidates can cause many difficulties in the post-
processing, such as grouping and classification.

Recently, Liu et al. [13] have proposed a framework that learns
partial differential equations (PDEs) from training image pairs,
which has been successfully applied to several computer vision
and image processing problems. It can handle some mid-and-
high-level tasks that the traditional PDE-based methods cannot. In
[13] they apply learning-based PDEs to object detection, color2-
gray, and demosaicking. In [14], they use an adaptive (learning-
based) PDEs system for saliency detection. However, these meth-
ods [13,14] may not handle text detection well. This is because text
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is a man-made object and its interpretation strongly depends on
human perception. The complexity of backgrounds, flexible text
styles, and variation of text contents make text detection more
challenging than previous tasks.

In most cases, texts cover only a small area of the scene image
(Fig. 1). So it will be beneficial for post-processing, like character
candidate extraction, if we could narrow down the candidates of
text region and eliminate annoying backgrounds. Although we
cannot expect that the learned PDEs can produce an exactly binary
text mask map, because the solution of the learned PDEs should be
a more or less smooth function, learning-based PDEs can give us a
relatively high quality confidence map as a good reference. So we
use learning-based PDEs to design a text region detector. It is
much faster than sliding window based methods because its
complexity is only O(N), where N is the number of pixels in the
image. Some examples containing the detected region candidates
are shown in Fig. 1. To make our method complete and comparable
to others, we further propose a simple method for detecting texts
in the region candidates.

In summary, we propose a new robust hybrid method using
learning-based PDEs. It incorporates both top-down scheme and
bottom-up scheme to extract texts in natural scene images. Fig. 2
shows the flow chart of our system and Fig. 3 gives an example. A
PDEs system is first learnt off-line with L1-norm regularization on
the training images. In the top-down scheme, given a test image as
the initial condition we solve the learnt PDEs to produce a high
quality text confidence map (see Fig. 3(b)). Then we apply a local
binarization algorithm (Niblack [15]) to the confidence map to
extract text region candidates (see Fig. 3(c)). In the bottom-up
scheme, we present a simple connected component based method

and apply it to each region candidate to determine accurate text
locations. We firstly perform mean shift algorithm and binariza-
tion (OTSU [16]) to extract character candidates (see Fig. 3(d)).
Then we group these components to text lines simply based on
their color and size (see Fig. 3(e)). Next we adopt a two-level
classification scheme (character candidates classifier and text
candidates classifier) to eliminate the non-text candidates. Then
we obtain the final result (Fig. 3(f)). Our system is evaluated on
several benchmark databases and has achieved higher F-measures
than other methods. Note that the parameters and classifiers are
only trained on the ICDAR 2011 database [17] as only this database
provides the required training information. But the proposed
approach still yields higher precisions and recalls on the SVT
databases [5,6] than other state-of-the-art methods. We summar-
ize the contributions of this paper as follows:

� We propose a new hybrid method for text detection from
natural scene images. Unlike previous methods, our method
consists of loosely coupled top-down and bottom-up schemes,
where the latter part can be replaced by any connect compo-
nent based methods.

� We apply learning-based PDEs for computing a high quality
text confidence map, upon which good text region candidates
can be easily chosen. Unlike sliding window based methods,
the complexity of learning-based PDEs for text candidate
proposal is only O(N), where N is the number of pixels. So
our learning-based PDEs are much faster. To our best knowl-
edge, this is the first work that applies PDEs to text detection.

� We conduct extensive experiments on benchmark databases to
prove the superiority of our method over the state-of-the-art
ones in detection accuracy. Note that unlike previous
approaches, after computing the text confidence map, all the
procedures are very simple. The performance could be further
improved if more sophisticated and ad hoc treatments are
involved.

The rest of this paper is organized as follows. Section 2 briefly
reviews the related work. Section 3 describes the top-down
scheme and Section 4 describes the bottom-up scheme. We
discuss the relationship between our method and some related
work in Section 5. Section 6 presents experiments that compare
the proposed method and the state-of-the-art ones on several
public databases. We conclude our paper in Section 7.

Fig. 1. Examples of the detected text region candidates (in green boxes) by learning-based PDEs in natural scene images (Images in this paper are best viewed on screen!).

Fig. 2. Pipeline of the proposed approach.
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2. Related work

Most sliding window based methods first search for possible
texts in multi-scale windows and then estimate the text existence
probability by using classifiers. Zhong et al. [1] adopt image
transformations, such as discrete cosine transform and wavelet
decomposition, to extract features. They remove the non-text
regions by thresholding the filter responses. Kim et al. [7] extract
texture features from all local windows in every layer of image
pyramid, which enables the method to detect texts at variable
scales. They use a fast mode seeking process named continuously
adaptive mean-shift (CAMSHIFT) to search for the text positions
and an SVM classifier to generate text probability maps. Li et al.
[18] use first and second order moments of wavelet decomposition
responses as local region features and a neural network classifier
to filter the negative candidates. To speed up text detection, Chen
and Yuille [8] propose a fast text detector using a cascade
AdaBoost classifier, whose weak learners are selected from a
feature pool containing gray-level, gradient, and edge features.
After classification the windows are further grouped with mor-
phological operations [19], conditional random fields [6] or graph
based methods [20]. The advantage of these methods lies in the
simple and adaptive training-detection architecture. Yet that a
large number of window candidates need to be classified results in
their expensive computational cost.

Unlike sliding window based methods, CC-based methods first
extract character candidates from images by connected compo-
nent analysis and then group the character candidates into words.
Additional classifier may be used to eliminate false positives. CC-
based methods have become the focus of several recent work
thanks to their low computational cost. In addition, the located
text components can be directly used for recognition. Based on the
color uniformity of characters in a text string, Yi and Tian [21]
propose a color-based partition scheme, which applies weighted
k-means clustering in the RGB space to separate text and back-
ground pixels. In [22] Shivakumara et al. filter the image in the
frequency domain, by using the Fourier–Laplacian transform, and
then apply k-means clustering to identify candidate components.
Recently, two methods, Maximally Stable Extremal Regions

(MSER) [23,24] and Stroke Width Transform (SWT) [5,25,26] have
been widely used because of their effectiveness of extracting
character/component candidates. Yin et al. [24] use a pruning
algorithm to select appropriate MSERs as character candidates and
hybrid features to validate the candidates, achieving state-of-the-
art performance on the ICDAR 2011 database [17]. Using SWT, Yao
et al. [25] follow Epshtein et al.'s work [5] in pixel-level filtering
and grouping. Then, after running heuristic filtering, two classifiers
were trained and applied to remove the outliers in components
and text lines. Huang et al. [26] develop a novel Stroke Feature
Transform (SFT) filter and two Text Covariance Descriptors (TCDs)
for text detection and get a significant performance improvement.
In implementations of CCs, syntactic pattern recognition methods
are often used to analyze the spatial and feature consensus and to
define text regions.

The most related work to ours is the recently proposed hybrid
method by Pan et al. [12]. They create a text region detector which
computes the text confidence values of sub-windows by using the

Fig. 3. Text detection process. (a) The original image. (b) Text confidence map. (c) Text region candidates (in green boxes). (d) Character candidates (in different colors).
(e) Text candidates (in green boxes). (f) Final result (in green boxes). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Table 1
Fundamental differential invariants up to the second order, where tr is the trace
operator and ∇f and Hf are the gradient and the Hessian matrix of function f,
respectively.

i inviðu; vÞ

0, 1, 2 1; v;u
3, 4 J∇vJ2 ¼ v2x þv2y ; J∇uJ

2 ¼ u2
x þu2

y

5 ð∇vÞT∇u¼ vxuxþvyuy

6, 7 trðHvÞ ¼ vxxþvyy ; trðHuÞ ¼ uxxþuyy

8 ð∇vÞTHv∇v¼ v2x vxxþ2vxvyvxyþv2yvyy
9 ð∇vÞTHu∇v¼ v2xuxxþ2vxvyuxyþv2yuyy

10 ð∇vÞTHv∇u¼ vxuxvxxþðvxuyþuxvyÞvxyþvyuyvyy
11 ð∇vÞTHu∇u¼ vxuxuxxþðvxuyþuxvyÞuxyþvyuyuyy

12 ð∇uÞTHv∇u¼ u2
x vxxþ2uxuyvxyþu2

yvyy
13 ð∇uÞTHu∇u¼ u2

xuxxþ2uxuyuxyþu2
yuyy

14 trðH2
v Þ ¼ v2xxþ2v2xyþv2yy

15 trðHvHuÞ ¼ vxxuxxþ2vxyuxyþvyyuyy

16 trðH2
uÞ ¼ u2

xxþ2u2
xyþu2

yy
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Histogram of Oriented Gradients (HOG) feature and then extract
connected components by local binarization. After that they use a
conditional random field model to eliminate the non-character
components and group text components into text lines/words
with an energy minimization model. Our method computes the
text confidence value of each pixel by learning-based PDEs and
then group the pixels into text region candidates. It removes lots of
backgrounds and hence makes the character candidates extraction
much easier. After detecting text region candidates, any CC-based
methods can be used. So our method has a flexible structure.

3. Top-down: text confidence map computation and text
region candidates extraction

As mentioned before, the proposed method has both the top-
down scheme and the bottom-up scheme. We introduce the top-
down scheme in this section and leave the bottom-up scheme in
next section. We first introduce learning-based PDEs and then
apply them to compute the text confidence map. Then we adopt a
local thresholding method for text region candidates extraction.

3.1. Text confidence map computation

In this subsection, we first give a brief overview on learning-
based PDEs. Then we propose to use the L1 norm regularization for
the coefficients of PDEs and explain the algorithm for learning-
based PDEs. At last, we introduce the numerical implementation
for solving the PDEs to compute the text confidence map.

3.1.1. Learning-based PDEs
Learning-based PDEs have been successfully applied to several

computer vision and image processing problems, such as denois-
ing, deblurring, demosaicking, and saliency detection [13,14]. It is
assumed that the evolution of the image u is guided by an
indicator function v, which collects large scale information. It is
grounded on the translational and rotational invariance of com-
puter vision and image processing problems. Namely, when the
input image is translated or rotated, the output image is translated
or rotated at the same amount. It can be proven that the governing
equations are functions of fundamental differential invariants
(Table 1), which form “bases” of all differential invariants that
are invariant with respect to translation and rotation [13].

Fig. 4. Evolution of PDEs. (a) and (b) is an input/output training image pair. (c)–(e) show the evolutionary results of the learned PDEs at time n¼1, 3, and 6, respectively. (f) is
the text confidence map output by the learned PDEs.
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Assuming linear combination of the fundamental differential
invariants, the formulation of PDEs is as follows:

∂u
∂t

�
X16
i ¼ 0

aiðtÞinviðu; vÞ ¼ 0; ðx; y; tÞAQ ;

uðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;

uðx; y;0Þ ¼ f u; ðx; yÞAΩ;

∂v
∂t

�
X16
i ¼ 0

biðtÞinviðu; vÞ ¼ 0; ðx; y; tÞAQ ;

vðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;

vðx; y;0Þ ¼ f v; ðx; yÞAΩ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1Þ

where fu and fv are the initial functions of u and v, respectively,
which are determined by the input image I (Fig. 4a), Ω�R2 is the
(rectangular) region occupied by the image,2 T is the temporal span
of evolution which can be normalized as 1, Q ¼Ω� ½0; T �,
Γ ¼ ∂Ω� ½0; T �, and ∂Ω is the boundary of Ω. So learning the PDEs
reduces to determining the linear combination coefficients a¼
faiðtÞj i¼ 0;…;16g and b¼ fbiðtÞj i¼ 0;…;16g among the funda-
mental differential invariants. That the coefficients are functions
of time t only and independent of spatial variables is a consequence
of the translational and rotational invariance of the PDEs [13].

The optimal coefficients should minimize the difference
between the output of PDEs, when the initial function is the input
training image (see Fig. 4(a)), and the ground truth (output
training image, see Fig. 4(b)) [13]. To this end, one may prepare
a number of input/output training image pairs (ðIm;OmÞ; i¼
1;…;M), where Im is the input training image and Om is the output
training image. This results in a PDEs constrained optimal control
problem:

min
a;b

Eða;bÞ ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�umðx; y; TÞð Þ2 dΩ

þλ1
X16
i ¼ 0

Z T

0
a2i ðtÞ dtþλ2

X16
i ¼ 0

Z T

0
b2i ðtÞ dt; ð2Þ

where um, a, and b satisfy Eq. (1) and umðx; y; TÞ is the solution of
PDEs (1) at t¼T when the input image is Im (see Fig. 4(f)).

Model (2)–(1) is for grayscale images. When detecting texts,
the input is usually a color image (see Fig. 4(a)) and the expected
output is a binary image (the mask image at text position, see
Fig. 4(b)). So we extend the learning-based PDEs framework to
accommodate three indicate functions v¼ ½v1; v2; v3�T , each
accounting for one channel of the color image and using one
channel of the input image as its initial condition. u is simply
initialized as an all-one function. Accordingly, there are four
evolutionary PDEs, for u, v1, v2, and v3, respectively. And the
number of translationally and rotationally invariant fundamental
differential invariants up to second order becomes 69. They are
f1; f r ; ð∇f rÞT∇f s; ð∇f rÞTHf m∇f s; trðHf r Þ; trðHf rHf s Þg where f r ; f s; f mA
fu; v1; v2; v3g. They can also be conveniently referred to as
inviðu; vÞ; i¼ 0;…;68. Because of the significantly increased num-
ber of the fundamental differential invariants, the L1-norm reg-
ularization is more suitable for the coefficients to encourage
sparsity, i.e., using as few fundamental differential invariants as
possible. Summing up, the color-image version of model (2)–(1) is

min
a;B

Eða;BÞ ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�umðx; y; TÞð Þ2 dΩ

þλ1
X68
i ¼ 0

Z T

0
jaiðtÞjdtþλ2

X3
j ¼ 1

X68
i ¼ 0

Z T

0
jBi;jðtÞjdt; ð3Þ

s:t:

∂um

∂t
�
X68
i ¼ 0

aiðtÞ inviðum; vmÞ ¼ 0; ðx; y; tÞAQ ;

umðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;
umðx; y;0Þ ¼ 1; ðx; yÞAΩ;

∂vm;j

∂t
�
X68
i ¼ 0

Bi;jðtÞ inviðum; vmÞ ¼ 0; ðx; y; tÞAQ ;

vm;jðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;
vm;jðx; y;0Þ ¼ Im;j; ðx; yÞAΩ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4Þ

where vm ¼ ½vm;1; vm;2; vm;3�; a¼ faiðtÞj i¼ 0;…;68g and B¼
fBi;jðtÞj i¼ 0;…;68; j¼ 1;2;3g:

3.1.2. Algorithm for solving the coefficients
Liu and Lin et al. [13] propose a gradient descent method to solve

for the optimal coefficients ai(t) and bi(t) in (1), where the “gradient”
is actually the Gâteaux derivatives [27] of the objective functional E
with respect to the coefficient functions. The gradient descent
method is time-consuming and only fits for smooth regularizations
on the coefficient functions, such as the squared L2 norm in (2).

Zhao et al. [28] propose a new algorithm by minimizing the
difference between the expected outputs Om (Fig. 4(b)) and the
actual outputs (umðx; y; tÞ) of the PDEs at time t. We adopt this
algorithm to solve the optimal control problem (3)–(4).

We first discretize the temporal variable t with a step size Δt
and denote ti ¼ i �Δt, i¼ 0;…;N. In the sequel, for brevity we use
um
n or umðtnÞ instead of umðx; y; tnÞ if no ambiguity can occur. Other

notations, such as vnm, a
n, and Bn are understood similarly.

Forward scheme is used to approximate the governing equa-
tions in (4). Namely,

unþ1
m ¼ un

mþΔt anð ÞT � inv un
m; v

n
m

� �
; nZ0;

vnm ¼ vn�1
m þΔt Bn�1

� �T
� inv un�1

m ; vn�1
m

� �
; nZ1;

8><
>: ð5Þ

where anð ÞT � inv un
m;v

n
m

� �
9

P68
i ¼ 0 a

n
i invi u

n
m; v

n
m

� �
and

Bn�1
� �T

� inv un�1
m ; vn�1

m

� �

9
X68
i ¼ 0

Bn�1
i;1 invi un�1

m ; vn�1
m

� �
;
X68
i ¼ 0

Bn�1
i;2 invi un�1

m ; vn�1
m

� �
;

"

X68
i ¼ 0

Bn�1
i;3 invi un�1

m ; vn�1
m

� �#T

:

Following Zhao et al. [28]'s scheme, we relax to minimize the
difference between the expected outputs Om and the actual out-
puts unþ1

m of the PDEs in time order. Then the problem reduces to

min
an ;Bn� 1

Lnþ1 an;Bn�1
� �

¼ 1
2

XM
m ¼ 1

Z
Ω

Om�unþ1
m

� �2
dΩ

þλ1 Jan J1þλ2 JBn�1 J1; ð6Þ

at each time tn, where Jan J1 ¼
P68

i ¼ 0 jani j is the sum of the
absolute values of its components and JBn�1 J1 ¼

P3
j ¼ 1

P68
i ¼ 0 j

Bn�1
i;j j :
For n¼0 (time t0), to solve for a0, by using the first equation in

(5) problem (6) reduces to minimize

Lða0Þ ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�u0
m�Δt a0

� �T � inv u0
m; v

0
m

� �h i2
dΩ

þλ1 Ja0 J1: ð7Þ

2 The images are padded with zeros of several pixels width around them such
that the Dirichlet boundary conditions uðx; y; tÞ ¼ 0; vðx; y; tÞ ¼ 0; ðx; y; tÞAΓ, are
naturally fulfilled.
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When using binomial expansion and interchanging integration
and summation, the first term of (7) can be rewritten as follows:

Δt
� �2

2

XM
m ¼ 1

Z
Ω

a0
� �T � inv u0

m; v
0
m

� � � invT u0
m; v

0
m

� � � a0 dΩ
�Δt

XM
m ¼ 1

Z
Ω

Om�u0
m

� �
invT u0

m; v
0
m

� � � a0dΩ
þ1
2

XM
m ¼ 1

Z
Ω

Om�u0
m

� �2
dΩ

¼ ðΔtÞ2
2

a0
� �T � XM

m ¼ 1

Z
Ω
inv u0

m;v
0
m

� � � invT u0
m; v

0
m

� �
dΩ � a0

�Δt
XM
m ¼ 1

Z
Ω

Om�u0
m

� �
invT u0

m; v
0
m

� �
dΩ � a0

þ1
2

XM
m ¼ 1

Z
Ω

Om�u0
m

� �2
dΩ:

We can see that it is a quadratic programming problem with
L1-norm regularization for a0. Many efficient algorithms that guaran-
tee globally optimal solutions have been proposed, such as Gradient
Projection (GP) [29], Homotopy [30], Iterative Shrinkage-Thresholding
(IST) [31], Accelerated Proximal Gradient (APG) [32], and Alternating
Direction Method (ADM) [33].

For n41 (time tn), we use the block coordinate descent method
to update an and Bn�1 alternately. We reduce (6) to the following
two sub-problems. The sub-problem for updating an is to minimize:

LðanÞ ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt an

� �T � inv un
m; v

n
m

� �h i2
dΩ

þλ1 Jan J1: ð8Þ
It is essentially the same as 7.

When an is fixed, by inserting the second equation of (5) in the
first equation in (5), problem (6) reduces to minimizing:

LðBn�1Þ ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�un
m

� �Δt an
� �T � inv un

m; v
n�1�

þΔt Bn�1
� �T

� invðun�1
m ; vn�1

m Þ
��2

dΩþλ2 JBn�1 J1:

ð9Þ
This is a highly-nonlinear and non-convex problem. Like [28], we
linearize the term in

R
Ωð�Þ2 dΩ in (9) locally and then solve it in the

same way as (8). Bn�1 can be simply initialized as 0.
We summarize the whole solution process of learning-based

PDEs in Algorithm 1. Here we use Accelerated Proximal Gradient
(APG) [32] to solve the sub-problems (8)–(9).

Algorithm 1. Learning-based PDEs.

Input Training image pairs fðIm;OmÞgMm ¼ 1.
Initialize

u0
m ¼ 1; v0m ¼ ½Im;1; Im;2; Im;3�T ;Δt ¼ 0:05; ε¼ 10�6;N¼ 10.

Step 0 Compute a0 by solving problem (7) and um
1 by using (5).

Step n (nZ1)
While not converged do

Bn�1 ¼ 0.
While not converged do
1. Fix Bn�1 and update an by solving sub-problem (8),

2. Fix an and update Bn�1 by solving sub-problem (9),
end while
Compute unþ1

m and vnm by using (5),
Check the convergence conditions:
JLnþ1ðan;Bn�1Þ�Lnðan�1;Bn�2ÞJ1oε or nZN,

n’nþ1.
end while

3.1.3. Numerical implementation
We need to prepare the input/output training image pairs (in

our experiments, we only use M¼60 pairs) before learning the
coefficients. The input training image is like Fig. 4(a), which is
the initial value of v. The initial value of u is taken as 1 at each
pixel. The output training image is the text mask image, like
Fig. 4(b).

To compute the spatial derivatives and integrations, we need to
do spatial discretization. We use central differences to approx-
imate the derivatives:

∂f
∂x

¼ f ðxþ1Þ� f ðx�1Þ
2

;

∂2f
∂x2

¼ f ðxþ1Þ�2f ðxÞþ f ðx�1Þ:

8>><
>>: ð10Þ

The discrete forms of ∂f =∂y, ∂2f =∂y, and ∂2f =∂x∂y can be defined
similarly. In addition, we discretize the integrations asZ
Ω
f ðx; yÞ dΩ¼ 1

jΩj
X

ðx;yÞAΩ

f ðx; yÞ; ð11Þ

where jΩj is the number of pixels in Ω.
We choose λ1 ¼ λ2 ¼ 10�3 and show the evolution of one

image governed by learnt PDEs in Fig. 4. It can be seen that at
the beginning steps the text confidence values may not be very
high (see Fig. 4(c)). However, the values increase gradually with
the evolution of PDEs (see Fig. 4(d)–(f)).

3.2. Text region candidates detection

When given a test image, we compute the confidence map
(Fig. 4(f)) by solving the learned PDEs, with the test image being
the initial condition. Then we adopt Niblack's local binarization
algorithm [15] due to its high efficiency and robustness to image
degradation. After binarization, we find out the 8-connected
atom components and then group them into text region
candidates.

For clustering, we consider the atom components as the
vertices V and build an undirected graph G¼ ðV ; EÞ. Two vertices
are connected if and only if the following three conditions are
satisfied. Let ðxi; yiÞ denote the top left corner of the bounding
rectangle of atom component Vi, hi and wi be the height and the
width of the bounding rectangle, respectively, and fc1;i; c2;i; c3;ig be
the means of three color channel values of Vi. Then the conditions
on Vi and Vj are

� The bounding rectangles should align. So

min jyi�yj j ; jyiþhi�yj�hj j
� �

min hi;hj
� �

should be less than a threshold T1.� The two atom components should not be too far from each
other. So the interval

min jxiþxj�wi j ; jxi�xj�wj j
� �

min wi;wj
� �

should not be greater than a threshold T2.� The atom components in the same region need to have similar
colors. So the color differenceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1;i�c1;j
� �2þ c2;i�c2;j

� �2þ c3;i�c3;j
� �2q

should be lower than a predefined threshold T3.

In our experiments, we set T1¼0.5, T2 ¼ 2, and T3 ¼ 50. We find
the connected components of the graph G as different clusters.
After clustering, we calculate the minimum circumscribed
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rectangle as the text region candidates. We further use simple
heuristic rules, such as the ratio of the width to the height of the
minimum circumscribed rectangle, to remove wrong text region
candidates. All thresholds and parameters for the geometric
tests were learned on the fully annotated training set ICDAR
2011 [17].

4. Bottom-up: text detection in the region candidates

Although using learning-based PDEs for text confidence map
computation is our major contribution, to make our method
complete and comparable to others, in this section we propose a
simple framework to extract text strings in the detected text
region candidates. It can be replaced by any CC-based methods
and the performance can be further improved if more advanced
CC-based methods are employed. The framework is the bottom-up
scheme and is mainly inspired by [21,26]. It consists of three main
steps: character candidates extraction, text candidates construc-
tion, and final result verification.

4.1. Character candidates extraction

For character candidates extraction, color and edge/gradient
features [21] are conventionally used. Recently, stroke width (e.g.,
SWT [5,25,26]) and region features (e.g., MSER [23,24]) have been
widely employed. Here we use two methods, binarization and
mean shift [34], which simply use the color features. For binariza-
tion, we just adopt the method OSTU [16]. For mean shift, we
extract the character candidates based on the color of pixels
through the following steps, which is inspired by [21,34,35].

Firstly, we eliminate the edge pixels by applying the Canny
detector [36] to our text region candidates and calculate the color
histogram on the remaining pixels. We choose 64 initial mean
color points and adopt the flat kernel with λ¼ 16 for the mean
shift procedure [37]. After that a pixel belongs to the cluster of the
final generated mean color point only when the distance between
them is less than 16. Then the 64 final clusters whose weighted
mean color are close enough to each other are merged together,
producing the final clusters. In our experiments, we observe that
the algorithm converges in about 20 iterations.

After character candidates extraction, we further train a char-
acter level classifier using the GML AdaBoost toolbox [38]. It
generates a confidence value p1ðcÞ for each character candidate c.
Then a simple thresholding method is used to eliminate the
negative ones. More details can be seen in Section 4.3.

4.2. Text candidates construction

There are two general approaches, rule-based methods
[39,25,10] and cluster-based methods [12,24], for text candidates
construction. The rule-based methods assume that characters in a
word can be fit by one or more top and bottom lines and text
candidate need to connect three or more character candidates. Pan
et al. [12] and Yin et al. [24] cluster the character candidates with a
learned distance metric. Here we simply follow the same way as
we extract the text region candidates to group the character
candidates into text candidates. We consider the character candi-
dates as the vertices V and build an undirected graph G¼ ðV ; EÞ.
Then we find the connected components of the graph as clusters.
To build the edge E between two character candidates (vertices),
we check whether the following six conditions are satisfied. The
first three are the same as those in Section 3.2. Following the same

denotations and denoting jVi j as the number of points in Vi, we
present three more conditions as follows:

� The area of each character in a text line should be similar. So
the difference

absðjVi j � jVj j Þ
min jVi j ; jVj j

� �
should not be greater than T4.� Considering the capital and lowercase characters, the height
ratio

jhi�hj j
maxðhi;hjÞ
should be less than T5.� Considering the different widths of characters, the width ratio

jwi�wj j
maxðwi;wjÞ
should be less than T6.

In our experiments, we set T1 ¼ 0:25; T2 ¼ 3; T3 ¼ 50; T4 ¼ 3;
T5 ¼ 0:6; and T5¼0.6. After clustering, we calculate the minimum
circumscribed rectangle as the text candidates.

4.3. Final result verification

There may be many false positives in text candidates because a
small piece of components/patches may not contain sufficient
information for classification. Recently, a two-level classification
scheme (character candidates classifier and text candidates classi-
fier) is widely used for text verification. Inspired by Yin et al. [24],

Table 2
Comparison with most recent text detection results on the ICDAR 2005 test
database. The results of other methods are quoted from [12,26].

Methods Description Precision Recall F-measure

Our method Hybrid 0.87 0.67 0.76
Pan et al. [12] Hybrid 0.67 0.70 0.69
Huang et al. [26] CC (SWT) 0.81 0.74 0.72
Yao et al. [25] CC (SWT) 0.69 0.66 0.67
Epshtein et al. [5] CC (SWT) 0.73 0.60 0.66
Chen et al. [46] CC (MSER) 0.73 0.60 0.66
Neumann and Matas [48] CC (MSER) 0.65 0.64 0.63
Wang et al. [49] CC 0.77 0.61 0.68
Yi and Tian [50] CC 0.71 0.62 0.63
Zhang and Kasturi [51] CC 0.73 0.62 -
Yi and Tian [21] CC 0.71 0.62 0.62
Lee et al. [38] Sliding window 0.66 0.75 0.70

Table 3
Comparison with most recent text detection results on the ICDAR 2011 test
database. These results are from the papers [24,47].

Methods Description Precision Recall F-measure

Our method Hybrid 0.88 0.69 0.78
Yin et al. [24] CC (MSER) 0.86 0.68 0.76
Neumann and Matas [47] CC (MSER) 0.85 0.68 0.75
Ye et al. [4] CC (MSER) 0.89 0.62 0.73
Neumann and Matas [23] CC (MSER) 0.79 0.66 0.72
Shi et al. [52] CC (MSER) 0.83 0.63 0.72
Koo et al. [53] CC (MSER) 0.83 0.63 0.71
Huang et al. [26] CC (SWT) 0.82 0.75 0.73
Yi and Tian [50] CC 0.81 0.72 0.71
Wang et al. [49] CC 0.71 0.57 0.63
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Yao et al. [25], and Huang et al. [26], we utilize a two-level
classification scheme for the final result verification. The two
levels of features, character level features and text level features
are as follows:

1. Character level features: There are four kinds of features. The
first kind is the occupation percentage of the component and
the second is the ratio between the height and width. The third
is the ratio of the larger value (between width and height) and
its stroke distance mean. The last is a 36-dimensional feature
generated by the TCD-C descriptors proposed by Huang et al.
[26], but without the feature of stroke width values.

2. Text level features: There are three different types of descriptors.
Firstly, a 55-dimensional feature generated by the geometric
TCD-T descriptors proposed by Huang et al. [26] is used.
Secondly, a 16-bin HOG [40] is computed from the text
candidate of all the components. Inspired by [41], we compute
the correlation matrix between the bins, generating a 136-
dimensional feature. Thirdly, there are 42 global features,
consisting of local energy of Gabor filter [42,19] and statistical
texture measure of image histogram [41,19]. In total, they form
a 233-dimensional feature.

After choosing the features of character and text candidates we
use the GML AdaBoost toolbox to train two independent classi-
fiers, i.e., the character-level classifier and the text-level classifier.

They generate a confidence value p1ðcÞ for each character candi-
date c and an initial confidence value p2ðTÞ for each text candidate
T. As introduced in Section 4.1, we first use a simple thresholding
method to eliminate the negative character candidates. Then we
group the positive ones into text candidates. For a text candidate T
which contains n character candidates ci; i¼ 1;…;n, the final
confidence value is defined as PðTÞ ¼ Pn

i ¼ 1 p1ðciÞ=2nþp2ðTÞ=2.
The final result verification is produced by simply thresholding
the final confidence value.

5. Discussions

In this section, we discuss the connection between our meth-
ods and some related work.

5.1. Comparison with existing learning-based PDEs

Recently, Liu et al. [43,13] and Zhao [28] combine the learning
strategy with PDE-based methods for image processing. Although
both theirs and our work aim at learning a PDEs system, our work
is different from them. Liu et al. [43,13] use the L2-norm regular-
ization for the coefficients, while Zhao et al. [28] utilize the
L1-norm. Here, we exploit the L1-norm regularization which is
more suitable for color image processing due to the significantly
increased number of fundamental differential invariants. At the
best we know, we are the first to apply PDEs to text detection.

Fig. 5. Successful examples (top two rows) and failure examples (bottom row) from the ICDAR databases.

Z. Zhao et al. / Neurocomputing 168 (2015) 23–3430



5.2. Comparison to Pan et al.'s hybrid method

As mentioned before, Pan et al.'s hybrid method [12] proposes a
text region detector based HOG pyramid and a boosted cascade
classifier to produce a text confidence map. Then they use a local
binarization algorithm to get the character candidates from the
text confidence map. After that, they use a conditional random
fields model to eliminate the non-characters and group text
components into text lines/words using an energy minimization
method. In comparison, we use learning-based PDEs to compute a
text confidence map and detect text region candidates from the
map. Then any CC-based methods can work on these region
candidates. Experiment on ICDAR 2005 in Section 6 achieves a F-
measure which is 0.07 higher than Pan et al.'s [12].

6. Experimental results

In this section, we compare our method with several state-of-
the-art methods on a variety of public databases, including the
ICDAR 2005 [44,45], ICDAR 2011 [17], and the two street view text
databases, i.e., the SVT 2010 database [5] and the SVT 2011
database [6]. The performance of these methods is quantitatively
measured by precision (P), recall (R), and F-measure (F). They are
computed using the same definitions as those in [44,45] at the
image level. The overall performance values are computed as the
average values of all images in the database.

The training output images for learning-based PDEs are the text
mask binarization maps (see Fig. 4). As only the ICDAR 2011
database gives the mask maps, all the parameters (include the
coefficients of PDEs and the classifiers) are learned on the ICDAR
2011 training database. We use the same parameters when testing
our method on ICDAR 2005 and the two SVT databases.

6.1. Experiments on the ICDAR databases

ICDAR 2005 [44,45] and ICDAR 2011 [17] have been widely
used as the benchmarks for text detection in natural images. The
ICDAR 2005 database includes 509 color images with image sizes
varying from 307� 93 to 1280� 960 pixels. It contains 258
images in the training set and 251 images for testing. The ICDAR
2011 database contains 229 training images and 255 testing ones.
Both databases are evaluated in the word level, and have 1114 and
1189 words annotated in their test sets, respectively.

The performances of the proposed approach on the two databases
are shown in Tables 2 and 3. By comparison with results presented in
[26,12,24], our precisions and F-measures are higher while the recalls
are comparable with the highest recall values. It demonstrates a
significant improvement over representative methods, such as the
SWT-based methods [26,25,5] and MSER-based methods [46,24,47].
Since our bottom-up processing is simple and similar to them, our
performance improvement could be attributable to learning-based
PDEs that produce relatively good text confidence maps.

The top two rows of Fig. 5 show some successful results. They
suggest that our system is robust against large variations in text
font, color, size, and geometric distortion. The bottom row of Fig. 5
shows some failure cases, including a single large-scale character,
highly blurred texts, and unusual fonts.

6.2. Experiments on the SVT databases

We also test our method on the two widely used street view
text databases, the SVT 2010 database [5] and the SVT 2011
database [6]. The SVT 2010 database consists of 307 color images
of sizes ranging from 1024�1360 to 1024�768 pixels. The SVT
2011 database contains 647 words and 3796 letters in 249 images
collected from Google Street View. However, the format of the
ground truth of SVT 2011 database [6] is different from those of

Fig. 6. Successful examples (top two rows) and failure examples (bottom row) from the SVT databases.
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previous databases as only some words are annotated. Both
databases are more challenging than the ICDAR ones. The images
in these two database are noisier and they contain many repeating

structures such as windows and bricks. Some images are captured
in a low light environment and texts tend to be small, blurred, and
of low contrast (see Fig. 6). Note that we still use the same

Table 4
Comparison with most recent text detection results on the SVT 2010 database. The results of other methods are quoted from respective
papers.

Methods Description Precision Recall F-measure

Our method, Hybrid 0.72 0.41 0.52
trained on the ICDAR 2011 database
Yin et al. [24],
trained on the SVT 2011 database CC (MSER) 0.66 0.41 0.51
trained on the ICDAR 2011 database 0.62 0.32 0.42
Phan et al. [54] CC 0.50 0.51 0.51
Epshtein et al. [5] CC (SWT) 0.54 0.42 0.47

Table 5
Comparison with most recent text detection results on the SVT 2011 database. The results of other methods are quoted from
respective papers.

Methods Description Precision Recall F-measure

Our method, trained on Hybrid 0.65 0.39 0.49
the ICDAR 2011 database
Wang et al. [6] CC 0.67 0.29 0.41
Neumann et al. [39] CC (MSER) 0.19 0.33 –

Fig. 7. Comparison of character candidates extraction with and without learning-based PDEs. (a) Original images. (b) Character candidates (in different colors) without
learning-based PDEs. (c) Character candidates (in different colors) with learning-based PDEs. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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parameters (including the coefficients of PDEs and the classifiers)
trained on the ICDAR 2011 for these two SVT databases.

In Tables 4 and 5, we show the performances on the two SVT
databases. It can be seen that our method has a better performance
even if it was trained on the ICDAR 2011 database. For the SVT 2011
database, the detection task is very different: localizing words in images
(if present), where the words are from a lexicon. Our method has no
prior knowledge about the content of the image and its output is not
limited by a fixed lexicon. Nonetheless, we still get a higher F-measure
of 0.49 using the same evaluation protocol as in the previous section.
Fig. 6 shows some detection examples on these challenging databases.

6.3. Effects of learning-based PDEs

In this section we show the effectiveness of learning-based
PDEs by comparing the results with and without learning-based
PDEs. When learning-based PDEs are not utilized to propose text
region candidates, we simply apply the bottom-up procedure to
the whole image, i.e., we extract the character candidates on the
whole image directly (see Fig. 7(b)).

Some comparison examples are shown in Fig. 7. The complex-
ity of the background makes the traditional method difficult to
extract the right character candidates on the whole image directly.
In contrast, the learning-based PDEs generates region candidates
for each image, correctly removing a lot of distractive background.
As shown in Fig. 3, some of the text region candidates are so good
that we can get correct character candidates simply by image
binarization. So we can extract more correct texts, enhancing both
the precision and the recall. Table 6 shows the final results
comparison on the ICDAR 2011 database with and without
learning-based PDEs. All of the precision, recall, and F-measure
have been greatly improved if learning-based PDEs are used.

7. Conclusions

In this paper, we propose a novel hybrid approach for text
detection in natural scene images. We apply learning-based PDEs to
provide text region candidates and devise a simple connected
components based method to locate the texts accurately in each
text region candidate. Experiment results show the robustness and
superiority of our method when compared to many state-of-the-art
approaches. In the future, we plan to develop even better operators
via learning-based PDEs for robust text region candidates detection
from complex backgrounds. We also attempt to apply learning-
based PDEs to other high-level vision tasks, such as segmentation
and recognition of specific objects and video analysis.
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