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Dual Graph Regularized Latent Low-Rank
Representation for Subspace Clustering

Ming Yin, Junbin Gao, Zhouchen Lin, Senior Member, IEEE, Qinfeng Shi, and Yi Guo

Abstract— Low-rank representation (LRR) has received
considerable attention in subspace segmentation due to its
effectiveness in exploring low-dimensional subspace structures
embedded in data. To preserve the intrinsic geometrical structure
of data, a graph regularizer has been introduced into
LRR framework for learning the locality and similarity infor-
mation within data. However, it is often the case that not only
the high-dimensional data reside on a non-linear low-dimensional
manifold in the ambient space, but also their features lie on a
manifold in feature space. In this paper, we propose a dual graph
regularized LRR model (DGLRR) by enforcing preservation of
geometric information in both the ambient space and the feature
space. The proposed method aims for simultaneously considering
the geometric structures of the data manifold and the feature
manifold. Furthermore, we extend the DGLRR model to include
non-negative constraint, leading to a parts-based representation
of data. Experiments are conducted on several image data
sets to demonstrate that the proposed method outperforms the
state-of-the-art approaches in image clustering.

Index Terms— Low-rank representation, dual graph regular-
ization, manifold structure, graph laplacian, image clustering.

I. INTRODUCTION

IT IS well known that an efficient representation for natural
images plays a key role in many image processing tasks,
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such as image clustering [54], [57], video background/
foreground separation [1], image classification [47], [53] and
image compression [7], etc. Sparse representation [46] has
recently emerged as a powerful method in many image
applications, which characterizes an image signal as a linear
combination of a few items from an over-complete
dictionary D. However, sparse representation fails to take
advantage of certain structure information in images since
it is applied to each input signal independently no matter
whether the images are from the same class or not. More
recently, Low-Rank Representation (LRR) [30], [32], as a
promising method to capture the underlying low-dimensional
structures of data, has attracted much attention in the pattern
analysis and signal processing communities. In particular,
some problems involving the estimation of low-rank matrices
have aroused great interests in recent years as matrix rank is a
potential measure to capture some types of global information
embedded in matrices.

LRR method [13], [30]–[32] seeks the lowest-rank repre-
sentation of all data jointly, such that each data point can
be represented as a linear combination of some bases. Since
one common way is to use the nuclear norm to approximate
the rank operator, the procedure of LRR is actually solving
a minimization problem regularized by the nuclear norm.
This leads to a convex optimization problem which yields
a polynomial time algorithm under mild conditions [12].
LRR exploits the hypothesis that the data are from several
disjoint low dimensional subspaces and it also deals with
heavily contaminated outliers by incorporating �1-type norm
on reconstruction errors. Thus LRR can accurately recover the
subspaces containing the original data and detect outliers under
mild conditions. In order to handle the cases where the number
of observed data is insufficient or data contains overwhelming
amount of noise, Liu and Yan [32] further proposed the
so-called latent low-rank representation (LatLRR). The
LatLRR takes two views of the data matrix, i.e. columns and
rows as actual data samples and learn low-rank representations
for these two views separately. This idea has been recently
used in designing a classifier for image classification [8]. From
this point of view, LRR utilizes only one view of the data,
that is the columns, and the information from the other view
is ignored. As an alternative to the LatLRR, double LRR was
proposed in [50] which simultaneously learns the low-rank
representations from the two views.

Meanwhile, recent years have witnessed fast advance
in manifold learning [4], [43], [54]. It is quite often that
the observed data reside on low-dimensional sub-manifolds
embedded in a high dimensional ambient space [3]. A lot of
manifold learning methods have been proposed to explore
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this structure, such as locally linear embedding (LLE) [38],
ISOMAP [41], Locality Preserving Projection (LPP) [24],
Neighborhood Preserving Embedding (NPE) [23] and
Laplacian Eigenmap [3]. All these algorithms are motivated by
the so-called locally invariant idea [21], estimating geometrical
and topological properties of the sub-manifold from random
points (scattered data) sampled from this unknown
sub-manifold. An often used assumption is that if two
data points are close in the intrinsic manifold of the data
distribution, then their representations in whatever space are
close to each other too [22].

In order to preserve the local geometrical structure
embedded in high-dimensional space, some graph regu-
larizers are readily imposed on the representation of the
data [9], [18], [34], [39], [56]. Zheng et al. [55] proposed
a graph regularized sparse coding to learn the sparse
representations that explicitly take into account the local
manifold structure of data. Similarly, Gao et al. [18] also
proposed two Laplacian regularized sparse coding methods by
incorporating a similarity preserving term into the objective
of sparse coding. In [9], Cai et al. developed a graph based
approach for non-negative matrix factorization (NMF) [26]
in order to improve NMF in representing geometric struc-
tures within data. To exploit the intrinsic geometry of the
probability distribution, He et al. [22] proposed a Laplacian
regularized Gaussian Mixture Model (LapGMM) based on
manifold structure for data clustering. Moreover, from matrix
factorization perspective, a novel low-rank matrix factorization
model that incorporates manifold regularization into matrix
factorization is proposed in [54]. Lu et al. [34] proposed a
novel graph-regularized LRR destriping approach by using
low-rank representation. Zheng et al. [56] proposed a novel
LRR with local constraint for graph construction to handle
semi-supervised learning tasks.

However, the existing graph based LRR methods use only
one view of the data in graph construction for clustering task.
This type of methods can be deemed as one-side clustering.
Although these methods have achieved state-of-the-art perfor-
mance, the newly developed two view based algorithms, i.e.
two-side clustering algorithms, are even better. The advantage
of the latter surely comes from exploiting the additional view
of the data. Precisely, data matrix has two modes, namely
along columns and rows, from which one induces column
space and row space respectively. As far as the rank of the
matrix is concerned, these two spaces coincide. However, as
noise is inevitable, the rank of one space, say in column
space, may not be as obvious as that of another. Therefore
it gives rise to our motivation of using both of the two spaces.
To be clear, we call the column space the ambient space and
row space the feature space. Inspiringly, some recent work
shows that the high dimensional data reside on a non-linear
low dimensional manifold, so do the features. This manifold
in feature space is called the feature manifold [19], [39].
By infusing these two spaces, a dual graph regularization
helps to achieve satisfactory performance in co-clustering
algorithms [15], [16]. Meanwhile, it should be noted that the
dual graph regularization under the low-rank representation
framework has not been considered yet, though there some

graph regularizers have been applied to low-rank factorization
such as NMF. In fact, the model of low-rank representation
focuses on exploiting the self-expressiveness property of data
and hence is distinctive from NMF type of methods.

Combining LRR and graph approaches [19], [35], in this
paper, we propose a novel algorithm named dual graph
regularized low-rank representation model (DGLRR), which
simultaneously uses geometric structures of the data manifold
and the feature manifold by constructing two graphs
derived from ambient space and feature space by k-nearest
neighbouring.

In summary, our main contributions in this paper are listed
below.

1) We propose a dual graph regularized low-rank
representation model (DGLRR) by using the local
geometric structures in both the data manifold and the
feature manifold.

2) To the best of our knowledge, this work is the first to
integrate subspace information and intrinsic geometric
structures of data in both data manifold and feature
manifold.

3) By incorporating non-negativity constraint of the
coefficients to reflect practical interpretation in some
applications, we extend DGLRR to the non-negative
DGLRR, termed NNDGLRR, leading to a parts-based
representation.

The remainder of this paper is organized as follows.
Section II briefly reviews the related work on low-rank
matrix approximation and graph representation for data.
In Section III, we present a novel dual graph regularized
low-rank representation method and extend this model to a
non-negative case. We present a feasible optimization routine
to realize the proposed model in Section IV, and a convergence
analysis for the optimization is provided in Section IV-F.
Experimental results are presented in Section V to verify the
effectiveness of our proposed methods, including the test on
large-scale data in Section V-E. Finally, Section VI concludes
our paper.

II. RELATED WORK

Before introducing the proposed model, we review some
recent methods such as LRR [30]–[32] and graph based
analysis [3], [49], [55] in this section.

A. Low-Rank Representation

The LRR model [30] focuses on the assumption that data are
drawn from a mixture of several low-dimensional subspaces
approximately. Given a set of data points, each of them can be
represented as a linear combination of atoms from a dictionary.
LRR finds the lowest rank representation of all data jointly.
It has been demonstrated that LRR is quite effective in
exploring low-dimensional subspace structures embedded in
data [13], [50].

Given data X = [x1, x2, . . . , xn], xi ∈ R
d sampled from a

union of multiple subspaces
⋃M

m=1 Sm , where S1, S2, . . . ,SM

are low-dimensional subspaces, LRR uses data self
reconstruction regularized by low-rank preference as the
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following

min
Z ,E

rank(Z) + λ ‖E‖0 , s.t. X = X Z + E, (1)

where Z is the reconstruction matrix, E denotes the error
components and λ ≥ 0 is the penalty parameter balancing
the low-rank term and the reconstruction accuracy. There
are two explanations for Z based on this model. Firstly, the
i j -th element of Z , i.e. zi j , reflects the ”similarity” between
the pair xi and x j . Hence Z is sometimes called affinity
matrix; Secondly, the i -th column of Z , i.e. zi , as a “better”
representation of xi such that the desired pattern, say subspace
structure, is more prominent.

As it is difficult to solve the above optimization problem (1)
due to the discrete nature of the rank operator and the
intractability of �0-minimization, a convex relaxation version
of the optimization problem is proposed

min
Z ,E

‖Z‖∗ + λ ‖E‖1 , s.t. X = X Z + E . (2)

‖Z‖∗ is the so-called nuclear norm, defined as the sum of
all singular values of Z , which is the convex envelope of
the rank operator. ‖·‖1 is the �1 norm adopted to charac-
terize the reconstruction error E . In fact, it has been proved
in [30] that in noise free case the solution to (2) is also the
solution to (1).

However, the standard LRR model does not consider the
case of insufficient samples and extremely noisy data in its for-
mula. To resolve this issue, Liu and Yan [32] proposed Latent
Low-Rank Representation (LatLRR) model, which seamlessly
integrated subspace segmentation and feature extraction into
a unified framework. The LatLRR minimizes the following
objective

min
Z ,G,E

‖Z‖∗ + ‖G‖∗ + λ ‖E‖1,

s.t. X = X Z + G X + E . (3)

The low-rank representation methods are reported to be
superior to other similar methods. They have been widely
used in face recognition [13], [50], feature extraction [32] and
subspace segmentation [30], [31] etc.

The usefulness of low-rank representation methods gives
rise to a number of optimization methods for nuclear norm
minimization, such as singular value thresholding [11], accel-
erated proximal gradient (APG) [28], augmented Lagrange
Multiplier Method (ALM) [27]. Note that Lin et al. [29]
proposed an efficient approach, termed linearized alternating
direction method with adaptive penalty (LADMAP), which
uses less auxiliary variables without matrix inversions and
hence converges faster than the original alternating direction
method (ADM) [44]. Recently, in order to handle multi-block
variables, Liu et al. [33] proposed LADMPSAP (linearized
alternating direction method with parallel splitting and adap-
tive penalty) with convergence guarantee.

B. Graph Based Low-Rank Representation

Graph information has been widely used to explore intrinsic
geometric structures of data [5]. The weight between xi and x j

is defined as

W Z
ij =

{
1, if xi ∈ NK (x j ) or x j ∈ NK (xi)

0, otherwise
i, j = 1, . . . , n

where NK (xi ) denotes the set of K nearest neighbors of xi .
In recent years, manifold learning techniques have

been introduced into low-rank representation. For example,
Zheng et al. [56] proposed a novel LRR with local constraint
for graph construction under semi-supervised learning setting.
Lu et al. [34] proposed a novel graph-regularized LRR destrip-
ing approach by incorporating a graph Laplacian into LRR.
Yin et al. [51] proposed a general Laplacian regularized
low-rank representation model by by using both the pairwise
graph and the hypergraph regularizers. The objective function
of such graph based LRR models is formulated as follows,

min
Z ,E

‖Z‖∗ + λ

2
tr(Z L Z Z T ) + γ ‖E‖1,

s.t. X = X Z + E (4)

where L Z = DZ − W Z is the graph Laplacian matrix [14]
and DZ is a diagonal degree matrix whose entries are given

by DZ
ij = ∑

j W Z
i j .

From (4) one can see that minimizing (4) is actually
enforcing Z to reproduce the similarity structure coded in L Z

as well as the desired low-rank subspace structure. However,
the current graph based LRR models such as (4) considers
only the graph built in ambient space, while the geometric
information from feature space is totally overlooked. It then
comes naturally to integrate two views of data as in LatLRR
and locality preservation as in graph based LRR into one
model. Considering the advantages of these two models,
one would expect that the unified model will be robust in
discovering local geometric structure.

III. DUAL GRAPH REGULARIZED LOW-RANK

REPRESENTATION (DGLRR)

In this section, we firstly propose a novel dual graph
regularized LRR model, which simultaneously exploits
geometric structures of data manifold and feature manifold.
We call this model DGLRR. Secondly, we further impose
non-negative constraint on DGLRR for more meaningful inter-
pretation when it is appropriate. The extended model is called
NNDGLRR in this paper.

A. Dual Graph Regularized LRR

For input data X , in the same manner of construct-
ing graph W Z , we can build a feature graph W G , from
{(x1)T , . . . , (xd )T }, where x j is the j -th row of data
matrix X :

W G
ij =

{
1 if (xi )T ∈ NK

(
(x j )T

)
or (x j )T ∈ NK

(
(xi )T

)

0 otherwise

i, j = 1, . . . , d

where NK ((xi )T ) denotes the set of K nearest neighbors
of (xi )T . The corresponding graph Laplacian matrix is
LG = DG − W G .
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Given two graphs constructed from data manifold and
feature manifold, we are ready to regularize the LatLRR
model [32] by these graphs geometric structures in data space
and feature space simultaneously. The reason we consider
LatLRR is that compared with the standard LRR, LatLRR
is able to recover the subspaces when the number of observed
data is very limited and they are heavily contaminated by
noise. Then, a dual graph regularized LRR model can be
formulated as follows,

min
Z ,G,E

‖Z‖∗ + ‖G‖∗ + λ‖E‖1

+ β

2
tr(Z L Z Z T ) + γ

2
tr(GLG GT ),

s.t. X = G X + X Z + E (5)

where λ, β, γ ≥ 0 are the regularization parameters trading off
the reconstruction error of DGLRR and graph regularizations.
Here, we use �1 norm to quantify E for the consideration of
robustness. Actually, there are plenty of functions such as other
sparsity encouraging norms that can be applied here. Please
see [30] for more detail.

When parameters β and γ are zero, DGLRR becomes
the LatLRR. If only γ = 0, DGLRR will degenerate to
graph regularized LatLRR model, termed GLatLRR1. When
only β = 0, DGLRR will be transformed into another
graph regularized LatLRR model, termed GLatLRR2. In this
sense, our proposed DGLRR is a more general graph based
LRR model.

B. Non-Negative Dual Graph Regularized LRR

In some applications, data are taken from physical
measurements which must be non-negative. It is desirable
that the representation of the data are non-negative as well.
Recently, non-negativity constraint (NNC) has been widely
employed in data representation [9], [39], [57]. NNC ensures
that the other samples shall be combined to represent a data
point in a non-subtractive way. This is particularly useful in
handling image data. Thus, in order to offer non-negativity
in data reconstruction in DGLRR model and hopefully to
represent data better, we add NNC for G and Z as follows.
For simplicity, we call this model as NNDGLRR
hereafter.

min
Z ,G,E

‖Z‖∗ + ‖G‖∗ + λ‖E‖1

+ β

2
tr(Z L Z Z T ) + γ

2
tr(GLG GT ),

s.t. X = G X + X Z + E, G ≥ 0, Z ≥ 0. (6)

IV. SOLVING DUAL GRAPH REGULARIZED LRR

In recent years, a lot of algorithms have been proposed
for solving the optimization problem arising from recovering
a low-rank matrix from data with a fraction of its entries
arbitrarily corrupted [29], [40], [42], and [45]. In particular,
the ADM is the most popular [6], [17], [27]. It is especially
suitable for separable convex programs such as (5) because
separability greatly simplifies the problem so that the opti-
mization is more or less “localized”.

A. Optimization for DGLRR

In this section, we apply ADM to solve the objective
function of DGLRR in (5). For this purpose, we first remove
the linear equality constraint in (5) by using the following
augmented Lagrangian formulation

min
Z ,G,E

‖Z‖∗ + ‖G‖∗ + β

2
tr(Z L Z Z T ) + γ

2
tr(GLG GT )

+ λ‖E‖1 + 〈Y, X − G X − X Z − E〉
+ μ

2
‖X − G X − X Z − E‖2

F , (7)

where Y is the Lagrangian multiplier and μ is a penalty
parameter for the proximity. Then the primary variables Z ,
G, E and the multiplier variable Y can be updated iteratively
one after another.

To effectively use proximity operators of nuclear norm and
�1 norm in solving subproblems with respect to Z , G and E ,
Lin et al. [29] proposed a linearized ADM (LADM) method, in
which linearization is performed over the augmented quadratic
penalty term μ

2 ‖X − G X − X Z − E‖2
F . In problem (7), there

exist three blocks of primary variables (more than two), so
a naive LADM to this case may diverge [33]. Therefore,
in order to handle the multi-block variables, Liu et al. [33]
proposed LADM with parallel splitting and adaptive penalty
LADMPSAP) to ensure convergence.

In the case of β = 0 and γ = 0, it has been proved
that the sequences generated by the LADMPSAP converges
to a feasible point of problem (7), see [29] and [33]. When
either β �= 0 or γ �= 0, linearization only over the augmented
quadratic penalty term leads to the following subproblems with
respect to Z and G, respectively,

Zk+1 = argmin
Z

‖Z‖∗ + β

2
tr(Z L Z Z T )

+ ηZμk

2

∥
∥
∥
∥Z − Zk − 1

ηZ μk
X T Ỹk

∥
∥
∥
∥

2

F
. (8)

Gk+1 = argmin
G

‖G‖∗ + γ

2
tr(GLG GT )

+ ηGμk

2

∥
∥
∥
∥G − Gk − 1

ηGμk
Ỹk X T

∥
∥
∥
∥

2

F
, (9)

where Ỹk is defined as (13) below.
We are no longer able to obtain exact solutions Zk+1 and

Gk+1 to (8) and (9) when β �= 0 and γ �= 0, respectively.
Thus the convergence analysis provided in [29] and [33] is
not applicable. In order to use the closed-form solution to
the proximity operator of nuclear norm, given by the Singular
Value Thresholding (SVT) operator [11], we take a strategy of
further linearizing the graph regularization terms to simplify
the subproblems. In the sequel, we will explain this new
algorithm, a variant of LADMPSAP, and then investigate its
convergence.

According to [2, Lemma 2.1], β
2 tr(Z L Z Z T ) can be upper

bounded by its proximal approximation:

β

2
tr(Zk L Z Z T

k ) + 〈β Zk L Z , Z − Zk〉 + β‖L Z ‖
2

‖Z − Zk‖2
F ,

(10)
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which is the local linearization of β
2 tr(Z L Z Z T ) at Zk plus

proximal term. Note that ‖L Z ‖ is the spectral norm of
matrix L Z , i.e., the largest singular value of matrix L Z .
By replacing β

2 tr(Z L Z Z T ) in (8) with (10), after simple
algebra, (8) becomes, ignoring constant terms,

Zk+1 = argmin
Z

‖Z‖∗ + ηZ μk + β‖L Z ‖
2

×
∥
∥
∥
∥Z −Zk + 1

ηZ μk + β‖L Z ‖ (−X T Ỹk + β Zk L Z )

∥
∥
∥
∥

2

F
.

(11)

Similarly we define the new update Gk+1 by

Gk+1 = argmin
G

‖G‖∗ + ηGμk + γ ‖LG‖
2

×
∥
∥
∥
∥G−Gk + 1

ηGμk +γ ‖LG‖ (−Ỹk X T +γ Gk LG )

∥
∥
∥
∥

2

F
.

(12)

For our convenience, denote

σ k
Z = ηZ μk + β‖L Z ‖, σ k

G = ηGμk + γ ‖LG‖,
Z̃k = Zk − 1

σ k
Z

(−X T Ỹk + β Zk L Z ),

G̃k = Gk − 1

σ k
G

(−Ỹk X T + γ Gk LG ).

Finally the revised LADMPSAP is defined by the following
steps:

1) Calculate Ỹk ,

Ỹk = Yk + μk(X − Gk X − X Zk − Ek). (13)

2) Update Ek+1, Zk+1, Gk+1 in parallel,

Ek+1 = argmin
E

λ‖E‖1 + μkηE

2

∥
∥
∥
∥E − Ek − 1

μk
Ỹk

∥
∥
∥
∥

2

F

= S λ
μk

(

Ek+ 1

μk
Ỹk

)

. (14)

where Sτ (·) is the shrinkage operator [27] defined by,

Sτ (E) = sgn(E)max{|E | − τ, 0}.
and

Zk+1 = Uz	 1
σk

Z

(
z) V T
z (15)

where Uz
z V T
z is the SVD of Z̃k and 	τ(·) is the

SVT operator defined by

	τ(
) = diag(sgn(
ii )(|
ii | − τ )).

Similarly,

Gk+1 = Ug	 1
σk

G

(

g

)
V T

g (16)

where Ug
g V T
g is the SVD of G̃k .

3) Update Yk+1 and μk+1.

Yk+1 = Yk +μk(X −X Zk+1−Gk+1 X −Ek+1); (17)

μk+1 = μk + ρkμmax. (18)

where μmax is a given positive constant to be determined
according to Theorem 1 and

ρk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0,

if max

{

μk
√

ηE‖Ek+1 − Ek‖,
ηZμk + 2β‖L Z ‖√

ηZ
‖Zk+1 − Zk‖,

ηGμk + 2γ ‖LG‖√
ηG

‖Gk+1 − Gk‖
}

≤ ε2

1, otherwise.

We call the above algorithm the generalized LADMPSAP
or GLADMPSAP for short. In GLADMPSAP, an adaptive
penalty parameter μk is used. This is preferred in real
applications.

B. Stopping Criterion

The KKT conditions of problem (5) are given by
Lemma 2 in Appendix, that is, that there exists a quadruple
(Z∗, G∗, E∗, Y ∗) satisfying (20) and (21). Based on (20), we
check the following criterion for the sub-optimality of the
solution

‖X − X Zk+1 − Gk+1 X − Ek+1‖2/‖X‖2 ≤ ε1

for an appropriate tolerance e.g. ε1 = 10−4. Based on
the KKT conditions in (21) and the conditions (22)-(24) in
Lemma 3, we conclude that μkηE‖Ek+1 − Ek‖2, σ k

Z‖Zk+1 −
Zk‖2 and σ k

G‖Gk+1 − Gk‖2 should be small enough when
(Zk+1, Gk+1, Ek+1, Yk+1) converges to (Z∗, G∗, E∗, Y ∗).
This leads to the following stopping criterion

max

{

μk
√

ηE ‖Ek+1 − Ek‖ ,

ηZμk + 2β‖L Z ‖√
ηZ

‖Zk+1 − Zk‖ ,

ηGμk + 2γ ‖LG‖√
ηG

‖Gk+1 − Gk‖
}

≤ ε2

for an appropriate tolerance e.g. ε2 = 10−5.

C. Overall Algorithm

The detailed DGLRR algorithm is summarized in
Algorithm 1.

D. Optimization for NNDGLRR

It is straightforward to generalize the optimization scheme
of DGLRR for NNDGLRR in (6). We just need an extra
positive projection after update Z and G in Algorithm 1, i.e.
Zk+1 = max{0, Zk+1} and likewise for Gk+1. We skip this for
conciseness.

E. Complexity Analysis

The computational cost of our proposed algorithm is mainly
determined by the LADMPSAP [33]. Let k denote the number
of iterations. For DGLRR and NNDGLRR, the construction
of graph Laplacian needs O(d2n + dn2). Let rZ and rG

be the lowest ranks for Z and G that can be obtained by
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Fig. 1. Samples of test database: (a) CMU-PIE samples; (b) ORL samples; and (c) COIL20 samples.

Algorithm 1 GLADMPSAP for Solving Dual Graph
Regularized LRR

our algorithm. In each iteration, SVT is applied to update
the low rank matrices whose total complexity is O(rZ n2) +
O(rG d2) when we use partial SVD. And the soft thresholding
to update the sparse error matrix has a complexity of O(dn).
So the cost of all iterations is O(krZ n2 + krGd2). Therefore
the overall computational complexity is O(d2n + dn2 +
krZ n2 + krGd2).

F. Convergence Analysis

As we discussed earlier, the convergence analysis for the
original LADMPSAP cannot be applied to Algorithm 1. Our
main result for the convergence analysis of Algorithm 1 is
summarized in the theorem below,

TABLE I

DESCRIPTION OF THE TEST DATA SETS

Theorem 1 (Convergence of Algorithm 1): If ηZ , ηG

> 3‖X‖2 + c, ηE > 3,
∑+∞

k=1 μ−1
k = +∞,

μk+1 − μk > C0 max
{

β‖L Z ‖
ηZ−3‖X‖2−c

, γ ‖LG‖
ηG−3‖X‖2−c

}
, where

c is any positive number, C0 a given constant, and ‖ · ‖ is
the matrix spectral norm, then the sequence {Zk, Gk , Ek, Yk}
generated by Algorithm 1 converges to an optimal solution to
problem (5).

For better flow of the paper, we move the proof of
Theorem 1 to Appendix.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the
DGLRR and NNDGLRR. We conducted several experiments
on image clustering in unsupervised learning setting. The data
sets tested include two face data sets (ORL1 and CMU PIE)2

and objects image database COIL20.3 The basic information
of these data sets is summarized in Table I. The test images
are well-aligned with each other at the pixel level and some
samples of these data sets are shown in Fig. 1.

In particular, the CMU-PIE is composed of 68 subjects
with 41,368 face images in total. In this data set, the size
of each sample is 32 × 32 and each subject is acquired
with 13 different poses, 43 different illumination conditions
and 4 different expressions. We only selected a small amount
of images with fixed pose and expression so that for each
subject, we have 21 images under different lighting conditions.
The ORLdatabase contains ten different images for each of
40 distinct subjects. All the images in this database were taken
against a dark homogeneous background with the subjects
in an upright and frontal position (with tolerance for some
side movement). The COIL20 image database is a popular

1http://www.uk.research.att.com/facedatabase.html
2http://www.ri.cmu.edu/projects/project_418.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON CMU-PIE

Algorithm 2 Clustering Based on DGLRR or NNDGLRR

test database containing 20 objects from Columbia University
Image Library. The images of each object was sampled
5 degrees apart while the object is rotating on a turntable, and
each object has 72 images in total. The size of each image
is 32 × 32 pixels, with 256 grey levels per pixel. Thus, each
image can be represented by a 1024D vector.

A. Subspace Clustering With DGLRR or NNDGLRR

As we discussed earlier, in LRR type of methods Z is
actually a new representation of data which is learned through
self reconstruction. The Z matrix obtained by DGLRR or
NNDGLRR contains rich geometric information derived from
manifolds as well as the subspaces that generate the data,
and therefore it is suitable for the subsequent similarity-based
cluster tasks. Z is often dense with small values due to
presence of noise. Thus we apply some refining techniques
to Z before clustering. We first normalize all column vectors
of Z and set small entries under given threshold τ to zeros.
Then, the affinity matrix is given by (|Z |+|Z T |)/2. Finally, we
apply a spectral clustering method to separate the samples into
clusters, which is equivalent to subspaces [31]. This clustering
method is outlined in Algorithm 2.

B. Baseline Methods

We compare the clustering performance of two proposed
methods against some of the state-of-the-art methods or

related algorithms. As our proposed methods are closely
related to LRR, we mainly choose LRR-based methods as
baselines shown below.

1) K-means (using in-built MATLAB function);
2) Traditional LRR [31];
3) LatLRR [32];
4) Non-negative Sparse Laplacian regularized

LRR(NSLLRR) [51].
The formulation of NSLLRR [51] is as following,

min
Z ,E

‖Z‖∗ + λ‖Z‖1 + βtr(Z L Z Z T ) + γ ‖E‖1,

s.t. X = X Z + E, Z ≥ 0. (19)

In the above methods, K-means serves as a benchmark
for image clustering task. Other LRR-based methods learn
an affinity matrix for clustering. To effectively evaluate the
clustering performance, two popular metrics, the normalized
mutual information (NMI) and the clustering accuracy [10]
are used. All of the experiments were carried out on an Intel
Core i3 3.30GHz WIN7 machine with 8GB memory.

C. Results Evaluation

The clustering experiments were conducted with a range
of number of cluster C . So we used the first C classes in
the data set for testing. For each given C , we ran 20 tests on
randomly chosen data and averaged the scores to obtain the
final performance score. Here we assume that data graph and
feature graph have similar density. So we use the same size of
neighborhood K to build the two graphs by k-nearest-neighbor.
For simplicity, we empirically set K to be 5 and λ = 110. And
we chose β = γ = 103 for COIL20 while β = γ = 104 for
CMU-PIE and ORL. The detailed clustering results are
reported in Tables II-IV. The bold numbers highlight the best
results.

From the scores shown in the tables, we can conclude that
our proposed methods outperform other algorithms on these
three test image databases in terms of accuracy and NMI. The
results show that the K-means approach is generally inferior
to other methods as the underpinning model, the mixture of
spherical Gaussians, is inadequate for these high-dimensional
image data in test. In contrast, LRR type of methods are
robust as the data we tested contain some outliers. Particularly,
DGLRR and NNDGLRR stand out from other LRR type of
methods thanks to the utilization of the geometric information
in both ambient space and feature space. This is clear when
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TABLE III

PERFORMANCE COMPARISON BY DIFFERENT ALGORITHMS ON ORL

TABLE IV

PERFORMANCE COMPARISON BY DIFFERENT ALGORITHMS ON COIL20

comparing NNDGLRR to NSLLRR. Interestingly NNDGLRR
outperforms DGLRR on COIL20 data. The reason is perhaps
that the information from local geometric structure is not rich
enough to separate the objects without non-negativity prior.

As for the E term in our models, it focuses on characterizing
the reconstruction error. In order to show its effectiveness,
we slightly modify model (5) by removing E leading to the
noiseless DGLRR (called nDGLRR). We tested the DGLRR
and nDGLRR on CMU-PIE and the clustering results are
reported in Table VIII. It is clear that DGLRR outperforms
noiseless DGLRR significantly. This justifies the use of E for
robustness.

Another nontrivial and interesting problem is how the graph
regularizers contribute to improve clustering solution. For
this purpose, we conducted some experiments to compare
DGLRR with its variants (with one or two graph regular-
izers off). The experimental results are shown in Table VI.
LatLRR is inferior to others. Although GLatLRR1, with data
graph regularizer, outperforms others by a large margin on
CMU-PIE data, DGLRR is overall the best in this comparison.
This result clearly shows that the local geometric informa-
tion coded by the graph regularizers contributes positively in
improving clustering performance.

To explicitly show the computational complexity of the
proposed methods, the time costs are recorded in Table V.
For reducing the computational cost, we firstly perform PCA
over all test data. The reduced dimensions for test data are
listed in Table V too. The K-means is the fastest and the
simplest among all methods, though its performance is the
worst one too. Both LRR and LatLRR are comparable to each
other in terms of time complexity, and NSLLRR is relatively

TABLE V

RUNNING TIME COMPARISON BY DIFFERENT

ALGORITHMS (UNIT: SECOND)

slower than these two as a graph regularizer requires extra
computation. Compared to the K-means, the computational
cost of our methods with PCA increase along with the size
of data, though the clustering performance by our methods
is much superior to that of the K-means. In this sense, our
methods achieve a good tradeoff between time complexity and
clustering quality.

To clearly show the convergence of our DGLRR, we
give the curves about the objective cost (i.e., log-value of
objective function) vs. iteration numbers on CMU PIE and
COIL20, respectively, in Fig. 4. Similarly, NNDGLRR has
almost same curve of convergence as DGLRR on the test
data. Due to page limitation, we here do not repeatedly report
the convergence results. From the figures, we can see that
our methods converge very fast, usually within 60 iterations
and, from another view point, also validate the convergence
analysis of our algorithms in IV-F.

Furthermore, to verify the effectiveness of low-rank repre-
sentation model with graph regularization, we compared our
methods with DRCC [19] and Graph-NMF (i.e., GNMF) [9].
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Fig. 2. The clustering performance varies with the regularization parameters: (a) MI with β and γ ; (b) ACC with β and γ ; (c) MI with λ; and
(d) ACC with λ.

TABLE VI

PERFORMANCE COMPARISON AMONG FOUR ALGORITHMS

Both methods belong to the NMF-based approach considering
the intrinsic geometric structure of data. In essence, NMF is a
famous method for seeking two low-rank non-negative matri-
ces whose product offers a good approximation to the original
data. Similarly, we first apply PCA to reduce the dimension
of test data and then perform clustering by our approaches.
The reduced dimensions are the same as those in Table V.
As for GNMF, however, non-negative input is required. So we
have to directly apply GNMF to the data set. The clustering
results are shown in Table VII. As can be seen, our methods
achieve a good balance between time cost and clustering
quality. Compared to the low-rank matrix factorization based
approaches, scalability DGLRR and NNDGLRR are superior
with acceptable running time except for COIL20. As for ORL,
the time cost of our methods is slightly more than that of
DRCC and GNMF while the clustering performance is much
superior to the compared methods.

D. Sensitivity to Parameters

There are several regularization parameters and the size
of neighborhood K affecting the performance of DGLRR.
In the following, we study the influence of parameters λ, γ ,

TABLE VII

PERFORMANCE COMPARISON BETWEEN OUR METHODS AND

LOW-RANK MATRIX FACTORIZATION BASED ONES

β and K by examining the variability of DGLRR clustering
performance with different values of these parameters.
We chose CMU-PIE as the test data set. The results of
clustering performance are visualized in Fig. 2. As can be
seen, DGLRR is less sensitive to the values of the regu-
larization parameters compared to NNDGLRR. In addition,
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Fig. 3. The clustering performance varies with the size of neighborhood: (a) MI and (b) ACC.

Fig. 4. Convergence curve of our proposed algorithm on (a) CMU-PIE and
(b) COIL20. Note that the lower objective function values at the beginning
of iterations are because the variables do not fulfill the constraints. The
constraints are fulfilled only when the iteration converges.

Fig. 3 presents the clustering results varying with the size of
neighborhood K . The value of K varies from 3 to 10. From
Fig. 3, we observe that the clustering performance of two
proposed algorithms decreases as the size of neighborhood
K increases. This is reasonable since the graph constructed
with relatively large K cannot effectively characterize the
underlying manifold structures of samples and features.

E. Clustering on Large-Scale Data

As shown in Table V, the current DGLRR and NNDGLRR
algorithm are limited by theirs time complexity so that they
cannot be applied to big data directly. Thus, in this section,
the scalable version of DGLRR and NNDGLRR methods have
been derived to address this problem. In fact, some works
have recently been developed to address the scalability issue
in spectral clustering [36]. There are, in general, two options

TABLE VIII

PERFORMANCE COMPARISON BETWEEN DGLRR AND

ITS NOISELESS VERSION nDGLRR ON CMU-PIE

TABLE IX

DESCRIPTION OF THE LARGE-SCALE DATA SETS

to overcome the large-scale issue in spectral clustering. One is
to reduce the time cost of eigen-decomposition over Laplacian
matrix. The other is to cut down the data size by sampling
techniques to replace the original data with a small number of
samples. The latter is becoming more and more popular as its
effectiveness and efficiency. In theory, the sampling technique
is not at the cost of clustering quality if the basis vectors
represented by the sampled data are used.

Based on this understanding, consequently, the scalable
version of DGLRR and NNDGLRR methods are proposed
to exploit some key data points (called in-sample data) and
calculate the clustering relation of in-sample data by our
dual graph regularized LRR models. To speed the process of
in-sample data clustering, we here use the randomized SVD
algorithm [25] instead of the built-in MATLAB program.
Subsequently, we group the rest of data into the nearest
subspace spanned by in-sample data where it has minimal
residual. Specifically, for each non-sampled (out-of-sample)
data xi , we use the following collaborative representation
model [52] to group into the subspace spanned by in-sample
data X .

min
ci

‖xi − Xci‖2
2 + τ ‖ci‖2

2 ,

where ci is the coefficient of xi by using in-sample data as
dictionary and τ is a parameter to balance the fidelity term and
ridge regression one. Then, by the coefficient ci , we can finally
attain the membership of out-of-sample data xi by performing
classification over it [47].



4928 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

TABLE X

PERFORMANCE COMPARISON BETWEEN OUR METHODS AND OTHER SIMILAR METHODS. NOTE THAT THE

NUMBER OF SAMPLED DATA FOR EACH DATA SET IS GIVEN IN BRACKETS

To evaluate the performance of the scalable version of
DGLRR and NNDGLRR methods, three large-scale data
reported in Table IX are used to perform clustering task,
such as Reuters-21578 (RCV), USPS and PenDigits. RCV is
a documental corpus in which 785 features of the original
data are extracted by PCA in the tests. USPS is composed
of 11000 handwritten digital images with 256 dimensionality
over 10 classes. PenDigits is a handwritten digital data set
too, in which 10992 data points with 16-dimension are
covered.

Considering the traditional LRR type methods fail to per-
form large-scale data clustering in an acceptable time cost,
we compare our methods, i.e., Scalable DGLRR (SDGLRR)
and Scalable NNDGLRR (SNNDGLRR), to the accelerating
spectral clustering algorithms such as the landmark-based
spectral clustering (LSC) [48] and Scalable LRR(SLRR).
Here, SLRR is an extension of low-rank representation method
using scalable strategy while LSC adopts the cluster centers
of the K-means as landmarks. We also use the K-means as
baseline. Then the results are reported in TableX where the
number of in-sample data is simply set as 1000 for each
accelerating algorithm. For each test data set, we conducted
10 tests to select in-sample data by K-means and the average
clustering performance was reported. For a fair comparison,
we used the same in-sample data in SDGLRR, SNNDGLRR,
SLRR and LSC. In addition, we detailed the time cost
for clustering, including the total time, time for processing
in-sample, non-sampled data and time for selecting in-sample.
Note that the in-sample data processing in LSC means the
time for graph construction. As can be seen, our methods
generally outperform other three methods with a considerable
performance gain in terms of accuracy and NMI. However,
the running time of our methods is a bit longer. Nevertheless
the time cost is much reduced compared with that of the
corresponding methods without using scalable strategy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel dual graph regularized
low-rank representation model (DGLRR), which explicitly

exploits the manifold structures in both ambient space and
feature space. We also provided a convergent optimization
algorithm to realize the model. Furthermore, we extended
this model to NNDGLRR to include non-negativity constraint
leading to a parts-based representation of the data. To address
the issue of clustering large-scale data sets, we expanded our
methods to scalable versions by sampling techniques so that
a good tradeoff between time cost and clustering performance
was achieved. Powered by graph Laplacian in both spaces and
low-rank regularization, the proposed methods are capable of
recovering the subspaces under the guidance of manifolds.
This ability of learning global and local information from data
is important for image clustering, and this has been proved
by experiments with the comparison to other state-of-the-art
methods.

Although the proposed model is promising for data
clustering, we would like to point out an issue, i.e., the
effect of G-factor, which will be investigated in near future.
Originated from recovering the effects of hidden data [32]
in LatLRR, G-factor can effectively extract salient features
from data to improve the performance of classification.
However, our current work only focuses on subspace clus-
tering. It would be interesting to explore possibilities of
using G e.g. co-clustering, though Z matrix alone is sufficient
to gain some improvement.

APPENDIX

(PROOF OF THEOREM 1)

To prove Theorem 1, we shall first have the following
lemmas.

Lemma 2 (KKT Condition): The KKT condition of
problem (5) is that there exists (Z∗, G∗, E∗, Y ∗) such that

X = X Z∗ + G∗X + E∗; Y ∗ ∈ λ∂‖E∗‖1; (20)

− β Z∗L Z + X T Y ∗ ∈ ∂‖Z∗‖∗;
− γ G∗LG + Y ∗X T ∈ ∂‖G∗‖∗; (21)

where ∂g(·) is the subgradient of convex function g.
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Proof: The first three are the duality conditions and the
second is the feasibility condition for problem (5). �

Lemma 3: The optimal conditions for (14), (15) and (16)
are

−μkηE (Ek+1 − Ek) + Ỹk ∈ ∂‖Ek+1‖1 (22)

− σ k
Z (Zk+1 − Zk) − β Zk L Z + X T Ỹk ∈ ∂‖Zk+1‖∗ (23)

− σ k
G(Gk+1 − Gk) − γ Gk L Z + Ỹk X T ∈ ∂‖Gk+1‖∗ (24)

Proof: This can be easily verified by setting the derivatives
(or subgradients) of objective functions in (14), (15) and (16)
to zeros, respectively. �

In the sequel, for the sake of simple notation, we denote,
for any integer k,

pz
k = −σ k−1

Z (Zk − Zk−1) + β(Zk − Zk−1)L Z

+ X T Ỹk−1 ∈ ∂‖Zk‖∗ + β Zk L Z ; (25)

pg
k = −σ k−1

G (Gk − Gk−1) + β(Gk − Gk−1)LG

+ Ỹk−1 X T ∈ ∂‖Gk‖∗ + βGk LG; (26)

pe
k = −μk−1ηE (Ek − Ek−1) + Ỹk−1 ∈ ∂‖Ek‖1, (27)

where ∈ relation is valid according to Lemma 3. Then we have
Lemma 4:

〈Zk+1 − Z∗, pz
k+1 − X T Y ∗〉 ≥ 0 (28)

〈Gk+1 − G∗, pg
k+1 − Y ∗X T 〉 ≥ 0 (29)

〈Ek+1 − E∗, pe
k+1 − Y ∗〉 ≥ 0 (30)

Proof: We will use the monotonicity of subgradient
mapping [37]. For any convex function f , any two points x
and y from the domain of f , the following inequality is valid

〈∂ f (x) − ∂ f (y), x − y〉 ≥ 0.

To prove (28), let us consider the function f (Z) =
‖Z‖∗ + β

2 tr(Z L Z Z T ), and two points Zk+1 and Z∗. Hence
∂ f (Zk+1) = ∂‖Zk+1‖∗ + β Zk+1 L Z and ∂ f (Z∗) = ∂‖Z∗‖∗ +
β Z∗L Z . From Lemma 2, we have X T Y ∗ ∈ ∂ f (Z∗) =
∂‖Z∗‖∗ + β Z∗L Z . From (25), we have

pz
k+1 = −σ k

Z (Zk+1 − Zk) + β(Zk+1 − Zk)L Z + X T Ỹk

∈ ∂‖Zk+1‖∗ + β Zk+1 L Z = ∂ f (Zk+1).

Hence

〈∂ f (Zk+1) − ∂ f (Z∗), Zk+1 − Z∗〉 ≥ 0,

which is (28). Similarly to others. This completes the proof.
�

Lemma 5:

μk(σ
k
Z ‖Zk+1 − Z∗‖2 + σ k

G‖Gk+1 − G∗‖2

+ μkηE‖Ek+1 − E∗‖2) + ‖Yk+1 − Y ∗‖2

= μk(σ
k
Z ‖Zk − Z∗‖2 + σ k

G‖Gk − G∗‖2

+ μkηE‖Ek − E∗‖2) + ‖Yk − Y ∗‖2

− 2μk〈Zk+1 − Z∗, pz
k+1 − X T Y ∗〉 (31)

− 2μk〈Gk+1 − G∗, pg
k+1 − Y ∗X T 〉 (32)

− 2μk〈Ek+1 − E∗, pe
k+1 − Y ∗〉 (33)

−μk(σ
k
Z ‖Zk+1 − Zk‖2 + σ k

G‖Gk+1 − Gk‖2

+ μkηE‖Ek+1 − Ek‖2) − ‖Yk+1 − Yk‖2

+ 2μk〈β(Zk+1 − Zk)L Z , Zk+1 − Z∗〉 (34)

+ 2μk〈γ (Gk+1 − Gk)LG , Gk+1 − G∗〉 (35)

+ 2μk〈Zk+1 − Z∗, X T Ỹk〉 (36)

+ 2μk〈Gk+1 − G∗, Ỹk X T 〉) (37)

+ 2μk〈Ek+1 − E∗, Ỹk〉) (38)

+ 2〈Yk+1 − Yk, Yk+1〉 (39)
Proof: First we have

(31) + (34) + (36)

= −2μk〈Zk+1 − Z∗,−σ k
Z (Zk+1 − Zk) − X T Y ∗〉

= −2μk〈X (Zk+1 − Z∗),−Y ∗〉
+ 2μkσ

k
Z 〈Zk+1 − Zk, Zk+1 − Z∗〉.

Similarly

(32) + (35) + (37)

= −2μk〈(Gk+1 − G∗)X,−Y ∗〉
+ 2μkσ

k
G 〈Gk+1 − Gk, Gk+1 − G∗〉.

and

(33) + (38) = −2μk〈Ek+1 − E∗,−Y ∗〉
+ 2μ2

kηE 〈Ek+1 − Ek, Ek+1 − E∗〉.

Now it is easy to see

−2μk〈X (Zk+1 − Z∗),−Y ∗〉 − 2μk〈(Gk+1 − G∗)X,−Y ∗〉
−2μk〈Ek+1 − E∗,−Y ∗〉

= 2μk〈X (Zk+1 − Z∗) + (Gk+1 − G∗)X + Ek+1 − E∗, Y ∗〉
= −2μk〈X − X Zk+1 − Gk+1 X − Ek+1, Y ∗〉
= −2〈Yk+1 − Yk, Y ∗〉.

In the second last step, we have used

X = X Z∗ + G∗X + E∗,

and the last step comes from the definition of Yk+1
in (17).

Finally note that for any matrices/vectors Ak+1, Ak and A∗
the following identity is valid

2〈Ak+1 − A∗, Ak+1 − Ak〉
= ‖Ak+1 − A∗‖2 − ‖Ak − A∗‖2 + ‖Ak+1 − Ak‖2.

Applying the above identity to all the remaining inner products
〈Zk+1 − Zk, Zk+1 − Z∗〉, 〈Gk+1 − Gk, Gk+1 − G∗〉 and
〈Yk+1 − Yk , Yk+1 − Y ∗〉 immediately completes the proof
of Lemma 5. �
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Lemma 6: If {μk} is increasing, then

ηE‖Ek+1 − E∗‖2 + (ηZ + β‖L Z ‖
μk+1

)‖Zk+1 − Z∗‖2

+ (ηG + γ ‖LG‖
μk+1

)‖Gk+1 − G∗‖2 + μ−2
k+1‖Yk+1 − Y ∗‖2

≤ ηE‖Ek − E∗‖2 + (ηZ + β‖L Z‖
μk

)‖Zk − Z∗‖2

+ (ηG + γ ‖LG‖
μk

)‖Gk − G∗‖2 + μ−2
k ‖Yk − Y ∗‖2

− 2μ−1
k 〈Zk+1 − Z∗, pz

k+1 − X T Y ∗〉
− 2μ−1

k 〈Gk+1 − G∗, pg
k+1 − Y ∗X T 〉

− 2μ−1
k 〈Ek+1 − E∗, pe

k+1 − Y ∗〉
−

(

ηZ − C0β‖L Z ‖
μk+1 − μk

− 3‖X‖2
)

‖Zk+1 − Zk‖2

−
(

ηG − C0γ ‖LG‖
μk+1 − μk

− 3‖X‖2
)

‖Gk+1 − Gk‖2

− (ηE − 3)‖Ek+1 − Ek‖2 − μ−2
k ‖Yk − Ỹk‖2.

where C0 = 1 + ρ0μmax is a constant.
Proof: Combining (36) to (39) leads to

2μk(〈Zk+1 − Z∗, X T Ỹk〉 + 〈Gk+1 − G∗, Ỹk X T 〉
+ 〈Ek+1 − E∗, Ỹk〉) + 2〈Yk+1 − Yk, Yk+1〉

= 2μk〈X (Zk+1 − Z∗)+(Gk+1 − G∗)X + (Ek+1 − E∗), Ỹk〉
+ 2〈Yk+1 − Yk, Yk+1〉

= 2μk〈X Zk+1 + Gk+1 X + Ek+1 − X, Ỹk〉
+ 2〈Yk+1 − Yk, Yk+1〉

= 2〈Yk+1 − Yk,−Ỹk〉 + 2〈Yk+1 − Yk, Yk+1〉
= 2〈Yk+1 − Yk, Yk+1 − Ỹk〉
= ‖Yk+1 − Yk‖2 + ‖Yk+1 − Ỹk‖2 − ‖Yk − Ỹk‖2

= ‖Yk+1 − Yk‖2 − ‖Yk − Ỹk‖2

+μ2
k ‖X (Zk+1 − Zk) + (Gk+1 − Gk)X + (Ek+1 − Ek)‖2

≤ ‖Yk+1 − Yk‖2 − ‖Yk − Ỹk‖2 + μ2
k (‖X‖‖Zk+1 − Zk‖

+ ‖X‖‖Gk+1 − Gk‖ + ‖Ek+1 − Ek‖)2

≤ ‖Yk+1 − Yk‖2 − ‖Yk − Ỹk‖2 + 3μ2
k(‖X‖2‖Zk+1 − Zk‖2

+ ‖X‖2‖Gk+1 − Gk‖2 + ‖Ek+1 − Ek‖2) (40)

Next we consider (34) and (35):

2μk(〈β(Zk+1 − Zk)L Z , Zk+1 − Z∗〉
+ 〈γ (Gk+1 − Gk)LG , Gk+1 − G∗〉)

≤ 2μk(β‖L Z ‖‖Zk+1 − Zk‖‖Zk+1 − Z∗‖
+ γ ‖LG‖‖Gk+1 − Gk‖‖Gk+1 − G∗‖)

≤ μkβ‖L Z‖
(

μk+1

μk+1 − μk
‖Zk+1 − Zk‖2

+μk+1 − μk

μk+1
‖Zk+1 − Z∗‖2

)

+μkγ ‖LG‖
(

μk+1

μk+1 − μk
‖Gk+1 − Gk‖2

+μk+1 − μk

μk+1
‖Gk+1 − G∗‖2

)

(41)

Plug (40) and (41) into the right hand of the equality in
Lemma 5 and divide both sides by μ2

k . From (18) and μk ≥ 1,
we have μk+1

μk
≤ 1 + ρ0μmax = C0. Hence terms containing

‖Zk+1 − Zk‖2 and ‖Gk+1 − Gk‖2 can be merged to obtain
the last third and second terms on the left hand side of the
inequality in the Lemma. Finally we need to deal with the
following two terms on the right hand side of Eq. (41)

μk+1 − μk

μk+1μk
β‖L Z‖‖Zk+1 − Z∗‖2

and
μk+1 − μk

μk+1μk
γ ‖LG‖‖Gk+1 − G∗‖2.

Take first term as an example. Note that

σ k
Z

μk
‖Zk+1 − Z∗‖2 − μk+1 − μk

μk+1μk
β‖L Z ‖‖Zk+1 − Z∗‖2

=
(

ηZ + β‖L Z‖
μk

− μk+1 − μk

μk+1μk
β‖L Z ‖

)

‖Zk+1 − Z∗‖2

=
(

ηZ + 1

μk
β‖L Z ‖

)

‖Zk+1 − Z∗‖2

≥
(

ηZ + 1

μk+1
β‖L Z ‖

)

‖Zk+1 − Z∗‖2

where we have used the increment of {μk}. Similarly for
variable G. Applying these identities to the equality in
Lemma 5 completes the proof. �

Lemma 7: If ηE > 3, ηZ and ηG > 3‖X‖2 + c,
μk+1 − μk > C0 max

{
β‖L Z ‖

ηZ−3‖X‖2−c
, γ ‖LG‖

ηG−3‖X‖2−c

}
, c > 0, and

(Z∗, G∗, E∗, Y ∗) is any KKT point of problem (5), then

1) {ηE‖Ek − E∗‖2 + (ηZ + β‖L Z‖
μk

)‖Zk − Z∗‖2 +(ηG +
γ ‖LG‖

μk
)‖Gk − G∗‖2 + μ−2

k ‖Yk − Y ∗‖2} is nonnegative

and non-increasing;
2) ‖Zk+1 − Zk‖ → 0, ‖Gk+1 − Gk‖ → 0, ‖Ek+1 −

Ek‖ → 0, μ−1
k ‖Yk − Ỹk‖ → 0;

3)
∑+∞

k=1 μ−1
k 〈Zk+1 − Z∗, pz

k+1 − X T Y ∗〉 < +∞,
∑+∞

k=1 μ−1
k 〈Gk+1 − G∗, pg

k+1 − Y ∗X T 〉 < +∞,
∑+∞

k=1 μ−1
k 〈Ek+1 − E∗, pe

k+1 − Y ∗〉 < +∞
Proof: μk+1 − μk > C0 max

{
β‖L Z ‖

ηZ −3‖X‖2−c
, γ ‖LG‖

ηG−3‖X‖2−c

}

implies ηZ − C0β‖L Z ‖
μk+1−μk

− 3‖X‖2 ≥ c > 0 and ηG − C0γ ‖LG‖
μk+1−μk

−
3‖X‖2 ≥ c > 0. Then all the assertions in the Lemma can be
easily deduced from Lemma 6. �

Proof of Theorem 1: Finally we are ready to prove
Theorem 1. By Lemma 7-1), the sequence {(Zk, Gk, Ek)}
is bounded, and hence has at least one accumulation point
(Z∞, G∞, E∞). By 2) of Lemma 7 we know μ−1

k (Yk −
Ỹk) → 0. Hence we conclude that (Z∞, G∞, E∞) is a
feasible solution of (5), i.e., X = G∞X − X Z∞ − E∞.

Since
∑+∞

k=1 μ−1
k = +∞ and 3) of Lemma 7, there exists a

subsequence {(Zk j , Gk j , Ek j )} such that

〈Zk j − Z∗, pz
k j

− X T Y ∗〉 → 0 (42)

〈Gk j − G∗, pg
k j

− Y ∗X T 〉 → 0 (43)

〈Ek j − E∗, pe
k j

− Y ∗〉 → 0 (44)
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Without loss of generality, we assume that

{(Zk j , Gk j , Ek j )} → (Z∞, G∞, E∞)

and

{(pz
k j

, pg
k j

, pe
k j

)} → (p∞
z , p∞

g , p∞
e ).

It can be easily proven that

p∞
z ∈ ∂‖Z∞‖∗ + β Z∞L Z , p∞

g ∈ ∂‖G∞‖∗ + βG∞L Z ,

p∞
e ∈ ∂‖E∞‖1

Then taking j → ∞ in (42)-(44), we have

〈E∞ − E∗, p∞
e − Y ∗〉 = 0,

〈Z∞ − Z∗, p∞
z − X T Y ∗〉 = 0,

〈G∞ − G∗, p∞
g − Y ∗X T 〉 = 0. (45)

Hence

‖Zk j ‖∗ + ‖Gk j ‖∗ + λ‖Ek j ‖1

+ β

2
tr(Zk j L Z Z T

k j
) + γ

2
tr(Gk j LG GT

k j
)

≤ ‖Z∗‖∗ + ‖G∗‖∗ + λ‖E∗‖1

+ β

2
tr(Z∗L Z Z∗T ) + γ

2
tr(G∗LG G∗T )

+ 〈Zk j − Z∗, pz
k j

〉 + 〈Gk j − G∗, pg
k j

〉 + 〈Ek j − E∗, pe
k j

〉.
Making use of (45) when j → ∞, we obtain

‖Z∞‖∗ + ‖G∞‖∗ + λ‖E∞‖1

+ β

2
tr(Z∞L Z Z∞T ) + γ

2
tr(G∞LG G∞T )

≤ ‖Z∗‖∗ + ‖G∗‖∗ + λ‖E∗‖1 + β

2
tr(Z∗L Z Z∗T )

+ γ

2
tr(G∗LG G∗T ) + 〈Z∞ − Z∗, p∞

z 〉
+ 〈G∞ − G∗, p∞

g 〉 + 〈E∞ − E∗, p∞
e 〉

= ‖Z∗‖∗ + ‖G∗‖∗ + λ‖E∗‖1 + β

2
tr(Z∗L Z Z∗T )

+ γ

2
tr(G∗LG G∗T ) + 〈Z∞ − Z∗, X T Y ∗〉

+ 〈G∞ − G∗, Y ∗X T 〉 + 〈E∞ − E∗, Y ∗〉
= ‖Z∗‖∗ + ‖G∗‖∗ + λ‖E∗‖1 + β

2
tr(Z∗L Z Z∗T )

+ γ

2
tr(G∗LG G∗T ) + 〈X (Z∞ − Z∗)

+ (G∞ − G∗)X + (E∞ − E∗), Y ∗〉
= ‖Z∗‖∗ + ‖G∗‖∗ + λ‖E∗‖1 + β

2
tr(Z∗L Z Z∗T )

+ γ

2
tr(G∗LG G∗T ).

Therefore {(Zk j , Gk j , Ek j )} converges to an optimal solu-
tion (Z∞, G∞, E∞) as it is feasible.

Finally we take Z∗ = Z∞, G∗ = G∞, E∗ = E∞ and
Y ∗ = Y ∞ in Lemma 7, then we have

ηZ ‖Zk j − Z∞‖2 + ηG‖Gk j − G∞‖2 + ηE‖Ek j − E∞‖2

+μ−2
k j

‖Yk j − Y ∞‖2 → 0.

By 1) of Lemma 7, we have

ηZ‖Zk − Z∞‖2 + ηG‖Gk − G∞‖2

+ηE‖Ek − E∞‖2 + μ−2
k ‖Yk − Y ∞‖2 → 0.

So (Zk, Gk , Ek) → (Z∞, G∞, E∞). This completes the proof
of Theorem 1.
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