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a b s t r a c t

Recently, regression analysis based classification methods are popular for robust face recognition. These
methods use a pixel-based error model, which assumes that errors of pixels are independent. This
assumption does not hold in the case of contiguous occlusion, where the errors are spatially correlated.
Furthermore, these methods ignore the whole structure of the error image. Nuclear norm as a matrix
norm can describe the structural information well. Based on this point, we propose a nuclear-norm
regularized regression model and use the alternating direction method of multipliers (ADMM) to solve it.
We thus introduce a novel robust nuclear norm regularized regression (RNR) method for face
recognition with occlusion. Compared with the existing structured sparse error coding models, which
perform error detection and error support separately, our method integrates error detection and error
support into one regression model. Experiments on benchmark face databases demonstrate the
effectiveness and robustness of our method, which outperforms state-of-the-art methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic face recognition has been a hot topic in the areas of
computer vision and pattern recognition due to the increasing need
from real-world applications [1]. Recently, regression analysis becomes
a popular tool for face recognition. Naseem et al. presented a linear
regression classifier (LRC) for face classification [16]. Wright et al.
proposed a sparse representation based classification (SRC) method to
identify human faces with varying illumination changes, occlusion and
real disguise [2]. In SRC, a test sample image is coded as a sparse linear
combination of the training images, and then the classification is made
by identifying which class yields the least reconstruction residual.
Although SRC performs well in face recognition, it lacks theoretical
justification. Yang et al. gave an insight into SRC and sought reasonable
supports for its effectiveness [3]. They thought that the L1-regularizer
has two properties, sparseness and closeness. Sparseness determines a
small number of nonzero representation coefficients and closeness
makes the nonzero representation coefficients concentrating on the
training samples have the same class label as the test sample.
However, the L0-regularizer can only achieve sparseness. So Yang
et al. constructed a Gabor occlusion dictionary to improve the
performance and efficiency of SRC [4,5]. Yang and Zhang proposed a

robust sparse coding (RSC) model for face recognition [7]. RSC is
robust to various kinds of outliers (e.g. occlusion and facial expression).
Based on the maximum correntropy criterion, He et al. [8,9] presented
robust sparse representation for face recognition. To unify the existing
robust sparse regression models: the additive model represented by
SRC for error correction and multiplicative model represented by CESR
and RSC for error detection, He et al. [10] built a half-quadratic
framework by defining different half-quadratic functions. The frame-
work enables to perform both error correction and error detection.
Recently, some researchers have begun to question the role of
sparseness in face recognition [11,12]. In addition, Naseem et al.
further extended their LRC to the robust linear regression classification
(RLRC) using the Huber estimator to deal with severe random pixel
noise and illumination changes [13]. In [14], Zhang et al. analyzed the
work rule of SRC and believed that it is the collaborative representa-
tion, rather than the L1-norm sparseness, that improves the classifica-
tion performance. Zhang et al. introduced the collaborative
representation based classification (CRC) with the non-sparse L2-norm
to regularize the representation coefficients. CRC can achieve similar
results as SRC and significantly speed up the algorithm.

The regression methods mentioned above all use the pixel-based
error model [7], which assumes that errors of pixels are independent.
This assumption does not hold in the case of contiguous occlusion,
where errors are spatially correlated [6]. In addition, characterizing the
representation error pixel by pixel individually neglects the whole
structure of the error image. To address these problems, Zhou et al.
incorporated the Markov Random Field model into the sparse
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representation framework for spatial continuity of the occlusion [6]. Li
et al. explored the intrinsic structure of contiguous occlusion and
proposed a structured sparse error coding (SSEC) model [15]. These
two works share the same two-step iteration strategy: (1) Meanwhile
detecting errors via sparse representation or coding, and (2) That
estimating error supports (i.e. determining the real occluded part)
using graph cuts. The difference is that SSEC uses more elaborate
techniques, such as the iteratively reweighted sparse coding in the
error detection step and a morphological graph model in the error
support step, for achieving better performance. However, SSEC does
not numerically converge to the desired solution; it needs an addi-
tional quality assessment model to choose the desired solution from
the iteration sequence.

Some recent works point out that the visual data has low rank
structure. Most of the exiting methods aim to find a low-rank
approximation for matrix completion. However, the rank mini-
mization problem is NP hard in general. In [17,18], Fazel et al.
applied the nuclear norm heuristic to solve the rank minimization
problem, where the nuclear norm of a matrix is the sum of its
singular values. Based on these results, robust principle compo-
nent analysis (RPCA) is proposed to decompose an image into two
parts: data matrix (low-rank part) and the noise (sparse part)
[19,20]. Zhang et al. introduced a matrix completion algorithm
based on the Truncated Nuclear Norm Regularization for estimat-
ing missing values [21]. Ma et al. integrated rank minimization
into sparse representation for dictionary learning and applied the
model for face recognition [22]. Chen et al. presented a novel low-
rank matrix approximation algorithm with structural incoherence
for robust face recognition [23]. Zhang et al. proposed a novel
image classification model to learn structured low-rank represen-
tation [37]. He et al. investigated the recovery of corrupted low-
rank matrix via non-convex minimization and introduced a novel
algorithm to solve this problem [38].

This paper focuses on face recognition with occlusion. We
observe that contiguous occlusion in a face image generally leads
to the error image with strong structure information, as shown in
Fig. 1. And the error image is not sparse when there exist
occlusions in test image [40]. Additionally, sparse based methods
also use a pixel-based error model, which assumes that errors
of pixels are independent. This assumption does not hold in the
case of contiguous occlusion, where the errors are spatially
correlated. Meanwhile, characterizing the representation error
pixel by pixel individually neglects the whole structure of the
error image. Fortunately, nuclear norm not only can alleviate
these correlations via the involved singular value decomposition
(SVD) [41], but also directly characterizes the holistically
structure of error image. Based on this, we add a nuclear norm
of the representation residual image into a regression model. The
model can be solved via the alternating direction method of
multipliers (ADMM) [27]. The proposed method has the following
merits:

(1) Compared with state-of-the-art regression methods, such as
SRC, RSC and CESR, which characterize the representation
error individually and neglect the whole structure of the error
image, our model views the error image as a whole and takes
full use of its structure information.

(2) Compared with SSEC [15] and Then the Zhou's method [6],
which perform the error detection step and the error support
step iteratively but cannot guarantee the convergence of the
whole algorithm, our method integrates error detection and
error support into one regression model, and the ADMM
algorithm converges well with theoretical guarantee. In addi-
tion, our method can be used as a general face recognition
algorithm. Our experiments will show that when there is no
occlusion, our method still performs well, but SSEC cannot.

This paper is an extended version of our conference paper [32].
In this paper, we provide more in-depth analysis and more
extensive experiments on the proposed model. The rest of the
paper is organized as follows. Section 2 presents the nuclear norm
regularized regression model and uses the ADMM to solve the
model. Additionally, we also provide the complexity analysis and
convergence analysis in this section. Section 3 introduces the
robust nuclear norm regularized regression model for classifica-
tion. Section 4 gives further analysis on the proposed method.
Section 5 evaluates the performance of the proposed methods on
several commonly used face recognition databases. Section 6
concludes our paper.

2. Nuclear norm regularized regression

In this section, we present the nuclear norm regularized
regression model to code the image and use the alternating
direction method of multipliers [27] to solve the model. Subse-
quently, we also provide the complexity analysis and convergence
analysis of the proposed model.

2.1. Nuclear norm regularized regression

Suppose that we are given a dataset of n matrices
A1;…;AnARd�l and a matrix YARd�l. Let us represent Y linearly
by taking the following form:

Y¼ FðxÞþE; ð1Þ
where FðxÞ ¼ x1A1þx2A2þ…xnAn, x¼ x1;…; xnð ÞT is the represen-
tation coefficient vector and E is the noise (representation error).

Generally, the x can be determined by solving the following
optimization problem (linear regression):

min
x

‖FðxÞ�Y‖2F ; ð2Þ

where ‖U‖F is the Frobenius norm of a matrix.
To avoid over fitting, we often solve the following regularized

model (ridge regression) Next instead

min
x

‖FðxÞ�Y‖2F þ
η

2
‖x‖22; ð3Þ

where η is a positive parameter. The above optimization problem can
be solved in a closed form. For more details, please refer to [24].

Nuclear norm of a matrix is a good tool to describe the structural
characteristics of an error image. However, the existing linear
regression models do not make use of this kind of structural
information. To address this problem, we introduce the nuclear
norm regularization to the ridge regression model. Specifically, the
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Fig. 1. The image with block occlusion is linearly represented by six different images and the residual (noise) image.
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optimization problem is formulated as follows:

min
x

‖FðxÞ�Y‖2F þλ‖FðxÞ�Y‖nþ
η

2
‖x‖22; ð4Þ

where λ is a positive balance factor.
Meanwhile There are mainly two merits of using nuclear norm

to describe the error image:

(1) Compared with L2 norm and L1 norm, nuclear norm can
characterize structural error effectively. We give an example
to support our point of view. In Fig. 2, (a) is a face image from
Ext Yale B dataset. The image (a) is occluded by an unrelated
block image as shown in (b). The error image between (a) and
(b) is shown in (c). We rearrange pixels of image (c) as shown
in (d). In previous work, L2 norm and L1 norm are usually used
to measure the error image. However, these schemes ignore
the structural information of error image. L2 norm (or L1 norm)
of image (c) is same with image (d). It is difficult to distinguish
the differences between (c) and (d). Fortunately, nuclear norm
can characterize the structural information of error image
well. For example, nuclear norm of images (c) and (d) are
82.04 and 96.56, respectively. So we believe that nuclear norm
can achieve better performance than L1 norm and L2 norm in
dealing with structural error information.

(2) From the distribution point of view, we can see that the
distribution of an error image does not follow the Gaussian
or Laplacian distribution in Fig. 2(e). In general, L1 norm is the
best option to describe the error image when the error image
follows the Laplacian distribution, while L2 norm is the best
one when the error image follows the Gaussian distribution.
So L1 and L2 norm cannot characterize this kind of occlusion
effectively. In Fig. 2(f), the singular values of error image (c) fit
the Laplacian distribution. In other words, nuclear norm can be
considered as L1 norm of singular value vector since nuclear

norm is sum of singular values of error image matrix. Addition-
ally, we also give another two examples to support our view.
From Figs. 3 and 4, we can see that error images Fig. 3(c) and
Fig. 4(c) are not sparse and the singular values of them still
follow Laplacian distribution well. Based on this point, we beli-
eve that nuclear norm can perform better performance than
L1 (or L2) norm to describe general structural error. Motivated by
above observations, we use nuclear norm to characterize the
error image.

In the following section, we will develop the optimization
algorithm to solve Eq. (4) by using the alternating direction
method of multipliers.

2.2. Optimization via ADMM

In this section, we adopt the alternating direction method of
multipliers (ADMM) to solve Eq. (4) efficiently. For more details of
ADMM, we refer readers to [27,34]. To deal with our problem, we
rewrite the model in Eq. (4) as

minx;E:E:
2
F þλ:E:

n
þ1

2 ηx
Tx;

s:t: FðxÞ�Y¼ E:
ð5Þ

The augmented Lagrange function is given by

Lμðx;E;ZÞ ¼ :E:2F þλ:E:
n
þ1

2 ηx
TxþTr ZT FðxÞ�E�Yð Þ

� �
þ μ

2 ‖FðxÞ�E�Y‖2F ; ð6Þ

where μ40 is a penalty parameter, Z is the Lagrange multiplier,
and TrðU Þ is the trace operator.

ADMM consists of the following iterations:

xkþ1 ¼ arg min
x

LμðxÞ; ð7Þ
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Fig. 2. (a) Original image; (b) observed image; (c) error image; (d) rearranged error image; (e) distributions of error image; and (f) distributions of singular values of error
image (c).
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Ekþ1 ¼ arg min
E

LμðEÞ; ð8Þ

Zkþ1 ¼ ZkþμðFðxkþ1Þ�Ekþ1�YÞ: ð9Þ

Updating x
Denote H¼ ½VecðA1Þ;⋯;VecðAnÞ�, g¼ VecðEþY�1

μ ZÞ, where
VecðUÞconvert matrix into a vector, then the objective function
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Fig. 3. (a) Original image; (b) observed image; (c) error image; (d) distributions of error image; and (e) distributions of singular values of error image (c).
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Fig. 4. (a) Original image; (b) observed image; (c) error image; (d) distributions of error image; and (e) distributions of singular values of error image (c).
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LμðxÞ in Eq. (7) is equivalent to

LμðxÞ ¼ η12 x
TxþTr ZTFðxÞ

� �
þ μ

2 :FðxÞ�E�Y:2F

¼ 1
2 ηx

Txþ μ
2 Tr FðxÞTFðxÞþðET þYT ÞðEþYÞ
�

�2ðET þYT �1
μ Z

T ÞFðxÞ
�

¼ 1
2 ηx

Txþ μ
2 :FðxÞ�ðEþY�1

μ ZÞ:
2
F

þTr ðEþYÞZT � 1
2μ ZZ

T
� �

: ð10Þ

Then the problem (7) can be reformulated as

xkþ1 ¼ arg min
x

μ
2 :Hx�g:22þ1

2 ηx
Tx

� �
: ð11Þ

Eq. (11) is actually a ridge regression model. So we can obtain the
solution of Eq. (11) by

xkþ1 ¼ ðHTHþ η
μ IÞ�1HTg: ð12Þ

Updating E
The objective function LμðEÞ in Eq. (8) can be rewritten as

LμðEÞ ¼ :E:2F þλ:E:
n
�Tr ZTE

� �
þ μ

2 :FðxÞ�E�Y:2F

¼ :E:2F þλ:E:
n
�Tr ZTE

� �
þ μ

2 Tr ðFðxÞ�YÞT �ET
� �

FðxÞ�E�Yð Þ
� �

¼ λ:E:
n
þ μ

2 Tr ð2μ þ1ÞETE�2 FðxÞT �YT þ1
μ Z

T
� �

E
� �

þconst1

¼ λ:E:
n
þ μ

2
μþ2
μ Tr ETE�2 μ

2þμ FðxÞT �YT þ1
μ Z

T
� �

E
� �

þconst1

¼ λ:E:
n
þμþ2

2 :E� μ
2þμ FðxÞT �YT þ1

μ Z
T

� �T
:2F þconst2; ð13Þ

where const1 and const2 are constant terms, which are indepen-
dent of the variable E. The optimization problem Eq. (8) can be
reformulated as

Ekþ1 ¼ arg min
E

λ
μþ2 :E:n

þ1
2 :E� μ

2þμ FðxÞ�Yþ1
μ Z

� �
:2F

� �
: ð14Þ

Its solution is [28]

Ekþ1 ¼UT λ
μþ2

½S�V;

where ðU; S;VT Þ ¼ svd μ
2þμ FðxÞ�Yþ1

μ Z
� �� �

:
ð15Þ

The singular value shrinkage operator T λ
μþ2

½S� is defined as

T λ
μþ2

½S� ¼ diag maxð0; sj;j� λ
μþ2 Þ

n o
1r jr r

� �
; ð16Þ

where r is the rank of S.
Stopping criterion
As suggested in [27], the stopping criterion of the algorithm is:

the primal residual r¼ :Fðxkþ1Þ�Ekþ1�Y:F must be small:
:Fðxkþ1Þ�Ekþ1�Y:Frε, and the difference between successive
iterations should also be small: max :xkþ1�xk:F ;

�
:Ekþ1�Ek:F Þ

rε, where ε is a given tolerance.

Algorithm 1. Solving NR via ADMM

Input: A set of matrices A1;…;An and a matrix YARp�q, the
model parameter λ, and the termination condition
parameter ε.

Initialize E0;Z0; μ

while :Fðxkþ1Þ�Ekþ1�Y:F4εor

max :xkþ1�xk:F ; :E
kþ1�Ek:F

� �
4ε

do
xkþ1 ¼ ðHTHþ η

μ IÞ�1HTg;

Ekþ1 ¼ argmin
Y

λ
μþ2 :E:n

þ1
2 ‖E� μ

2þμ FðxÞ�Yþ1
μ Z

� �
‖2F ;

Zkþ1 ¼ ZkþμðFðxkÞ�Ek�YÞ:
end while

Output: Optimal representation coefficient x.

In summary, the pseudo code of our method to solve Eq. (5) is
shown in Algorithm 1.

Algorithm 1 can be interpreted as using two-step iteration
strategy for robust face recognition as those used in [6,15]. The
step of updating x is actually an error detection step for determin-
ing the representation coefficients and representation errors, and
the step of updating E is actually an error support detection step
for determining the real occluded part. So we can say that NR
provides a unified framework to integrate error detection and
error support detection into one simple model.

2.3. Complexity analysis

Suppose that the training sample size is n and the image size is
p� q. The computational complexity of NR is mainly determined
by the singular value decomposition and the matrix multiplica-
tions. For convenience, we assume that qrp. Then the computa-
tional complexity for performing SVD on the p� q matrix
μ=ð2þμÞ FðxÞ�Yþð1=μÞZ� �

is O pq2
� �

. The computational complex-
ity of matrix multiplications is O npqþn2

� �
. So the computational

complexity of NR is O k pq2þnpqþn2
� �� �

, where k is the number of
iterations.

2.4. Convergence analysis

In this subsection, we mainly investigate the convergence of
the proposed Algorithm 1. Indeed, Algorithm 1 is a special case of
augmented Lagrange multiplier algorithms (known as alternating
directions methods) [27,34]. The convergence of these algorithms
has been studied extensively. Stephen Boyd et al. investigated
convergence of ADMM in [34] by using the properties of the
saddle points, and gave three important results: residual conver-
gence, objective convergence and dual variable convergence. He
et al. [35,36] presented some significant convergence results by
virtue of variational inequalities. Motivated by these techniques,
we will present a convergence theorem which can point out the
accumulation points of the iterative variables in Algorithm 1.

In the following, any solution of problem (5) is denoted by
xn;En
� �

. From standard theory of convex programming, there
exists a Zn such that the following conditions are satisfied:

ηxnþHTvec Zn
� �¼ 0; ZnA∂ ‖E‖Fþλ‖E‖nð Þ; FðxnÞ�Y¼ En: ð17Þ

Theorem 4.1. Let ðE0;Z0Þbe an arbitrary initial point. Then for any
fixed μ40, the sequence fðxk;Ek;ZkÞggenerated by Algorithm 1
converges to xn;En;Zn

� �
.

Proof. First, it is noted that the solutions of sub-problem (7) and
(8) satisfy
1
2
η‖xn‖22�

1
2
η‖xkþ1‖22þðxn�xkþ1ÞT ðHTVecðZkÞþμHTVecðFðxkþ1Þ�Ek�YÞÞZ0;

ð18Þ

‖En‖2F þλ‖En‖n�‖Ekþ1‖2F �λ‖Ekþ1‖nþtr En�Ekþ1
� �T�
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�Zk�μ Fðxkþ1Þ�Ekþ1�Y
� �� ��

Z0; ð19Þ

respectively.
Meanwhile, sub-problem (9) can be written as

ðZn�Zkþ1ÞT ð�ðFðxkþ1Þ�Ekþ1�YÞþ1
μ
ðZkþ1�ZkÞÞ ð20Þ

Substituting Zkþ1 ¼ ZkþμðFðxkþ1Þ�Ekþ1�YÞ into (18) and (19),
we obtain

1
2
η‖xn‖22�

1
2
η‖xkþ1‖22þðxn�xkþ1ÞT ðHTZkþ1þμHT ðVecðEkþ1Þ�VecðEkÞÞÞZ0:

ð21Þ

‖En‖2F þλ‖En‖n�‖Ekþ1‖2F �λ‖Ekþ1‖nþtrððEn�Ekþ1ÞT ð�Zkþ1ÞÞZ0:

ð22Þ
For the sake of convenience, we introduce some notations
e¼ Vec Eð Þ; z¼ Vec Zð Þ, y¼ Vec Yð Þ, r¼ x; eð Þ; s¼ x; e; zð Þ;

t¼ e; zð Þ, u¼ p� q. f rnð Þ ¼ 1
2 η:x

n:22þ:En:2F þλ:En:
n
, f rkþ1

� �¼
1
2 η:x

kþ1:22þ:Ekþ1:2F þλ:Ekþ1:
n
.

Thus, adding (20)–(22) and considering tr
��
En�Ekþ1�T�

Zkþ1��¼ en�ekþ1
� �T

zkþ1
� �

, we have

f rn
� �� f rkþ1

� �
þ sn�skþ1
� �T

V skþ1
� �

þ sn�skþ1
� �T

κ ek; ekþ1
� �

Z tn�tkþ1
� �T

M tk�tkþ1
� �

ð23Þ

where

VðsÞ ¼
HTz
�z

� Hx�e�yð Þ

0
B@

1
CA;

κ ek; ekþ1
� �

¼ μ

HT

�Iu�u

0

0
B@

1
CA ekþ1�ek
� �

;

M¼
μIu�u 0
0 1

μ Iu�u

 !
:

Then, we prove that

tkþ1�tn
� �T

M tk�tkþ1
� �

Z0: ð24Þ

Using (23), we have

tkþ1�tn
� �T

M tk�tkþ1
� �

Z skþ1�sn
� �T

κ ek; ekþ1
� �

þ f rkþ1
� �

� f rn
� �þ skþ1�sn

� �T
V skþ1
� �

: ð25Þ

Since V sð Þ is monotone, it follows that

f rkþ1
� �

� f rn
� �þ skþ1�sn

� �T
V skþ1
� �

Z f rkþ1
� �

� f rn
� �

þ skþ1�sn
� �T

V sn
� �

Z0; ð26Þ

The last inequality is due to the property of the optimal
solution.

Combining (25) with (26), we have

tkþ1�tn
� �T

M tk�tkþ1
� �

Z skþ1�sn
� �T

κ ek; ekþ1
� �

: ð27Þ

Furthermore, we have

skþ1�sn
� �T

κ ek; ekþ1
� �

¼ ekþ1�ek
� �T

μ Hxkþ1�ekþ1
� �

� Hxn�en
� �h i

¼ ekþ1�ek
� �T

μ Hxkþ1�ekþ1
� �

�y
n o

¼ zkþ1�zk
� �T

ekþ1�ek
� �

: ð28Þ

In (22), by replacing En with any E, and considering the
previous iteration, we obtain that

:E:2F þλ:E:
n
�:Ekþ1:

2
F �λ:Ekþ1:

n
þtr E�Ekþ1

� �T
�Zkþ1
� �� �

Z0: ð29Þ

:E:2F þλ:E:
n
�:Ek:2F �λ:Ek:

n
þtr E�Ek

� �T
�Zk
� �� �

Z0 ð30Þ

Set E¼ Ek in (29) and E¼ Ekþ1 in (30), respectively, and then
adding the them, we have

zk�zkþ1
� �T

ek�ekþ1
� �

Z0: ð31Þ

Therefore, (28) follows (31), (32), (35).
Let ‖t�t0‖2M ¼ t�t0ð ÞTM t�t0ð Þ ¼ μ‖e�e0‖2þ1

μ ‖z�z0‖2. Then we
have

‖tk�tn‖2M ¼ ‖ tkþ1�tn
� �

þ tk�tkþ1
� �

‖2M

¼ ‖tkþ1�tn‖2Mþ2 tkþ1�tn
� �T

M tk�tkþ1
� �

þ‖tk�tkþ1‖2M

Z‖tkþ1�tn‖2Mþ‖tk�tkþ1‖2M :

That is

‖tk�tn‖2M�‖tkþ1�tn‖2MZ‖tk�tkþ1‖2M :

Thus; ‖tk�tkþ1‖2M-0; i:e:; ð32Þ

ekþ1�ek-0 and zkþ1�zk-0.
Further, considering Zk ¼ Zk�1þμðFðxkÞ�Ek�YÞ, we obtain

FðxkÞ�Ek�Y-0: ð33Þ

Meanwhile, (32) also implies ftkg lies in a compact region. Thus,
it has a subsequence ftkj g converging to t� ¼ e�; z�ð Þ;
i.e., ekj-e� and zkj-z�. In addition, from (12) we have

xk ¼ ðHTHþ η
μ IÞ�1HTVecðEk�1þY�1

μ Z
k�1Þ: ð34Þ

Thus xkj-x� ¼ ðHTHþ η
μ IÞ�1HT ðe�þb�1

μ z
�Þ, as j-1.

We transform x�; e�; z�ð Þ back into its original form x�;E�;Z�ð Þ.
Then by (32), x�;E�;Z�ð Þis a limit point of fðxk;Ek;ZkÞg.

Next, we show that x�;E�;Z�ð Þ satisfies the optimality condi-
tions in (17). First, we take the equivalent form of (12)

ηxkþ1 ¼ �μHT 1
μ z

kþ1þekþ1�ek
� �

: ð35Þ

By taking the limit of the above equality over kj, it follows that:

ηx� ¼ �μHTz�: ð36Þ

Second, from (33), it easy to see that

Fðx�Þ�E��Y ¼ 0: ð37Þ

By (14), we know that μðEkþ1�EkÞþZkþ1A∂ :E:2F þλ:E:
n

� �
.

Since Ekj þ1�Ekj-0 and Zkj þ1-Z�, we have

Z�A∂ :E:2F þλ:E:
n

� �
; ð38Þ

which in conjunction with (36), (37) imply that x�;E�;Z�ð Þ satisfies
the optimality conditions (17). We now have shown that any limit

point of xk;Ek;Zk
� �n o

is an optimal solution of problem (5).

Since (32) holds for any optimal solution of problem (5), by
letting xn;En

� �¼ x�;E�ð Þ at the beginning and considering (32), we

obtain the convergence of xk;Ek;Zk
� �n o

.
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3. Classification based on robust nuclear norm regularized
regression

3.1. Robust sparse coding

In CRC and SRC, the representation residual is measured by the
L2-norm or L1-norm of the error image. Such models inherently
assume that the error image follows Gaussian or Laplacian dist-
ribution. However, the distribution of error image is more com-
plicated in real-world applications. To this end, Yang et al. bor-
rowed the idea of robust regression and proposed a robust sparse
coding based classification (RSC) method [7]. RSC is more robust to
outliers (occlusion and corruption, etc.) than SRC since it intro-
duces the weight matrix for image pixels motivated by the robust
regression theory. The RSC model is

x̂¼ argmin
x

:W1=2ðy�AxÞ:22þη:x:1; ð39Þ

where W is a weight matrix, y is the test sample and A is the
dictionary. RSC is solved by using the iteratively reweighted sparse
coding algorithm. The remaining steps of RSC are the same as SRC.

3.2. Robust nuclear norm regularized regression

We notice that SSEC [15] adopts a robust sparse representation
model, i.e. iteratively reweighted sparse coding in the error
detection step, but our nuclear norm regularized regression (NR)
only uses a simple ridge regression model for updating x. In real-
world applications, however, it is difficult to preserve the good
performance for most methods when facing with complicated
distributions of error image (e.g. the test image with mixture of
different types of noises). In Fig. 5(a) and (b), we give a simple
example to demonstrate the performance of NR and RSC. In this
example, we just select 76 face images of four persons from
Subsets 1 and 2 of Extended Yale B database as training samples.
The face image with mixture noises (pixel corruption and image
occlusion) is used for testing. We represent the test image using
the training samples via NR and RSC, respectively. The resulting
reconstructed image and error image are shown in Fig. 5(a) and
(b). From Fig. 5(a) and (b), we can see that NR and RSC have their
own virtues and disadvantages. NR is good at recovering the
structural noise (e.g. illumination) but loses the detail features.
However, RSC is adaptive to recover the facial features but loses
some structural information. The reconstructed image of RSC is
more similar to the original image than that of NR. Additionally, it
is insufficient if only use nuclear-norm and L2-norm to constrain
the error image. So we want to combine the advantages of nuclear
norm regularization and robust regression to handle the compli-
cated distribution of error image and further improve the classi-
fication performance of our model.

Based on above intuitions, in this section we borrow the idea of
robust sparse coding to our model and give the MLE (maximum
likely estimation) solution of representation coefficients to construct

a more robust model to handle face recognition with occlusion.
Motivated by the work [7], the robust regularized regression model
can be formulated as

min
x

:W 3 ðFðxÞ�YÞ:2F þ
η

2
:x:22 ð40Þ

whereW is a weight matrix, 3 denotes the Hadamard product of two
matrices.

However, in many cases of occlusion, the performance of the
above model is limited. For example, in the black scarf caused
occlusion part, pixel values are zeros. So, the ideal representation
errors in the occluded part are correlated, because pixels in a local
area in a real-world image are generally highly-correlated. More-
over, pixels in a local area are still correlated after the weight is
assigned on each pixel of error image. In other words, the above
model ignores the structural information of error image. Based on
above analysis, we introduce the nuclear norm constraint term:

min
x

:W 3 ðFðxÞ�YÞ:2F þ
η

2
:x:22 s:t::W 3 ðFðxÞ�YÞ:

n
rτ ð41Þ

where τ is a parameter. However, we prefer to solve problem (42)
in Lagrangian form, i.e.

min
x

:W 3 ðFðxÞ�YÞ:2F þλ:W 3 ðFðxÞ�YÞ:
n
þ η

2
:x:22; ð42Þ

where λ40 is a parameter. From optimization theory, it is well
known that problems (41) and (42) are equivalent in the sense
that solving one will determine a parameter value in the other so
that the two share the same solution.

The robust nuclear norm regularized regression model can be
solved by using the iteratively reweighted algorithm. Each itera-
tion step is to solve a nuclear norm regularized regression pro-
blem. Specifically, given a test sample Y, we compute the repre-
sentation coefficient x via Algorithm 1 and the representation
error E of Y in order to initialize the weight. The residual E is
initialized as E¼ Y�Yini, where Yini is the initial estimation of the
images from the gallery set. In this study, we simply set Yini as the
mean image of all samples in the coding dictionary since we do
not know which class the test image Y belongs to. With the
initialized Yini, our method can estimate the weight matrix W
iteratively. Wi,i is the weight assigned to each pixel of the test
image. The weight function [6] is

Wi;j ¼
expðαβ�αðEi;jÞ2Þ

1þexpðαβ�αðEi;jÞ2Þ
; ð43Þ

where α and β are positive scalars.
Based on the optimization solution x via the iterative process,

we obtain a weighted dictionary B¼ ½B1;…;Bn�, whereBi ¼W 3Di;

i¼ 1;…;n and D is the coding dictionary which is composed of
the training samples. The test sample Y is reconstructed as
Ŷi ¼

P
jA δiðxÞxjBi;j, where δiðxÞ is the function that selects the

indices of the coefficients associated with the i-th class.

Reconstructed
Image

Error
Image

Test ImageOriginal
Image

Fig. 5. Example for dealing with complex noise: (a) NR, (b) RSC, and (c) RNR.
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The corresponding reconstruction error of i-th class is defined as

riðyÞ ¼ :Y� Ŷi:n
ð44Þ

The decision rule is: if rlðyÞ ¼min
i

riðyÞ, then y is assigned to class l.

Algorithm 2. RNR for classification

Input: Dictionary D, test sample Y. Initial values Yini.
1. Yt is initialized as Yini. Y is initialized as Y0.

2. The test sample Y is coded by the dictionary D.
a) Compute residual EðtÞ ¼ Y�YðtÞ.
b) Estimate weights

Wi;j ¼ expðαβ�αðEi;jÞ2Þ
1þexpðαβ�αðEi;jÞ2Þ

.

c) Bi ¼W 3Di;i¼ 1;⋯;n, Y ¼W 3Y0.
d) Code using Algorithm 1

xn ¼ argmin
x

:GðxÞ�Y:2F þλ:GðxÞ�Y:
n
þ η

2:x:
2
2;

where GðxÞ ¼ Pn
i ¼ 1 xiBi:

e) Compute the reconstructed test sample

YðtÞ ¼ Pn
i ¼ 1 x

ðtÞ
i Bi, and let t ¼ tþ1.

f) Go back to step (a) until the maximal number of
iterations is reached, or convergence criterion shown in Eq.
(45) is met.

3. Compute the residual of each class.
Output: Y is assigned to the class which yields the minimum

residual.

The RNR algorithm for classification is summarized in
Algorithm 2. Finally, we perform the same test with NR. Fig. 2
(c) shows the resulted reconstructed images and error images.
From Fig. 2(c), we can see that RNR not only preserves the
advantage of NR, but also take into account the merits of robust
regression. The reconstructed image of RNR is significantly better
than NR and RSC as we desired.

To guarantee the convergence of Algorithm 2, we employ the
standard line-search process [39] to choose a proper vðtÞ for updating
representation coefficients in each step, where t is the iterative
number. If t ¼ 1, the xð1Þ ¼ xn; if tZ1, xðtÞ ¼ xðt�1Þ þ vðtÞðxn�xðt�1ÞÞ,
where vðtÞAð0;1� is suitable step size that

makes :GðxtÞ�Y:2F þλ:GðxtÞ�Y:
n
þ η

2:x
t:22o:Gðxt�1Þ�Y:2F þλ:G

ðxt�1Þ�Y:
n
þ η

2:x
t�1:22. In each iteration, the objective function

value of Eq. (42) decreases by Algorithm 2. Since the original cost
function Eq. (42) is lower-bounded (Eq. (42)Z0), the iterative
minimization procedure in Algorithm 2 will converge.

The convergence is achieved when the difference between the
weights in successive iterations satisfies the following condition:

:WðtÞ �Wðt�1Þ:2=:W
ðt�1Þ:2oγ: ð45Þ

4. Further analysis on RNR

Compared with the existing regularized coding methods
[2,4,7,9,14], the proposed method RNR can make use of the structural
characteristics of the noise image well via nuclear norm. So in the case
of contiguous occlusion, it can yield better reconstruction results.

To further analyze the proposed model, we give two examples
here. In the first example, we select six different face images from
the Extended Yale B database to linearly represent the face image
with block occlusion via ridge regression and nuclear norm
regularized regression, respectively. Fig. 6 shows the comparative
results between ridge regression and nuclear norm regularized
regression. From Fig. 6, we can see that NR can achieve the right
results for classification while ridge regression fails. Additionally,
the reconstructed image of NR is still similar to the target image.
However, the reconstructed image of ridge regression is more
similar to that of another person.

=

Nuclear norm regularized

Ridge regression

Original 
Image

Image with 
Occlusion

Reconstructed
Image

Reconstructed
Image

Fig. 6. The example shows the comparison between NR and ridge regression.

Fig. 7. Two classes of samples from the Extended Yale B database.
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In the second example, we select two classes of face images from
the Extended Yale B database as shown in Fig. 7. In our test, there are
two cases of block occlusion: the images with white image and the
images with an unrelated image. In our test, RNR, RSC, SRC and CRC
are employed to deal with the occlusion. For each occluded image,
the reconstructed images (recovered clean image) and the represen-
tation error image (recovered occlusion) are shown in Fig. 8. From
Fig. 8, we can observe that the reconstruction performance of RSC is
unsatisfactory when the test image has the white block occlusion.
However, RNR still gives better results than other methods.

5. Experiments

In this section, we compare the proposed methods NR and RNR
with CRC, SRC, CESR, SSEC and RSC. In our experiments, there are

five parameters of the proposed RNR. The parameters α and β in
Eq. (43) follows the suggestion in [7]. The default value of the
penalty parameter μ is 1. Both the balance factor λ and the reg-
ularized parameter η are introduced in the respective experiments.

5.1. Face recognition with real disguise

The AR face database [29] contains over 4000 color face images
of 126 persons, including frontal views of faces with different
facial expressions, lighting conditions and occlusions. The images
of 120 individuals were taken in two sessions (separated by two
weeks) and each session contains 13 color images.

In our experiments, we only use a subset of AR face image
database. The subset contains 100 individuals, 50 males and 50
females. All the individuals have two session images and each

Test image  R NR   RSC      SRC     CRC
Fig. 8. Recovered clean images and occluded parts via four methods for images with white block images or unrelated block images.

Training images

Testing images

Training images

Testing images

Fig. 9. Sample images for one person in the AR database. (a) Sample images in the first experiment. (b) Sample images in the second experiment.
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session contains 13 images. The face portion of each image is man-
ually cropped and then normalized to 42�30 pixels.

The first experiment chooses the first four images (with various
facial expressions) from sessions 1 and 2 of each individual to form
the training set. The total number of training images is 800. There
are two test sets: the images with sunglasses and the images with
scarves. Each set contains 200 images (one image per session of
each individual with neutral expression). The sample images of
one person are shown in Fig. 9(a). The balance factor λ is 102 and

Table 1
The recognition rates (%) of each classifier for face recognition on the AR database
with disguise occlusion.

Methods Sunglasses Scarves

CRC 65.5 88.5
NR 75.0 90.0
SRC[2] 87.0 59.5
CESR[8] 99.0 42.0
SSEC 96.5 94.0
RSC[6] 99.0 97.0
RNR 99.0 100

Table 2
The recognition rates (%) of each classifier for face recognition on the AR database
with disguise occlusion.

Methods Sunglasses Scarves

Session 1 Session 2 Session 1 Session 2

CRC 61.3 26.3 56.3 37.0
NR 75.7 38.3 72.0 45.3
SRC [2] 89.3 57.3 32.3 12.7
CESR [9] 95.3 79.0 38.0 20.7
SSEC 95.3 72.0 89.7 75.3
RSC [7] 94.7 80.3 91.0 72.7
RNR 97.7 82.3 95.0 77.3
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Fig. 10. The recognition rates (%) of CRC, SRC, CESR, SSEC, RSC, NR and RNR with the
occlusion (with unrelated block image) percentage ranging from 0 to 50.
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Fig. 11. The recognition rates (%) of CRC, SRC, CESR, SSEC, RSC, NR and RNR with the
occlusion (with noise block image) percentage ranging from 0 to 50.
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Fig. 12. The recognition rates (%) of CRC, SRC, CESR, SSEC, RSC, NR and RNR with
the occlusion (with mixture noise) percentage ranging from 0 to 50.

Fig. 13. Sample images from the FRGC database.
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10�1 for the test images with sunglasses and scarves, respectively.
The regularization parameter η is 4�104. Table 1 lists the recogni-
tion rates of CRC, SRC, CESR, SSEC, RSC, NR and RNR. From Table 1,
we can see that RNR achieves the best performance among all the
methods. NR also gives better results than CRC. Both RSC and CESR
obtain the same results as RNR when the test images are with
sunglasses. However, the results of SRC and CESR are significantly
lower than those of RNR when the test images are with scarves.

In the second experiment, four neutral images with different
illumination from the first session of each individual are used for
training. The disguise images with various illumination and glasses
or scarves per individual in sessions 1 and 2 are for testing. The

sample images of one person are shown in Fig. 9(b). The balance
factor λ is 10�2 and the regularization parameter η is 4�104. The
recognition rates of each method are listed in Table 2. From
Table 2, we can see that RNR significantly outperforms CRC, NR,
SRC, CESR, SSEC and RSC on different test subsets. SRC and CESR
perform well on images with sunglasses and poorly on images
with scarves. SSEC gives similar results as RSC in different cases.
Compared to RSC, 3.0%, 2.0%, 4.0% and 4.6% improvement are
achieved by RNR on four different testing sets.

5.2. Face recognition with random block occlusion

The extended Yale B face image database [31] contains 38
human subjects under 9 poses and 64 illumination conditions. The
64 images of a subject in a particular pose are acquired at a camera
frame rate of 30 frames per second. So there are only small
changes in head poses and facial expressions for those 64 images.
All frontal-face images marked with P00 are used in our experi-
ment, and each is resized to 96�84 pixels.

In the first experiment, we use the same experiment setting as
in [2] to test the robustness of RNR. Subsets 1 and 2 of Extended
Yale B are used for training and subset 3 with the unrelated block
images is used for testing. Both λ and η are set to 10. Fig. 10 plots
recognition rates of CRC, SRC, CESR, SSEC, RSC, NR and RNR under
different levels of occlusions (from 10% to 50%). With the inc-
rement of the level of occlusion, RNR begins to significantly

Table 3
The recognition rates (%) of each classifier for face recognition on the FRGC
database.

Image sizes 16�16 32�32

CRC 90.2 92.2
SRC 88.6 89.2
CESR 79.1 81.9
SSEC 60.0 70.5
RSC 89.9 92.0
NR 91.3 93.5
RNR 91.4 94.1

Fig. 15. The recognition rates (%) of RNR with different parameters on the AR database with scarf. (a) Regularization parameter and (b) balance factor.

Fig. 14. The recognition rates (%) of RNR with different parameters on the AR database with sunglasses. (a) Regularization parameter and (b) balance factor.

J. Qian et al. / Pattern Recognition 48 (2015) 3145–3159 3155



outperform the other methods. When the occlusion percentage is
50%, the recognition rate of RNR is 10.4%, 11.6%, 36.9% and 29%
higher than RSC, SSEC, CESR and SRC, respectively.

The setting of the second experiment is similar to that of
the first one. The only difference is that subset 3 with noise
block images is used for testing. λ is 0.1 and the regularization

Fig. 16. The recognition rates (%) of RNR with different parameters on the Extended Yale B database with unrelated image occlusion. (a) Regularization parameter and
(b) balance factor.

Fig. 17. The recognition rates (%) of RNR with different parameters on the Extended Yale B database with noise block occlusion. (a) Regularization parameter and (b) balance
factor.

Fig. 18. The recognition rates (%) of RNR with different parameters on the Extended Yale B database with mixture noise (pixel corruption and block occlusion).
(a) Regularization parameter and (b) balance factor.
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parameter η is set to 10. The recognition rates of each method
versus the various levels of occlusion (from 10% to 50%) are shown
in Fig. 11. From Fig. 11, we observe that the proposed RNR
significantly outperforms CRC, SRC, CESR, SSEC and RSC. The
performances of SRC and CESR are not good in this case. SSEC
gives good performance when the occlusion level is higher.
However, SSEC cannot perform well when the occlusion level is
lower. RSC achieves comparable results when the occlusion
percentage is lower than 40%. However, the recognition rate of
RNR is 16.1% higher than that of RSC when the occlusion percen-
tage is 50%.

In the third experiment, subsets 1 and 2 of Extended Yale B are
used for training and subset 3 with the mixture noise (pixel
corruption and block occlusion) is used for testing. λ is 1 and the
regularization parameter η is set to 10. The recognition rates of
each method with different level of pixel corruption (and occlu-
sion) are shown in Fig. 12. Although the performance of each
method degrades with the increment of the mixture noise level,
RNR still achieves the best results among all the methods. The
recognition rates of SSEC are poor when facing with the mixture
noises (pixel corruption and image occlusion). A probable reason is
that SSEC mainly addresses the continuous occlusion problem.

5.3. Experiments on the FRGC database (without occlusion)

Although our motivation is to design robust methods for face
recognition with occlusion, the proposed method can be used as a
general face recognition algorithm. In this section, we evaluate the
performance of the proposed method on the FRGC database.

The FRGC version 2.0 is a large scale face image database,
including controlled and uncontrolled images [30]. This database
contains 12,776 training images (6360 controlled images and 6416
uncontrolled ones) from 222 individuals, 16,028 controlled target
images and 8014 uncontrolled query images from 466 persons. We
use a subset (220 persons, each person having 20 images) of FRGC.
The face region of each image is first cropped from the original
high-resolution images and resized to a resolution of 16�16 and
32�32 pixels, respectively. Fig. 13 shows some images used in our
experiments.

In our experiments, the first 10 images per class are used for
training, and the remaining images are used for testing. So there
are totally 2200 training images and 2200 testing images, respec-
tively. Both the balance factor λ and the regularization parameter η
of RNR are set to 10�2 here. Table 3 shows the experimental
results of CRC, SRC, CESR, SSEC, RSC, NR and RNR. From Table 3, we

can see that the proposed RNR achieves the best results in both
image sizes for face recognition. RNR gives 2.1%, 1.9% and 4.9%
improvement over RSC, SRC and CRC, respectively, when the image
size is 32�32. SSEC was designed exclusively for contiguous
occlusion, but its performance is not good for face recognition
without occlusion.

5.4. Effects of parameters

In this section, we mainly introduce how the parameters
(balance factorλand regularization parameter η) affect the perfor-
mance of our method RNR. We perform experiments on three
public face image databases (AR, Extended Yale B and FRGC) and
the experimental setting is the same as the above experiments. In
our experiments, we just change one parameter while fixing the
other one.

For face recognition with real disguise, the recognition rates of
RNR on the AR database with sunglasses (or scarf) are shown in
Fig. 14 (or Fig. 15). From Figs. 14 and 15, we observe that the
performance of RNR degrades with decreasing the regularization
parameter η. In addition, RNR achieves the best results when the λ
is 100 for the test images with sunglasses and 0.1 for the test
images with scarf.

For face recognition with block occlusion, we plot the recogni-
tion rates of RNR versus different parameters on the Extended Yale
B database with unrelated image (or noise block image) occlusion
as shown in Fig. 16 (or Fig. 17). From Fig. 16, we can see that RNR
gives the best results when both η and λ are 10. However, RNR
achieves the best performance when η is 0.01 and λ is 1 for the test
images with noise block occlusion. In addition, Fig. 18 shows the
recognition rates of RNR versus different parameters on the
Extended Yale B database with mixture noise (pixel corruption
and block occlusion).

Fig. 19. The recognition rates (%) of RNR with different parameters on the FRGC database without occlusion. (a) Regularization parameter and (b) balance factor.

Table 4
The recognition rates (%) of RNR using different weight functions on AR dataset.

Sunglasses Scarves Session 1 Session 2

Sunglasses Scarves Sunglasses Scarves

Welsch 99.0 98.5 94.7 95.3 83.0 75.3
Cauchy 99.0 99.0 95.3 94.7 81.7 74.3
logistic 99.0 100 97.7 95.0 82.3 77.3
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For face recognition without occlusion, Fig. 19 shows recogni-
tion rates of RNR on the FRGC database with different balance
factor λ and regularization parameter η, respectively. From Fig. 19,
we can see that RNR achieves better results when η is lower than
1 and worse results when η is larger than 10. However, RNR is not
sensitive to the balance factor λ.

Finally, we also show the performance of the proposed model
with different weight functions (logistic, Welsch and Cauchy) to
handle face recognition with occlusion. The experiments setting
are same with Sections 5.1 and 5.2. Table 4 lists the results of RNR
using different weight function on AR dataset. Fig. 20 shows the
recognition rates of RNR using different weight function on
Extended Yale B dataset. From Table 4 and Fig. 20, we can see
that the proposed model using logistic function performs better
than Welsch and Cauchy functions in most cases. So we choose
logistic function as weight function in our model.

6. Conclusions

In this paper, we present a novel nuclear norm regularized reg-
ression model and apply the alternating direction method of mult-
ipliers to solve it. The robust nuclear norm regularized regression

based classification (RNR) method is introduced for face recogni-
tion. RNR takes advantage of the structural characteristics of noise
and provides a unified framework for integrating error detection
and error support into one regression model. Extensive experi-
ments demonstrate that the proposed RNR is robust to corruptions:
real disguise and random block occlusion, and yields better perfor-
mances as compared to state-of-the-art methods.
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