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Multi-Level Discriminative Dictionary Learning
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Abstract— The sparse coding technique has shown flexibility
and capability in image representation and analysis. It is a
powerful tool in many visual applications. Some recent work
has shown that incorporating the properties of task (such as
discrimination for classification task) into dictionary learning is
effective for improving the accuracy. However, the traditional
supervised dictionary learning methods suffer from high compu-
tation complexity when dealing with large number of categories,
making them less satisfactory in large scale applications. In this
paper, we propose a novel multi-level discriminative dictionary
learning method and apply it to large scale image classification.
Our method takes advantage of hierarchical category correlation
to encode multi-level discriminative information. Each internal
node of the category hierarchy is associated with a discrimina-
tive dictionary and a classification model. The dictionaries at
different layers are learnt to capture the information of different
scales. Moreover, each node at lower layers also inherits the
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dictionary of its parent, so that the categories at lower layers
can be described with multi-scale information. The learning
of dictionaries and associated classification models is jointly
conducted by minimizing an overall tree loss. The experimental
results on challenging data sets demonstrate that our approach
achieves excellent accuracy and competitive computation cost
compared with other sparse coding methods for large scale image
classification.

Index Terms— Sparse coding, discriminative dictionary
learning, hierarchical method, large scale classification.

I. INTRODUCTION

IMAGE representation plays a critical role in image
processing and analysis. Much work has been developed

to generate representations by feature encoding schemes, such
as sparse coding [1], [2], local coding [3], [4], super-vector
coding [5] and Fisher vector [6]. In particular, the sparse
coding technique has received much attention in recent years.
It has shown flexibility and capability in many applications,
such as image denoising [7], [8], image super-resolution [9]
and face recognition [10]. In these tasks, the input signal (e.g.,
image or patch) is represented as a sparse linear combination
of the bases in a dictionary. Some work also takes the
viewpoint of analysis model to sparse representation [11].
Moreover, sparse coding has been successfully used in the
Bag-of-Words model for general image classification [12].
Instead of vector quantization (VQ), image representation is
computed based on the sparse codes of local descriptors
(e.g., SIFT [13]).

To find an appropriate set of bases (i.e., dictionary), much
effort is devoted to dictionary learning. Some methods are pro-
posed to learn the dictionary in an unsupervised way [14], [15],
where the dictionary is learnt by minimizing the reconstruction
error of the input. Besides pure reconstruction, researchers
also consider incorporating other properties of task, such as
discrimination for classification task, into the learning of dic-
tionary. Some work has shown that discriminative dictionary
learning is effective for improving the performance [16]–[21].
A globally shared dictionary or multiple class-specific dic-
tionaries are learnt to encode the underlying discriminative
information into feature representations. However, when the
number of categories is large, the complexity of these models
grows dramatically. Thus, they usually suffer from consider-
able computing time in both training and testing, making them
less attractive in large scale applications.
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Fig. 1. Illustration of ML-DDL for image classification. In the learning stage,
the dictionary D0, which is learnt at the root node V0, is used to discriminate
the child nodes V1,1, V1,2 and V1,3. For the node V1,1, its dictionary D1,1
consists of the inherited part D0 and the specific part Ds

1,1. The corresponding
representation z1,1 is fed into the classification model (i.e., classifiers with
parameters w2,1 and w2,2). During the predicting stage, the test image goes
through one path of the hierarchy by selecting the nodes with the maximal
response. Only two (i.e., the depth of the hierarchy) feature representations
have to be computed.

Much work has shown that exploiting the hierarchy to
guide the model learning can bring improvement in
efficiency [22]–[24] and accuracy [25]–[27]. The set of class
labels is organized as a hierarchical structure (e.g., tree). The
root node at the top layer contains all the classes. Each internal
node (i.e., non-leaf node), as a hyper-category, is associated
with a set of related classes. Each leaf node corresponds to a
single class. The hierarchy can be built upon the semantic
correlation or visual similarity among categories. Thus the
structure reflects the hierarchical correlation among categories.

In this paper, we aim to take advantage of category hierarchy
for discriminative dictionary learning. We can exploit some
key observations on the benefit of hierarchy. First, category
hierarchy displays diversified inter-correlation among the sib-
ling nodes at different layers. The siblings at higher layers are
less related, thus the discrimination among them is much
easier [28], [29]. Second, the features of different granularity
can be spotted from natural images. Simple features extracted
from relatively small regions are generic and useful to classify
less related concepts. Conversely, the features extracted from
larger regions can capture more specific information (e.g.,
indicative of object parts), which can support the discrim-
ination at lower layers [30]. Moreover, the nodes at lower
layers are supposed to possess the general properties from
their ancestors and additional class-specific details. In other
words, the features chosen by different internal nodes, even at
the same layer, are likely to be different.

Based on the above observations, we propose the
Multi-Level Discriminative Dictionary Learning (ML-DDL)
method, and exploit it for large scale image classification.
The framework is shown in Fig. 1. Given the hierarchy, each
internal node is associated with a discriminative dictionary and
a classification model that discriminates its child nodes.
Considering that the discrimination should rely on more
complex and specific patterns at lower layers, we propose
to learn the associated dictionaries to encode the descriptors
at a larger scale (i.e., extracted from larger image regions).

Moreover, each node at lower layers also inherits the
dictionary of its parent, so that the categories at lower layers
can be described with sufficient discriminative information at
multiple scales. The ensemble of dictionaries and classification
models are jointly learnt by optimizing an overall tree loss.
Besides, ML-DDL can extend to multiple feature channels,
i.e., features from different sources. Accordingly, complemen-
tary information can be explored from data to further improve
the performance. We summarize the main contributions of our
approach as follows:

• We propose a Multi-Level Discriminative Dictionary
Learning (ML-DDL) method which incorporates the
hierarchical category relation into dictionary learning.
We learn hierarchical discriminative dictionaries to
encode the descriptors at different scales. Moreover, by
virtue of dictionary inheritance, the discriminative infor-
mation of multiple scales can be leveraged to further
improve the separability of low-layer nodes. Compared
with other sparse coding methods [12], [17], [19], [31],
ML-DDL can effectively capture multi-level discrimina-
tive information, and achieve improved accuracy for large
scale classification.

• Both the training and testing computation cost can be
significantly reduced when compared with other super-
vised dictionary learning methods [17], [19]. The
hierarchy-based learning and predicting scheme makes
ML-DDL computationally tractable when dealing with
large number of categories.

This paper is an extension of our previous work [32].
Compared with the earlier version, we enrich our methodology
by extending ML-DDL to multiple feature channels. Moreover,
we give a detailed and principled analysis and deduction.
Besides, we also provide a richer experiment section with
quantitative and qualitative improvement, which includes more
experimental results and analysis, as well as the improved
performance over the earlier version.

II. RELATED WORK

In this section, we briefly review the related work on
dictionary learning. Moreover, we also review a series of
hierarchy-based methods for image classification.

A. Dictionary Learning

Current dictionary learning approaches can be categorized to
two main types: unsupervised and supervised (discriminative)
dictionary learning. In the field of unsupervised dictionary
learning, dictionary is optimized by minimizing the recon-
struction errors of signals [2], [14], [15], [33]. Yang et al. [12]
propose to learn a unique unsupervised dictionary by sparse
coding for classification and achieve impressive results. In the
work [34], a two-layer sparse coding scheme is proposed
by using the spatial neighborhood dependency among local
patches. Besides the sparsity, other constraints (such as local
geometry and dependency between dictionary elements) are
imposed to incorporate more information [3], [4], [35]. Due
to the learning criterion which is based on reconstruction
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rather than discrimination, unsupervised dictionary may lack
sufficient discriminative power.

In this regard, much research has focused on discriminative
dictionary learning. A family of such methods is proposed
to train a single discriminative dictionary which is shared
by all the categories [16]–[18], [36], [37]. Another type of
approaches learn multiple class-specific dictionaries for each
class [19], [38], [39]. Moreover, the work [40] and [41] is
proposed to train structured dictionaries in which the elements
explicitly correspond to category labels. In these approaches,
the learning of dictionaries integrates a discrimination criterion
(e.g., classification loss or Fisher discrimination criterion)
and the reconstruction error into an optimization objective.
However, these supervised dictionary learning methods suf-
fer from high computation complexity in both training
and testing, making them less attractive in large scale
applications.

Our method aims at learning discriminative dictionaries and
exploit them for large scale image classification, which is
connected to the work [31]. In [31], the authors learn one
common dictionary and multiple category-specific dictionaries
for each group of categories according to the Fisher discrim-
ination criterion. Different from their two-stage procedure,
ML-DDL learns the dictionaries and discriminative models
simultaneously. Besides, categories are required to be clustered
into groups in [31], which restricts the method from being
applicable to a hierarchy with more than two layers. In con-
trast, ML-DDL can be developed with a flexible hierarchical
structure.

B. Hierarchy-Based Classification Models

When dealing with a large number of categories, much
of the effort has been devoted to hierarchy-based models,
which take advantage of hierarchical structure to guide model
learning. One line of work is imposing statistical constraints
on the learning of classifiers in the hierarchy. In the work [27],
[42], [43], similarity priors are imposed to encourage the
sibling nodes to share model parameters. This constraint drives
the classifiers of nearby nodes much closer. On the other hand,
dissimilarity constraint is introduced in [44] and [45], which
encourages the classifier at each node to be different from the
ones at its ancestors. Another direction is exploiting hierar-
chical loss in model learning, which considers the weighted
classification error at different nodes [28], [46], [47].

With respect to hierarchy, it is usually generated according
to prior knowledge (e.g., semantic relation) or by other
process. Some work is developed on learning the
hierarchy [23], [24], [26], [48], [49]. Besides, in [50]
hierarchical structure is exploited to capture contextual
information, such as object co-occurrence and spatial layout.

III. DISCRIMINATIVE DICTIONARY LEARNING

In this section, we review traditional discriminative dictio-
nary learning with a flat label structure. Then we describe
ML-DDL algorithm and extend it to multi-feature chan-
nels in the following sections. For reading convenience, we
list the frequently used notations and their nomenclature
in Table I.

TABLE I

NOTATION AND NOMENCLATURE IN THIS PAPER

We assume that the training set (X ,Y) consists of N train-
ing samples. Each sample (i.e., image) x ∈ X is represented
by a local descriptor set {xn}Np

n=1, xn ∈ R
m , and y ∈ Y is the

label of sample x . Np is the number of descriptors belonging
to the sample. Given a dictionary D ∈ R

m×b , where b is the
dictionary size and b > m, the sparse code α̂n ∈ R

b for
descriptor xn can be computed by

α̂n = arg min
αn

1

2
‖xn − Dαn‖2

2 + μ ‖αn‖1 , (1)

where μ > 0 is a sparsity parameter. The code set
{
α̂n

}

of sample x , can be regarded as a matrix A, which each
column corresponds to the code of a descriptor. Max pooling
can be applied on these codes to generate an image-level
representation z: z = pmax(A). pmax operates on each row
of the matrix, and returns a vector whose j -th element is

(z) j =(pmax(A)) j = max
{|(α̂1) j |, . . . , |(α̂Np ) j |

}
. (2)

The generated representation by max pooling is endowed
with some good property (e.g., translation invariance), but the
spatial layout of local descriptors has been discarded. Spatial
pyramid pooling [12] further considers the spatial statistical
information, where the max pooling operation performs on the
spatial pyramid of sample x . The representation z is produced
by a concatenation of the pooling results, which is denoted
as z = psp(A). Representation z can be regarded as the
transformation of x related to D, and we define the process as
z = φ(x, D).

Each sample x is associated with a label y ∈ Y , which
we aim to predict from x . Regarding a traditional flat model,
a classification model f (φ(x, D), W) needs to be trained
according to loss �0 (y, f (φ(x, D), W)), where W denotes
the classification model parameters. To obtain a dictionary in
supervised setting [18], [19], the learning of D and W can be
formulated as follows,

min
D,W

N∑

i=1

�0 (yi , f (φ(xi , D), W)) + λ

2
‖W‖2

F (3)

where λ > 0 is a regularization parameter. To prevent the
dictionary D from becoming arbitrarily large, D satisfies the
constraint D∈BD , where

BD �
{

D∈R
m×b|‖d j‖2 ≤ 1,∀ j ∈ {1, ..., b}

}
. (4)
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Algorithm 1 Classify Input x Given Hierarchy H

The joint learning of D and W endows the dictionary D with
discriminative power as we minimize the classification loss.

IV. PROPOSED ALGORITHM

In the context of hierarchical model, the set of K categories
K = {1, · · · , K } is organized into a tree structure H = (V, E)
with node set V and edge set E . The depth of tree is denoted
by L. The root node containing all classes is at layer 0. The
leaf nodes are at layer L. Let I denote the set of internal
nodes, which are non-leaf nodes. Let D = {Dv} and
W = {Wv} denote the set of dictionaries and classification
model parameters, respectively.

Each node v ∈ I is associated with a class label set Kv ⊆ K
and a classification model f (φ(x, Dv ), Wv ). C(v) denotes the
set of its child nodes, and fc(φ(x, Dv ), wc) represents the
response of f on the child node c ∈ C(v), where wc is a
column of Wv . With respect to each child node c, its associated
label set is required to be a subset of its parent’s set, i.e.,
Kv = ⋃

c∈C(v) Kc. Moreover, siblings share no common label,
i.e., Kc1 ∩ Kc2 = ∅,∀c1, c2 ∈ C(v).

Given a hierarchy H, when classifying a sample x we can
make the prediction by applying Algorithm 1. The prediction
starts at the root node and proceeds recursively until reaching
a leaf node. When arriving at a node, the child with the largest
response is selected.

A. Hierarchical Discriminative Dictionary Learning

To learn the dictionaries and classification models, we need
to define the tree loss. For a sample x , ŷ denotes the final
prediction, which is made by finding the best path in the
hierarchy. Let A(ŷ) denote a node set, which corresponds to
the path from the root to the leaf node containing label ŷ. The
classification error occurs when the true label does not appear
in the path, i.e., y /∈ Kv , v ∈ A(ŷ). Assuming that selecting a
node only depends on its adjacent node at the higher layer, we
resort to maximum likelihood to solve the problem. The true
path is denoted byA(y) = {v0, · · ·, vL }. Thus, the probability
of predicting the true label y given x can be expressed as

p(y|x) = p(v0|x)

L−1∏

l=0

p(vl+1|vl , x) =
L−1∏

l=0

p(vl+1|vl , x).

(5)

p(v0|x) = 1 as the root contains all classes. Here, when the
nodes do not have a common parent, the competition among
them does not appear in (5). It is consistent with the strategy
of finding an optimal path in Algorithm 1.

According to the tree properties, i.e., siblings share no
common label, we consider that the nodes under the same

parent to be mutually exclusive. With this assumption, (5) can
be rewritten by using the indicator function I(·),

p(y|x) =
L−1∏

l=0

∏

c∈C(vl)

p (c|vl , x)I(c=vl+1)

=
L−1∏

l=0

∏

c∈C(vl)

p (c|vl , x)I(c∈A(y)). (6)

Given node vl ∈ A(y) and x (supposing that the children
number of vl is C), the indicator I (c = vl+1) on child nodes
c ∈ C(vl) provides the one-of-C encoding of the true predic-
tion vl+1 ∈ A(y), and the c-th bit turns on if node c belongs
to the true path. That is to say, the competition only occurs
among the sibling nodes along the true path of the label y.
And for the other nodes, the bit of indicator turns off naturally.
When considering the ensemble of the nodes in the hierarchy,
with some algebra (multiplying by some constant terms whose
value is equal to 1), (6) takes an equivalent form

p(y|x) =
∏

v∈I

∏

c∈C(v)

p(c|v, x)I(c∈A(y)). (7)

Each internal node v corresponds to a multi-class clas-
sification problem for its child nodes. Multinomial logistic
regression can be applied to model the problem, i.e., the
probability takes the form

p(c|v, x) = exp( fc(x))
∑

u∈C(v) exp( fu(x))
, (8)

where the response fc(x) can be defined as

fc(x) � fc(φ(x, Dv ), wc) = wT
c φ(x, Dv ). (9)

Dv denotes the associated dictionary of node v. Accordingly,
the tree loss over sample x can be estimated as the negative
log-likelihood,

�(y, x,D,W)

= −
∑

v∈I

∑

c∈C(v)

I(c ∈ A(y)) log p(c|v, x)

= −
∑

v∈I

∑

c∈C(v)

I(c ∈ A(y))log
exp ( fc(x))

∑

u∈C(v)

exp ( fu(x))

= −
∑

v∈I

[ ∑

c∈C(v)

I(c ∈ A(y)) fc(x) − log

( ∑

u∈C(v)

exp( fu(x))

)]
.

(10)

It means that we need to maximize the response of the nodes
with true label, which can attain small loss in the hierarchy.
Meanwhile, the optimization would reduce the probability of
selecting other nodes under the same parent when increasing
the probability of the node with true label.

The decision at each node v is associated with the dictionary
Dv as well as the classifier parameters Wv . This is different
from the traditional hierarchical models, which are built upon
an identical feature space. By virtue of the dictionary Dv , the
original features are projected into the corresponding subspace,
where the associated classifiers can effectively classify the
samples of child nodes.
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The classification at different layers of the hierarchy is likely
to rely on different features. The node at higher layers can
be regarded to describe a general concept. In contrast, the
node at lower layers corresponds to more specific concept.
Besides, different scale features can be extracted from samples,
from simple features (such as edges) to more specific features
(indicative of object parts). The simple features are generic
and useful for classifying general classes. Conversely, specific
features can be used to describe more specific concepts [30].
In order to exploit such properties, each sample x is rep-
resented by a set of multi-scale descriptors, {s0, · · · , sM },
which are extracted with different patch scales. We learn
the dictionaries of different layers to encode descriptors at
different scales accordingly.

B. Dictionary Inheritance

The dictionaries learnt at higher layers can be regarded
as the shared properties for the nodes at lower layers. Thus,
we propose dictionary inheritance, which allows them to be
inherited by the child nodes. With respect to the internal
node v, if it is a non-root node, the dictionary Dv decomposes
into two parts: the inherited part Di

v and the specific part Ds
v .

For example, considering the node V1,1 in Fig. 1,
the corresponding dictionary D1,1 is expressed as
D1,1 � {Di

1,1, Ds
1,1} = {D0, Ds

1,1}. D0 is the inherited
part, which denotes the dictionary learnt at V0. Ds

1,1 is the
specific part learnt at V1,1. Sample x is represented by a
multi-scale descriptor set {s0, s1}, where si is the subset of
descriptors at a certain scale. s1 corresponds to the descriptors
at a scale larger than s0. Accordingly, the response of sample
x on the child node V2,1 in (9) can be rewritten as

fV2,1(x) = wT
2,1φ(x, D1,1)

= wT
2,1

[
φ(s0, D0)

T , φ(s1, Ds
1,1)

T
]T

. (11)

The descriptors at different scales are encoded by respective
dictionaries, i.e., we encode s0 via D0 and s1 via Ds

1,1. The
generated representations are concatenated to describe sample
x at current node V1,1. Thus, the image-level representation
φ(x, D1,1) integrates the discriminative information of multi-
ple scales.

Given the training set (X ,Y) = {(xi , yi )}N
i=1, the joint

learning of dictionary set D and classification model
parameters W can be formulated by minimizing the following
regularized loss,

R =
N∑

i=1

� (yi , xi ,D,W) + λ

2

∑

v∈I
‖Wv‖2

F (12)

where the loss function � is given in (10).
The information propagates via multi-level dictionaries

in a top-down fashion. Different from traditional sharing
models [27], [42], our approach can leverage the shared infor-
mation from the parent node to improve the discrimination
among its children. As a matter of fact, dictionary inheritance
encourages the model to exploit sufficient information at
multiple scales.

Fig. 2. ML-DDL with multi-feature channels. For the node V0 in Fig. 1,
D∗

0 is composed of three subdictionaries corresponding to different sources
of features. The image-level representation z0 is generated by combining
the outputs {z1

0, z2
0, z3

0} via respective subdictionaries. Then {z1
0, z2

0, z3
0} are

weighted by the parameter vector w∗
1,1 = {w1

1,1, w2
1,1, w3

1,1}, and the sum of
the responses at three channels is regarded as the final response at the child
node V1,1. The classification error propagates backwards to update multiple
subdictionaries simultaneously.

C. Extending ML-DDL to Multi-Feature Channels

Besides enhancing the discriminative power of a single
feature, integrating multiple sources of features (color, shape,
texture, etc.) is also an effective way to improve the descrip-
tive ability of representation [51]–[53]. ML-DDL is flexible
in extending the discriminative dictionary learning to
multi-feature channels.

Considering that each sample x is represented by multiple
sets of local descriptors corresponding to different features,
we use x∗ = {x1, · · · , x J } instead to denote the descriptor
set, where x j corresponds to the subset of the j -th feature
and J is the number of features. For the node v, we exploit
a generalized dictionary D∗

v to fuse the information conveyed
by multiple features, i.e., D j

v denotes the subdictionary used
to encode the j -th feature. Consequently, the response fc(·)
at the child c in (9) can be redefined as

fc(x∗) =
J∑

j=1

e j (w
j
c )T φ(x j , D j

v ) � (w∗
c )T φ(x∗, D∗

v ), (13)

where (w∗
c )T = [

e1(w1
c)

T , e2(w2
c )

T , · · · , eJ (wJ
c )T

]
, and

φ(x∗, D∗
v ) = [

φ(x1, D1
v )

T , φ(x2, D2
v )

T , · · · , φ(x J , DJ
v )T

]T
.

e j is the weight for the j -th feature, and w j
c denotes the

corresponding parameters of classification model. In (13),
we apply a linear combination of multiple feature responses.
Considering the joint learning of classification model and
representations, we do not explicitly choose the value of
weight e j , which is integrated in w∗

c .
w∗

c and D∗
v are regarded as the classification model para-

meters and the dictionary with multi-feature channels. They
can be learnt by minimizing the regularized loss R in (12),
and the response fc uses (13) instead. The classification
error propagates backwards to update multiple subdictionaries
simultaneously, as shown in Fig. 2.
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V. OPTIMIZING DICTIONARIES AND MODEL PARAMETERS

For notational convenience, the following optimization is
based on single feature. It is straightforward to extend to the
multi-feature version.

Although optimizing the entire objective function in (12)
is complicated, the problem can be decomposed into a set
of sub-problems. The learning proceeds sequentially in a top-
down fashion over layers, and the nodes at the same layer
can be tackled independently. For an internal node v, the
problem can be solved by performing the following two steps
iteratively:

1) Coding: Fixing the dictionary Dv , we compute the
corresponding code coefficients Av for each sample x ,
and generate the image-level representation zv .

2) Dictionary and model parameters updating: Based on
the representation computed by the previous dictionary,
we update model parameters Wv and dictionary Dv

according to the objective function (12). Note that only
the specific part Ds

v is updated. The inherited part Di
v

is unchanged as it has been optimized at the higher
layer.

A. Optimization Over Dictionary

As the regularized loss R in (12) is differentiable with
respect to the dictionary and the model parameters [19], we
can deduce the gradient of R with respect to the specific
dictionary Ds

v : ∇Ds
v
R =∑N

i=1 ∂�(yi , xi ,D,W)/∂Ds
v by using

the chain rule,

∂�

∂Ds
v

= ∂�

∂zv

∂zv

∂Ds
v

= ∂�

∂zv

∂zv

∂Av

∂Av

∂Ds
v

. (14)

The gradient of � with respect to zv can be computed as

∂�

∂zv
= −

∑

c∈C(v)

I (v ∈ A(y)) wv +

∑

u∈C(v)

exp( fu(x))wu

∑

u∈C(v)

exp( fu(x))
. (15)

The main difficulty of the optimization comes from obtaining
the derivative of coefficients Av with respect to dictionary Ds

v ,
because they are implicitly connected and the �1 regularization
on Av is non-smooth. To prevent notation clutter, we drop the
subscript v and the superscript of dictionary in the following
deductions.

To establish the connection between A and D, we consider
the relationship between a sparse code α̂n (i.e., a column of A)
and dictionary D. The derivative of (1) with respect to αn at
its minimum α̂n can be expressed as,

∂‖xn − Dαn‖2
2

∂αn

∣
∣
∣∣
∣
αn=α̂n

= − 2μ
∂‖αn‖1

∂αn

∣
∣∣
∣
αn=α̂n

. (16)

According to the subdifferential ∂‖α̂n‖1 = q [54], where

q j =
{

sgn(α̂n) j , if (α̂n) j �= 0,
|q j | ≤ 1, otherwise,

(17)

we can get the following equation from (16),

DT
�(xn − D�α̂�) = μ sgn(α̂�), (18)

where � denotes the active set, comprised of the indices of
nonzero coefficients in α̂n . D� denotes the matrix comprised
of the corresponding columns (atoms) of D whose column
indices are in �.

When the perturbation of dictionary is small, a stable active
set can be obtained. We only compute the gradient of the
active coefficients α̂� with respect to the active atoms D�,
and set other entries of the gradient to zeros [19]. Here we
apply implicit differentiation on (18),

∂
(
DT

�(xn − D�α̂�)
)

∂(D�)i j
= ∂

(
μ sgn(α̂�)

)

∂(D�)i j
. (19)

As the sign in α̂� should not change for small perturbation of
the dictionary, we have ∂ sgn(α̂�)/∂D� = 0. Thus, we obtain
the derivative according to (19),

∂α̂�

∂(D�)i j
=

(
DT

�D�

)−1
[

∂DT
�

∂(D�)i j
xn − ∂(DT

�D�)

∂(D�)i j
α̂�

]

= (
xn − Dα̂

)
i Q· j − (α̂�) j

(
QD�

T )
·i , (20)

where Q = (
DT

�D�

)−1
. Accordingly we can compute the

gradient of z based on (2),1

∂(z)k

∂D
=

{
sgn

(
(α̂n)k

) ∂(α̂n)k
∂D , if (z)k = |(α̂n)k | ∧ (z)k �=0,

0, otherwise.
(21)

That is to say, the gradient of multivariate max operation is
a union of the ones of the active entries in the coefficient
matrix A (i.e., the entries with the largest absolute values in
each row of A). Consequently, we get the gradient of � with
respect to the dictionary D in (14) by integrating (15) and (21).

B. Overall Optimization Procedure

We employ stochastic gradient descent algorithm and
mini-batch strategy for optimization. The overall optimiza-
tion procedure is given in Algorithm 2. To initialize the
dictionaries, we first learn a set of unsupervised dictionaries
Dun = {Dl}L−1

l=0 . Each dictionary Dl corresponds to the
descriptors at a certain scale.

For an internal node v at layer l, its model parameters Wv

are initialized to zeros. The dictionary Dv is comprised of
the inherited part Di

v from its parent node and the specific
part Ds

v . (In particular, the dictionary at the root node only
has the specific part, i.e., Di

0 = ∅.) The specific dictionary Ds
v

is initialized with Dl . Given the training image set {(x, y)}v ,
a number of iterations (the number is denoted by nI ter ) are
performed for updating Ds

v and Wv . At each iteration, we ran-
domly choose a batch of samples from data (denoted by Sk ),
and compute the representation zv = φ(x, Dv ) for each sample
x belonging to the batch. Considering the costly computation
in recomputing the coding at each iteration, we approximate
the representation z by coding parts of the descriptors in each
sample (typically ten percent). Then we apply a two-layer
spatial pooling ( psp with the pyramid 1 × 1 and 3 × 3)

1The computation with spatial pyramid pooling can be done by
accumulating the gradients over the pyramid.
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Algorithm 2 ML-DDL

after coding. The total loss is approximated by accu-
mulating the loss on the batch Sk , where Rk =∑

(x,y)∈Sk
�(y, x, Dv , Wv ) + λ

2 ‖Wv‖2
F . Thus, the gradient

with respect to model parameters is expressed as ∇wc Rk =∑
(x,y)∈Sk

∂�(y, x, Dv , Wv )/∂wc + λwc, where

∂�

∂wc
= −I (c ∈ A (y)) zv + exp ( fc(x)) zv∑

u∈C(v)

exp ( fu(x))
, (22)

and wc is a column of Wv . The gradient ∇Ds
v
Rk can be com-

puted according to (14). Then the parameters are updated with
a projected gradient step, by projecting the model parameters
Wv and dictionary Ds

v onto the convex set BW = {W :
‖W‖F ≤ √

N/λ} (N is the sample number) and BD (4),
respectively. �B(u) defines the closest point in the set B to
the target u. η0 and ρ are the parameters for learning rate,
which are respectively set to 1.0 and 100.

The overall optimization follows a top-down fashion, i.e.,
the learning performs sequentially from top to bottom. The
nodes at the same layers can be tackled independently. More-
over, due to the fact that the inherited dictionary is not updated
at the descendant nodes, the corresponding representations can
be directly used at lower layers.

VI. EXPERIMENTS

In this section, we evaluate the performance of ML-DDL
on three datasets: SUN397 [55], which is a large database
for scene recognition, ImageNet200, which is a subset of
ImageNet [56] with imbalanced sample distribution, and Ima-
geNet1K, which is a large scale dataset for object classi-
fication and is used in ILSVRC2010 [57]. First, we verify

TABLE II

CONFIGURATIONS OF DIFFERENT METHODS

the effectiveness of ML-DDL in accuracy and efficiency by
comparing with other sparse coding methods on SUN397 and
ImageNet200. Then we validate the scalability and flexibility
of ML-DDL on large scale data ImageNet1K. Furthermore,
we show the necessity of hierarchical discriminative dictionary
learning and dictionary inheritance, and investigate the effect
of ML-DDL with multi-feature channels. Finally, we examine
the effects of pooling strategy for training dictionaries, as well
as training sample size and dictionary size on the method.

A. Basic Setup

1) Baselines: ML-DDL has two components: hierarchical
structure and supervised dictionary learning. We compare
it with the following baselines in different component
combinations:

1. Flat structure + Unsupervised dictionary (F-UDL). The
model is learnt based on a single unsupervised dictionary and
the one-vs-all strategy [12].

2. Flat structure + One supervised dictionary (F-SDL). The
model is learnt based on a common supervised dictionary and
the one-vs-all strategy [17].

3. Flat structure + Multiple supervised dictio-
naries (F-MDL). Multiple supervised dictionaries are
trained, and each class is associated with one dictionary [19].
The model is learnt based on the one-vs-all strategy.

4. Hierarchical structure + Unsupervised dictio-
nary (H-UDL). The model is learnt based on a single
unsupervised dictionary. We use a similar hierarchical
discrimination criterion as that in [44], and train the model
with the package provided by [58].

To facilitate reading, we list the methods according to their
configurations in Table II. Supposing that K categories have
been organized as a hierarchy H, in which the set of internal
nodes is denoted by I.

2) Configurations: The prior hierarchy is built according
to [23] by recursively clustering class labels with the standard
spectral clustering method [59]. Each image is resized such
that the longer side is no more than 300 pixels and no less
than 100 pixels. For basic feature, we use 128-dimensional
SIFT [13] from patches as input descriptors. Moreover, we
employ another two types of local descriptors, 100-dim
block color histogram [55] and 30-dim self-similarity [60]
for the evaluation of ML-DDL with multi-feature channels
in Section VI-F. The size of patch side is set to 16+8l pixels,
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TABLE III

TRAINING COST (Ctrain, IN HOURS), TESTING COST (Ctest , IN HOURS) AND ACCURACY (Acc%) ON SUN397 AND IMAGENET200

where l denotes the layer index (the root node corresponds
to l = 0). The stride of descriptor is set to be half of the
patch size. For a fair comparison, the descriptors extracted
with multiple patch scales are used as input for all methods.
The sparsity parameter μ in coding is set to 0.12, and the
regularization parameter λ is set to 0.1.

3) Evaluation Criteria: We describe the evaluation criteria
in terms of accuracy and efficiency. The classification accuracy
is obtained by averaging the per-class accuracy. Moreover, for
hierarchical models we also evaluate the accuracy at different
layers, i.e., Accl in Table VI. Accl can be computed by
averaging the per-node accuracy when predicting at current
layer l. For efficiency evaluation, the timing is based on a
single core of an 8-core Intel Xeon 3.20 GHz server.
We calculate the time cost in hours.

B. Evaluation on SUN397

In this section, we evaluate ML-DDL on the SUN397
dataset. We use all 397 categories and follow the protocol
in [55]. The data has been partitioned. In each partition
there are 50 training images and 50 testing images per class.
We obtain the results by averaging the performance on all
the partitions. A three-layer (excluding the root node) tree is
established as the prior hierarchy. With respect to dictionary
size, we choose 512 for the specific dictionaries at different
layers in ML-DDL. The size in F-UDL, F-SDL and H-UDL
is set to 1024. As each class is associated with one dictionary
in F-MDL, we adopt a smaller size for each dictionary, which
is set to 256.

1) Efficiency Evaluation: The time cost of a method on
training and testing is a critical issue when dealing with many
classes. We evaluate the computation cost of these methods
on both training and testing. The result is shown in Table III.

The main time cost on training consists of three parts: dictio-
nary learning, image-level representation generation and clas-
sification model learning. For unsupervised dictionary learning
methods, the three steps perform sequentially. The dictionary
is learnt based on a certain set of descriptors sampled from
data, and the training time on dictionary is much less than
representation generation and classification model learning.
Different discrimination criteria lead to the different training
costs of F-UDL and H-UDL. On the other hand, with respect
to supervised dictionary learning, a joint learning process of
dictionary and classification model is adopted. Meanwhile,
image-level representations are generated during the process.

The methods usually suffer from high time complexity on
training due to recomputing the representations and dictionary
updating. The learning of each dictionary in F-MDL utilizes
all data, and the number of dictionaries equals to the class
number, which is much larger than the number of dictionaries
in ML-DDL. Moreover, learning a single larger supervised
dictionary in F-SDL costs more time than learning a smaller
dictionary per class in F-MDL, which is consistent with
the statement in [19]. Compared with F-MDL and F-SDL,
ML-DDL has much less training cost. By virtue of hier-
archy, the learning of ML-DDL is decomposed to multiple
sub-problems, one for each internal node. Each dictionary
and the associated classification model is optimized in one
sub-problem, using a subset of the whole data.

Considering testing time, the computation of representation
dominates the cost. Multi-scale descriptors are encoded by one
dictionary for each test sample in F-UDL, H-UDL and F-SDL.
Although ML-DDL seems to have more dictionaries compared
with these methods, it is worth noting that ML-DDL achieves
the best efficiency among all the methods. As a matter of fact,
each test sample traverses L (the depth of tree) dictionaries
from the root to a leaf node in ML-DDL, and each dictionary
is employed to encode the descriptors at a certain scale, with a
smaller dictionary size. With respect to F-MDL, each sample
should be computed through all the dictionaries, resulting
in drastic increase in the time cost.

2) Classification Accuracy Evaluation: We summarize the
accuracy of different methods in Table III. Compared with the
result of SIFT-based algorithm using K-means quantization
(21.5% reported in [55]), these methods take advantage of
sparse coding to achieve better results. The accuracy of
ML-DDL is better than other supervised dictionary learning
methods (F-MDL and F-SDL). Moreover, the superiority of
ML-DDL over H-UDL is clear. In contrast, supervised dic-
tionary learning methods with flat structure, i.e., F-SDL and
F-MDL, have limited increase compared with the unsupervised
dictionary learning method F-UDL.

C. Evaluation on ImageNet200

ImageNet is a large scale dataset, where the classes are
organized based on WordNet [61]. Different from SUN397, the
sample distribution is imbalanced, i.e., some classes contain
lots of training images, and a number of classes contain
few data. We evaluate ML-DDL with such a more realistic
setting. We use a subset, ImageNet200, for evaluation.
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TABLE IV

SOME CLASS EXAMPLES IN IMAGENET200

Fig. 3. Numbers of images in the 200 classes selected from ImageNet.

ImageNet200 contains randomly chosen 200 categories
covering a wide range of semantic domains, such as animal,
tools, vehicle and construction, as shown in Fig. 3. The
number of images in each class is quite different, varying
from several to thousands. The average number of samples
in each class is about 900. We split the samples of each
class into two sets: one-third data are used for training
and the others are for testing. We generate a two-layer
(excluding the root node) prior structure for evaluation. The
size is set to 512 for each specific dictionary in ML-DDL.
The dictionary size is set to 1024 for F-UDL, F-SDL and
H-UDL, and 256 for each dictionary in F-MDL.

1) Efficiency Evaluation: We evaluate the training and
testing cost of different methods. The results in Table III
illustrate the significant advantage of ML-DDL compared with
other supervised dictionary learning methods. Although the
training time of ML-DDL is more than those of F-UDL
and H-UDL, the testing time of ML-DDL is much less than
theirs. We have to emphasize that in practice the efficiency
in testing is relatively more important than that in training.
So we can conclude that the overall time cost of ML-DDL is
advantageous over other methods in comparison.

2) Classification Accuracy Evaluation: We also evaluate the
classification accuracy of these methods, as shown in Table III.
The low accuracy of flat structure methods indicates that the
imbalanced distribution of samples incurs difficulty when
classifying a large number of classes with a flat label space.
By virtue of category relation, the classes with few training

samples borrow the strength of related classes (i.e., the
siblings) at higher layers. Accordingly, hierarchical
models consistently outperforms flat structure methods
on ImageNet200. Moreover, ML-DDL effectively explores
and transfers information via supervised dictionary learning,
thus achieves better accuracy than H-UDL does.

Compared with the flat structure method F-MDL, which
achieves better result than other flat structure methods, the
accuracy of many classes has increased in ML-DDL. We take
some classes as examples, which are shown in Table IV. The
results demonstrate that the classification can be improved
regardless of the number of samples, such as “lion”, “steeple-
chaser”, “flagship” and “skeleton”. These classes take advan-
tage of hierarchical structure (i.e., groups) to narrow the
choices of predictions at each layer. In particular, the classes
with few samples (e.g., “flagship” and “skeleton”) leverage
the knowledge from siblings (i.e., {“ferry”,“sea boat”} and
{“fence”,“gate”}) which have many samples, to improve their
accuracy. Besides, for many classes ML-DDL is helpful to
resolve the confusion on appearance via the hierarchical
structure. For example, varied patterns (e.g., logo, text or
figures) can be observed in “cup” images. However, most
of these patterns may be ineffective, or even unfavorable,
to represent class “cup”, and hence lead to low accuracy
even if having many training samples. ML-DDL leverages
its related classes (e.g., “bowl”,“jar” and “pot”) to improve
its accuracy (+10.5%). On the other hand, hierarchy may
also lead to negative transfer, i.e., hurt the accuracy on
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TABLE V

COMPARISON OF DIFFERENT METHODS ON THE IMAGENET1K DATASET

some classes. For example, distinctive appearance and large
intra-class similarity lead to high distinguishability of class
“endoscope”, but group structure introduces extra noise from
its siblings.

D. Evaluation on ImageNet1K

In order to verify the scalability of ML-DDL on large
scale data, we further evaluate it on the ImageNet1K dataset
used in ILSVRC2010 [57]. The dataset contains 1.2M images
from 1000 categories for training, 50K images for validation
and 150K images for testing. First, we compare ML-DDL
with some state-of-the-art methods. Second, we assess the
performance of ML-DDL with different prior hierarchies.

1) Comparison With State-of-the-Art Results: We compare
ML-DDL with some state-of-the-art methods on the
ILSVRC2010 dataset, including JDL [31], Fisher Vector [6],
the method of NEC [62] and the Meta-Class feature (MC) [63].
The comparison among different methods is shown in Table V.
The configuration of the baselines follows that in [31].
As the state-of-the-art sparse coding method, JDL [31]
is only applicable to a two-layer hierarchy. For a fair
comparison, we also exploit a two-layer hierarchy T2,
and use single feature, SIFT, as the local descriptors for
ML-DDL. Each specific dictionary is set to have 2048 atoms
in ML-DDL. We train ML-DDL in about five days on the
8-core server.

JDL is a discriminative dictionary learning method, which
is more connected with ML-DDL. Table V shows that
ML-DDL achieves better accuracy than JDL and MC do. But
it does not perform as well as the method of NEC and Fisher
Vector. This is because the method of NEC and Fisher Vector
apply other coding strategies to encode local descriptors.
By taking advantage of higher dimensional features, they
obtain better results.

Besides, compared with JDL, ML-DDL is more flexible and
efficient in dealing with a large number of classes. Although
JDL has not reported time cost in [31], the large number of
learnt dictionaries (i.e., 1083, more than class number) and
the two-stage learning of dictionary and classifiers lead to
heavy computation cost in training and testing. In contrast, the
number of learnt dictionaries in ML-DDL is determined by the
number of internal nodes (here is 43), which is much smaller
than class number. Moreover, the prediction of a sample is
accompanied with only two dictionaries in ML-DDL.

2) Evaluation With Different Prior Hierarchies: ML-DDL
aims at capturing discriminative information residing in the
category hierarchy, which plays an important role in

Fig. 4. Accuracy of the methods based on different hierarchies on
ImageNet1K. TL denotes the hierarchical structure with depth L .

information exploiting and transfer among classes. To ana-
lyze the effectiveness of ML-DDL with different priors, we
apply another two hierarchies: T3 and T4, where the subscript
denotes the depth of hierarchy. Due to the high computation
cost of F-SDL and F-MDL (shown in Table III), these two
methods are intractable for ImageNet1K. Therefore, we only
compare ML-DDL with hierarchical method H-UDL and flat
structure method F-UDL. The dictionary size in these baselines
is increased to 4096 in order to enhance the strength of
representation. Considering that each internal node deals with
a relatively small sub-problem when the tree is deep, we apply
different configurations for ML-DDL according to different
prior hierarchies. We set the specific dictionary sizes to (2048,
1024, 512) in T3, and (1024, 1024, 512, 512) in T4, from top
to bottom layer.

As shown in Fig. 4, ML-DDL consistently outperforms
H-UDL based on different prior hierarchies, and achieves com-
petitive or better result than the flat structure model F-UDL.
With respect to H-UDL, there is drastic change in accuracy
when dealing with different hierarchies. In contrast, ML-DDL
still achieves excellent results on different hierarchies. More
importantly, when the hierarchy becomes deep, the superiority
of ML-DDL over H-UDL becomes more salient. This further
shows that ML-DDL is capable of appropriately capturing
discriminative information by exploiting prior knowledge.

E. Effect of Hierarchical Discriminative Information and
Dictionary Inheritance

In this section, we justify the effectiveness of two factors
in ML-DDL, hierarchical discriminative dictionary learning
and dictionary inheritance. We utilize a degraded version of
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TABLE VI

ACCURACY (Accl %) AT DIFFERENT LAYERS OF HIERARCHY

ON SUN397 AND IMAGENET200

TABLE VII

THE COMPARISON ON ACCURACY (%) BETWEEN DICTIONARY

LEARNING WITH SINGLE-SCALE DESCRIPTORS AND

MULTI-SCALE DESCRIPTORS IN F-UDL AND ML-DDL

ML-DDL named ML-DDL0 as another baseline, which does
not involve dictionary inheritance. In ML-DDL0 the nodes at
lower layers do not inherit the dictionaries from parents.
We assess the accuracy of H-UDL, ML-DDL0 and ML-DDL
at different layers. The results are shown in Table VI.

With respect to hierarchical models, the accuracy decreases
at lower layers, especially when reaching leaf nodes. Besides
the misclassification at the current layer, the error at higher
layers is also accumulated. In this regard, ML-DDL0 con-
sistently outperforms H-UDL, which demonstrates that the
above problems can be alleviated with the aid of exploring
hierarchical discriminative information.

The improvement of ML-DDL over ML-DDL0 verifies the
necessity of dictionary inheritance. The visual information
captured from ancestor nodes is helpful for children. In
the traditional sharing models [27], [42], the siblings inherit
the common statistical information, which has little effect
on the distinguishability among them. In contrast, ML-DDL
makes better use of the inherited properties, which can
be further weighted to improve the discrimination among
siblings.

On the other hand, benefiting from dictionary inheritance,
the image representations of low-layer nodes integrate
multi-scale visual information. To investigate the effect of
multi-scale information, we use another variation, ML-DDLs ,
where the dictionaries are learnt to encode the descriptors
at the same scale. The size is also set to 512 for each
dictionary, and a 16 × 16 patch size is applied. For the
standard unsupervised dictionary method F-UDL, we also test
it with single-scale input, named F-UDLs , and the results are
shown in Table VII. Compared with single-scale input, F-UDL
and ML-DDL both obtain improvements by using multi-scale
descriptors as input. However, the improvement is marginal
in F-UDL (no more than 0.5%), which is consistent with the
analysis in [12]. The comparison between the improvements
of ML-DDL and F-UDL shows that ML-DDL can make better
use of multi-scale information.

Fig. 5. Accuracy (%) Compared With Single-Feature and Multi-Feature
Version of Three Methods on SUN397.

Fig. 6. Accuracy (%) compared with single-feature and multi-feature version
of three methods on ImageNet200.

F. Effect of ML-DDL With Multi-Feature Channels

We have shown that ML-DDL is flexible in extending to
multi-feature channels in Section IV-C. In this section, we
investigate the effect of multi-feature dictionary learning.

Besides 128-dim SIFT, we employ another two types of
local descriptors as input: 100-dim block color histogram [55]
and 30-dim self-similarity [60]. With respect to multi-feature
version of ML-DDL (MF-ML-DDL for short), each dictionary
extends to multiple feature channels, and it can be regarded
as a dictionary ensemble composed of three subdictionaries.
The sizes of subdictionary are set to 512, 256 and 256,
respectively. We compare MF-ML-DDL with multi-feature
version of baselines (with prefix MF-): MF-F-UDL and
MF-H-UDL. For MF-F-UDL and MF-H-UDL, multiple
features are generated via respective unsupervised subdic-
tionaries and then concatenated as the final representation. The
dictionary sizes are 1024, 512 and 512, respectively.

The accuracy of the above three methods (including
single-feature and multi-feature version) on SUN397 and
ImageNet200 are shown in Fig. 5 and Fig. 6. Although the
result on SUN397 is not as good as the one reported in [55],
38.0%, which is achieved by integrating more than ten types
of features, MF-ML-DDL can obtain promising result (33.1%)
with only three types of features.

Compared with the single-feature version (i.e., F-UDL,
H-UDL and ML-DDL), all the methods with multi-feature
channels obtain better accuracy, demonstrating that fusing
the descriptive power of multiple complementary features
is effective to enhance the performance of a model.
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Fig. 7. Training cost (hours) and Accuracy (%) compared between ML-DDL and F-MDL with different sizes of training data. (a) Training cost on SUN397.
(b) Accuracy on SUN397. (c) Training cost on ImageNet200. (d) Accuracy on ImageNet200.

Fig. 8. Training cost (hours) and Accuracy (%) compared between ML-DDL and F-MDL with different dictionary sizes. (a) Training cost on SUN397.
(b) Accuracy on SUN397. (c) Training cost on ImageNet200. (d) Accuracy on ImageNet200.

For hierarchical methods, different features tend to be
exploited for the discrimination at different layers. Accord-
ingly, significant improvement over F-UDL can be achieved.

Moreover, MF-ML-DDL is clearly superior to MF-H-UDL
on both datasets. In MF-ML-DDL, the subdictionaries can
be adaptively tuned according to the training criterion.
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TABLE VIII

THE COMPARISON ON ACCURACY (%) USING DIFFERENT POOLING

STRATEGIES FOR TRAINING DICTIONARIES IN ML-DDL

The flexible learning framework of ML-DDL ensures that
discriminative information of multiple sources can be
adequately extracted and exploited.

G. Experiment Revisit
In order to investigate ML-DDL thoroughly, we examine

the effects of some factors such as pooling strategy, training
data size and dictionary size on the algorithm in this section.

1) Pooling Strategy for Training Dictionary: When training
dictionaries, we apply max spatial pooling, which has been
demonstrated effectiveness in unsupervised dictionary learning
methods [12]. To investigate its effect in this work,
we compare it with another pooling strategy, average spatial
pooling [32]. Experiments on SUN397 and ImageNet200
follow the same configuration in Table III except using differ-
ent pooling strategies for training dictionaries. The results are
shown in Table VIII. Spatial layout information is embedded
in both two pooling strategies. Max spatial pooling produces
better performance as shown, probably because it is robust
to local spatial variations. Such property is helpful to capture
discriminative information when training dictionaries.

2) Training Data Size: The size of training data plays an
important role for the accuracy and training efficiency of
system. For a comparison, we also evaluate the training cost
and accuracy of discriminative dictionary learning method
F-MDL, which achieves better performance than F-SDL. The
set for testing is kept unchanged while the training samples per
class are decimated with a fixed ratio. Particularly, each class is
required to have at least two training samples in ImageNet200.
The evaluation results on SUN397 and ImageNet200 are
shown in Fig. 7.

Regarding the learning of discriminative dictionary, training
cost is typically high. Decreasing the size of training data
results in a faster convergence on optimization, i.e., lower
training time cost. Compared with the experiments with total
training samples, F-MDL achieves a much better efficiency
with 20% data, however the time cost is still higher than the
one of ML-DDL with total training samples. On the other
hand, ML-DDL consistently outperforms F-MDL on accuracy
although fewer training data leads to a lower accuracy. When
increasing the size of training data, the generalization power
of model can be improved. Both methods can substantially
improve the accuracy accordingly. However, as the size of
training data grows, the imbalance of sample distribution is
more obvious in ImageNet200, which retards the increase of
F-MDL. In contrast, ML-DDL shows a clearer advantage by
transferring discriminative information in the hierarchy.

3) Dictionary Size: We also investigate the effect of dictio-
nary size on the two methods ML-DDL and F-MDL. In the

experiments on ML-DDL, we try four sizes, 128, 256, 512
and 1024, for the specific dictionaries. For each dictionary in
F-MDL, we use three sizes, 64, 128 and 256, respectively.

The increase of dictionary size enriches the encoded prop-
erties, which enhances the discriminative power of feature
representation. As shown in Fig. 8 (b) and (d), the accuracy
of both methods can be improved with a larger dictionary,
however the improvement is marginal when the dictionary size
grows further. On the other hand, as dictionary size grows,
more time cost is spent on representation computing and
dictionary updating in each iteration, which is accumulated on
total training cost. As shown in Fig. 8 (a) and (c), with respect
to F-MDL, the training cost is intractable when the dictionary
size is large. Conversely, ML-DDL can be developed with a
much larger dictionary, thus shows a better scalability of model
complexity over F-MDL.

VII. CONCLUSION

In this paper, we present a novel multi-level discriminative
dictionary learning method, ML-DDL, and apply it to large
scale image classification. Hierarchical dictionary learning and
dictionary inheritance are exploited to encode multi-level dis-
criminative information. The joint learning of dictionaries and
associated model parameters helps to improve the performance
of classification. Besides, ML-DDL is flexible in extend-
ing the dictionaries to multi-feature channels, which further
enhances the accuracy. The experimental results demonstrate
that ML-DDL can take advantage of category hierarchy to
effectively capture discriminative information via the sparse
coding technique, and is capable of dealing with large scale
image classification.

Our method relies on a given hierarchy, which may not
facilitate the information transfer among classes at the best.
In the future, we will incorporate hierarchy learning/
construction into the framework.
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