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Smoothed Low Rank and Sparse Matrix
Recovery by Iteratively Reweighted

Least Squares Minimization
Canyi Lu, Zhouchen Lin, Senior Member, IEEE, and Shuicheng Yan, Senior Member, IEEE

Abstract— This paper presents a general framework for
solving the low-rank and/or sparse matrix minimization
problems, which may involve multiple nonsmooth terms. The
iteratively reweighted least squares (IRLSs) method is a fast
solver, which smooths the objective function and minimizes it by
alternately updating the variables and their weights. However, the
traditional IRLS can only solve a sparse only or low rank only
minimization problem with squared loss or an affine constraint.
This paper generalizes IRLS to solve joint/mixed low-rank and
sparse minimization problems, which are essential formulations
for many tasks. As a concrete example, we solve the Schatten- p
norm and �2,q-norm regularized low-rank representation prob-
lem by IRLS, and theoretically prove that the derived solution
is a stationary point (globally optimal if p, q ≥ 1). Our
convergence proof of IRLS is more general than previous
one that depends on the special properties of the Schatten- p
norm and �2,q-norm. Extensive experiments on both synthetic
and real data sets demonstrate that our IRLS is much more
efficient.

Index Terms— Low-rank and sparse minimization, iteratively
reweighted least squares.

I. INTRODUCTION

IN RECENT YEARS, the low rank and sparse matrix
learning problems have been hot research topics and lead to

broad applications in computer vision and machine learning,
such as face recognition [1], collaborative filtering [2], back-
ground modeling [3], and subspace segmentation [4], [5]. The
�1-norm and nuclear norm are popular choices for sparse
and low rank matrix minimizations with theoretical guarantees
and competitive performance in practice. The models can be
formulated as a joint low rank and sparse matrix minimization
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problem as follow:

min
x

T∑

i=1

Fi (Ai (x) + bi ), (1)

where x and bi can be either vectors or matrices, Fi is a
convex function (e.g., the Frobenius norm ||M||2F = ∑

i j M2
i j ;

nuclear norm ||M||∗ = ∑
i σi (M), the sum of all singu-

lar values of a matrix; �1-norm ||M||1 = ∑
i j |Mij |; and

�2,1-norm ||M||2,1 = ∑
j ||M j ||2, the sum of the �2-norm

of each column of a matrix) and Ai : R
d → R

m is
a linear mapping. In this work, we further consider the
nonconvex Schatten-p norm ||M||p

Sp
= ∑

i σ p(M), �p-norm

||M||p
p = ∑

i j |Mij |p and �2,p-norm ||M||p
2,p = ∑

j ||M j ||p
2

with 0 < p < 1 for pursuing lower rank or sparser solutions.
Problem (1) is general which involves a wide range of

problems, such as Lasso [6], group Lasso [7], trace Lasso [4],
matrix completion [8], Robust Principle Component Analy-
sis (RPCA) [3] and Low-Rank Representation (LRR) [5].
In this work, we aim to propose a general solver for (1).
For the ease of discussion, we focus on the following two
representative problems,

RPCA: min
Z ,E

||Z ||∗ + λ||E ||1, s.t. X = Z + E, (2)

LRR: min
Z ,E

||Z ||∗+λ||E ||2,1, s.t. X = X Z + E, (3)

where X ∈ R
d×n is a given data matrix, Z and E are

with compatible dimensions and λ > 0 is the model
parameter. Notice that these problems can be reformulated
as unconstrained problems (by representing E by Z ) as that
in problem (1).

A. Related Works

The sparse and low rank minimization problems can be
solved by various methods, such as Semi-Definite Program-
ming (SDP) [9], Accelerated Proximal Gradient (APG) [10],
and Alternating Direction Method (ADM) [11]. However, SDP
has a complexity of O(n6) for an n ×n sized matrix, which is
unbearable for large scale applications. APG requires that at
least one term of the objective function has Lipschitz contin-
uous gradient. Such an assumption is violated in many prob-
lems, e.g., problem (2) and (3). Compared with SDP and APG,
ADM is the most widely used one. But it usually requires
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introducing several auxiliary variables corresponding to non-
smooth terms. The auxiliary variables may slow down the con-
vergence, or even lead to divergence when there are too many
variables. Linearized ADM (LADM) [12] may reduce the
number of auxiliary variables, but suffer the same convergence
issue. The work [12] proposes an accelerated LADM with
Adaptive Penalty (LADMAP) with lower per-iteration cost.
However, the accelerating trick is special for the LRR problem.
And thus are not general for other problems. Another draw-
back for many low rank minimization solvers is that they have
to perform the soft singular value thresholding:

min
Z

λ||Z ||∗ + 1

2
||Z − Y ||2F , (4)

as a subproblem. Solving (4) requires computing the partial
SVD of Y. If the rank of the solution is not sufficiently low,
computing the partial SVD of Y is not faster than computing
the full SVD of Y [11].

In this work, we aim to solve the general problem (1)
without introducing auxiliary variables and also without
computing SVD. The key idea is to smooth the objective
function by introducing regularization terms. Then we propose
the Iteratively Reweighted Least Squares (IRLS) method for
solving the relaxed smooth problem by alternately updating
a variable and its weight. Actually, the reweighting methods
have been studied for the �p (0 < p ≤ 1) minimization
problem [13]–[15]. Several variants have been proposed with
much theoretical analysis [16], [17]. Usually, IRLS converges
exponentially fast (linear convergence) [18], and numerical
results have indicated that it leads to a sparse solution with
better recovery performance. The reweighting method has also
been applied for low rank minimization recently [19]–[21].
However, the problems that can be solved by iteratively
reweighted algorithm are still very limited. Previous works
are only able to minimize the single �1-norm only or nuclear
norm only with squared loss or an affine constraint. Thus they
cannot solve (1) whose objective function contains two or
more non-smooth terms, such as robust matrix completion [22]
and RPCA [3]. Also, previous convergence proofs, based
on the special properties of �p-norm and Schatten-p norm,
are not general, and thus limit the application of IRLS.
Actually, many other different nonconvex surrogate functions
of �0-norm have been proposed, e.g. the logarithm func-
tion [15]. We will generalize IRLS for solving problem (1)
with more general objective functions.

B. Contributions

In summary, the contributions of this paper are as follows.

• For solving problem (1) with the objective function as
the low rank and sparse matrix minimization, we first
introduce regularization terms to smooth the objective
function, and solve the relaxed problem by the Itera-
tively Reweighted Least Squares (IRLS) method. This is
actually one of the future works mentioned in [21].

• We take the Schatten-p norm and �2,q -norm regularized
LRR problem as a concrete example to introduce the
IRLS algorithm and theoretically prove that the obtained

solution by IRLS is a stationary point. It is globally
optimal when p, q ≥ 1. Based on our general proof,
we further show some other problems which can also
be solved by IRLS.

• Numerical experiments demonstrate the effectiveness
of the proposed IRLS algorithm by comparing
with the state-of-the-art ADM family algorithms.
IRLS is much more efficient since it avoids SVD
completely.

II. SMOOTHED LOW RANK REPRESENTATION

In this section, to illustrate the smoothed low rank and
sparse matrix recovery by Iteratively Reweighted Least
Squares (IRLS), we take the LRR problem as a concrete
example. The reason of choosing this model as an application
is twofold. First, LRR is a low rank and (column) sparse
minimization problem, so solving LRR is more difficult than
solving RPCA by the ADM family algorithms. It is easy to
extend IRLS for other low rank plus sparse matrix recovery
problems based on this example. Second, LRR has become
an important model with various applications in machine
learning and computer vision. A fast solver is important for
real applications.

The LRR problem (3) can be reformulated as follows
without the auxiliary variable E :

min
Z∈Rn×n

J (Z) = ||Z ||p
Sp

+ λ||X Z − X ||q2,q , (5)

where ||M||p
Sp

= ∑
i σ

p
i (M) denotes the Schatten-p norm

of M, ||M||q2,q = ∑
j ||M j ||q2 denotes the �2,q -norm of M.

Our solver can handle the case 0 < p, q < 2. Problem (3) is
a special case of (5) when p = q = 1. The major challenge
for solving (5) is that both two terms of the objective function
are non-smooth. A simple way is to smooth both two terms
by introducing regularization terms1:

min
Z

J (Z , μ) =
∥∥∥∥

[
Z
μI

]∥∥∥∥
p

Sp

+ λ

∥∥∥∥

[
X Z − X

μ1T

]∥∥∥∥
q

2,q
, (6)

where μ > 0, I ∈ R
n×n is the identity matrix and

1 ∈ R
n is the all ones vector. The terms μI and μ1T

make the objective function smooth (see (10)). The above
model is called Smoothed LRR in this work. Solving the
Smoothed LRR problem instead of LRR brings several
advantages.

First, J (Z , μ) is smooth when μ > 0. This is the major
difference between LRR and Smoothed LRR. Usually, a
smooth objective function makes the optimization problem
easier to solve.

Second, if p, q ≥ 1, J (Z) is convex, and so is J (Z , μ).
This guarantees a globally optimal solution to (6).

Theorem 1: If p, q ≥ 1, J (Z , μ) is convex w.r.t Z and μ.
Also, for a given μ, J (Z , μ) is convex w.r.t Z .

The above theorem can be easily proved by using
the convexity of Schatten-p norm and �2,q -norm
when p, q ≥ 1.

1One may use two independent regularization parameters μ1 and μ2 for
Schatten-p norm and �2,q -norm, respectively.
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Third, J (Z , μ) ≥ J (Z), where the equality holds if and
only if μ = 0. Indeed,

∥∥∥∥

[
Z
μI

]∥∥∥∥
p

Sp

=
n∑

i=1

(
λi (Z T Z + μ2 I )

) p
2

=
n∑

i=1

(
λi (Z T Z) + μ2

) p
2

≥
n∑

i=1

(
λi (Z T Z)

) p
2 = ||Z ||p

Sp
,

where λi (M) denotes the i -th (ordered) eigenvalue of a
matrix M . That is to say, J (Z) is majorized by J (Z , μ) with
a given μ. Decreasing J (Z , μ) tends to decrease J (Z).

Furthermore, for any given ε > 0, there exists μ > 0, such
that J (Z , μ) ≤ J (Z)+ε. Suppose Z∗

o and Z∗ are the optimal
solutions to (5) and (6), respectively. Then we have

0 ≤ J (Z∗) − J (Z∗
o) ≤ J (Z∗, μ) − J (Z∗

o , μ) + ε ≤ ε.

We say that the solution Z∗ to (6) is ε-optimal to (5).

III. IRLS ALGORITHM

In this section, we show how to solve (6) by IRLS. By the
fact that ||Z ||p

Sp
= Tr((Z T Z)

p
2 ), (6) can be reformulated as

follows:

min
Z

Tr(Z T Z +μ2 I )
p
2 + λ

n∑

i=1

(||(X Z − X)i ||22+μ2)
q
2 , (10)

where (M)i or Mi denotes the i -th column of matrix
M . Let L(Z) = Tr(Z T Z + μI )

p
2 and S(Z) = ∑n

i=1
(||(X Z − X)i ||22 + μ2)

q
2 . Then J (Z , μ) = L(Z) + λS(Z).

The derivative of L(Z) is

∂L
∂ Z

= pZ(Z T Z + μ2 I )
p
2 −1 � pZ M,

where M = (Z T Z+μ2 I )
p
2 −1 is the weight matrix correspond-

ing to L(Z). Note that M can be computed without SVD [23].
For the derivative of S(Z), consider the column-wise

differentiation for each i = 1, . . . , n,

∂S
∂ Zi

= q(X T X Zi − X T Xi )

(||(X Z − X)i ||22 + μ2)1− q
2
.

That is to say, ∂S
∂ Z = q X T (X Z − X)N , where N is the weight

matrix corresponding to S(Z). It is a diagonal matrix with the
i -th diagonal entry being Nii = (||(X Z − X)i ||22 + μ2)

q
2 −1.

By setting the derivative of J (Z , μ) with respect to Z to
zero, we have

∂J
∂ Z

= pZ M + λq X T (X Z − X)N = 0,

or equivalently,

λq X T X Z + pZ(M N−1) = λq X T X. (11)

Eqn (11) is the well known Sylvester equation, which cost
O(n3) for a general solver. But if X T X has certain structure,
the costs may likely be O(n2) [24]. We use the Matlab
command lyap to solve (11) in this work.

Algorithm 1 Solving Smoothed LRR Problem (6) by IRLS

Notice that both M and N depend only on Z . They can be
computed if Z is fixed. If the weight matrices M and N are
fixed, Z can be obtained by solving (11). This fact motivates
us to solve (10) by iteratively updating Z and {M, N}. This
optimization method is called Iteratively Reweighted Least
Squares (IRLS), which is shown in Algorithm 1. IRLS sepa-
rately treats the weight matrices M and N , which correspond
to the low rank and sparse terms, respectively.

It is easy to see the per-iteration complexity of IRLS for
the smoothed LRR problem (6) is O(n3). Such cost is the
same as APG, ADM, LADM, and LADMAP. APG solves an
approximated unconstraint problem of LRR. Thus its solution
is not optimal to (5) or (6) [12]. The traditional ADM does
not guarantee to converge for LRR with three variables. Both
LADM and LADMAP lead to the optimal solution of LRR.
But their convergence rates are sublinear, i.e., O(1/K ), where
K is the number of iterations. Usually, IRLS converges much
faster than the ADM type methods and it avoids computing
SVD in each iteration. Though the convergence rate of IRLS
is not established, our experiments show that it tends to
converge linearly. The state-of-the-art method, accelerated
LADMAP [12], costs only O(n2r), where r is the predicted
rank of Z . It may be faster than our IRLS when the rank
of Z is sufficiently low. However, the rank of Z depends
on the choice of the parameter λ, which is usually tuned to
achieve good performance of the application. As observed in
the experiments shown later, IRLS outperforms the accelerated
LADMAP on several real applications.

It is worth mentioning that though we present IRLS for
LRR, it can also be used for many other problems, including
the structured Lassos (e.g., group Lasso [7], overlapping/non-
overlapping group Lasso [25], and tree structured group
Lasso [26]), robust matrix completion [22] and RPCA [3].
Though it is difficult to give a general IRLS algorithm for
all these problems. The main idea is quite similar. The first
step is to smooth the objective function like that in (6).
Table I shows the smoothed versions of some popular norms.
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TABLE I

SOME POPULAR NORMS, THEIR SMOOTHED VERSIONS AND DERIVATIVES (0 < p < 2)

Other related norms, e.g., overlapping group Lasso, can be
smoothed in a similar way. Then we are able to compute the
derivatives of the smooth functions. The derivatives can be
rewritten as a simple function of the main variable Z or z by
introducing an auxiliary variable, i.e., the weight matrix W as
shown in Table III. This will make the updating of the main
variable much easier. Iteratively updating the main variable Z
and the weight matrix W leads to the IRLS algorithm which
guarantees to converge. More generally, one may use other
concave function, e.g., the logarithm function [15], to replance
the �p-norm in Table III. The induced problems can be also
solved by IRLS.

IV. ALGORITHMIC ANALYSIS

Previous iteratively reweighted algorithm minimizes the
sum of a non-smooth term and squared loss, while we min-
imize the sum of two (or more) non-smooth terms. In this
section, we provide a new convergence analysis on IRLS for
non-smooth optimization. Though based on Algorithm 1 for
solving LRR problem, our proofs are general. We first show
some lemmas and prove the convergence of IRLS.

Our proofs are based on a key fact that x p is concave
on (0,∞) when 0 < p < 1. By the definition of concave
function, we have

y p − x p + py p−1(x − y) ≥ 0, for any x, y > 0. (12)

The following proofs are also applicable to other concave
functions, e.g., log(x), which is an approximation of the
�0-norm of x .

Lemma 1: Assume each column of X ∈ R
m×n and

Y ∈ R
m×n is nonzero. Let gi (x), i = 1, . . . , n, be concave

and differentiable functions. We have
n∑

i=1

gi

(
||Yi ||22

)
−gi

(
||Xi ||22

)
≥Tr

(
(Y T Y −X T X)N

)
, (13)

where N ∈ R
n×n is a diagonal matrix, with its i -th diagonal

element being Nii = ∇gi
(||Yi ||22

)
.

By letting gi(x) = x
q
2 , 0 < q < 2, as a special case in (13),

we get

||Y ||q2,q − ||X ||q2,q ≥ q

2
Tr

(
(Y T Y − X T X)N

)
, (14)

where Nii = (||Yi ||22)
q
2 −1.

Lemma 2: Tr(X p) is concave on Sn++ (the set of symmetric
positive definite matrices) when 0 < p < 1.

Assume that h(X) is concave and differentiable on Sn++.
For any X, Y ∈ Sn++, we have

h(Y ) − h(X) ≥ Tr
(
(Y − X)T ∇h(Y )

)
. (15)

By letting h(X) = Tr(X
p
2 ) with 0 < p < 2 in (15), we get

∥∥∥∥
[

Y
μI

]∥∥∥∥
p

Sp

−
∥∥∥∥
[

X
μI

]∥∥∥∥
p

Sp

≥ p

2
Tr

(
(Y T Y − X T X)T (Y T Y + μ2 I )

p
2 −1

)
. (16)

Based on the above results, we have the following
convergence results of the IRLS algorithm.

Theorem 2: The sequence {Zt } generated in Algorithm 1
satisfies the following properties:

(1) J (Zt , μ) is non-increasing, i.e. J (Zt+1, μ) ≤
J (Zt , μ);

(2) The sequence {Zt } is bounded;
(3) lim

t→∞ ||Zt − Zt+1||F = 0.

Theorem 3: Any limit point of the sequence {Zt} gener-
ated by Algorithm 1 is a stationary point of problem (6).
If p, q ≥ 1, the stationary point is globally optimal.

Though for the convenience of description, we fixed μ > 0
in Algorithm 1 and the convergence analysis. In the imple-
mentation, we decrease the value of μ in each iteration,
e.g., μt+1 = μt/ρ with ρ > 1. The intuition is that it
shall make the Smoothed LRR problem (6) close to the LRR
problem (5). It is easy to check that our proofs also hold when
μt → μ∗ > 0.

It is worth mentioning that our IRLS algorithm and
convergence proofs are much more general than that
in [18], [21], and [27], and such extensions are nontrivial. The
problems in [18] and [21] are sparse or low rank minimization
problems with affine constraints. The work in [27] considers
the unconstrained sparse or low rank minimization problems
with squared loss. Our work considers an unconstrained joint
low rank an sparse minimization problem. We need to update
a variable and two (can be more) weight variables, while
previous IRLS methods update only one variable and one
weight. Note that it is usually easy to prove the convergence
with two updating variables, but difficult with more than
two updating variables. Also, the proofs are totally different.
In [18] and [21], due to the affine constraints (i.e. y = Ax),
the optimal solution can be written as x∗ = x0 + z, where
x0 is a feasible solution and z lies in the kernel of A. This
key property is critical for their proofs but cannot be used in
our proof, and we do not rely on it. The least square loss
function plays an important role in the convergence proof
in [27] (easy to see this from [27, eq. (2.12) and (2.13)]). Our
proof has to handle at least two non-smooth terms (and without
smooth squared loss function) simultaneously. Also previous
IRLS methods use a special property of x p (0 < p < 1)
based on Young’s inequality, while we use the concavity of
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Fig. 1. Convergence curves of IRLS algorithm on the synthetic data with
different regularization parameters μc and ρ. The LRR model parameter is
λ = 0.5. (a) Shows the convergence curves of IRLS algorithm with different
μc by fixing ρ = 1.1. (b) Shows the convergence curves of IRLS algorithm
with different ρ by fixing μc = 0.1.

x p (see (13) and Lemma 1, 2), which involves more general
functions. Thus, IRLS can be also used if x p is replaced with
other concave functions, e.g., log(x).

V. EXPERIMENTS

In this section, we conduct numerical experiments on both
synthetic and real data to demonstrate the efficiency of the
proposed IRLS algorithm.2 We use IRLS to solve LRR and
Inductive Robust Principle Component (IRPCA) [28] prob-
lems. To compare with previous convex solvers for LRR, we
set p = q = 1 in (5). We first examine the behaviour of
IRLS and its sensitivity to the regularization parameter μ, and
then compare the performance of IRLS with state-of-the-art
methods.

A. Selection of Regularization Parameter μ

IRLS converges fast and leads to an accurate solution
when the regularization parameter μ is chosen appropriately.
We decrease μ by μt+1 = μt/ρ with ρ > 1. μ0 is initialized
as μ0 = μc||X ||2, where ||X ||2 is the spectral norm of X .
Thus the choice of μ depends on μc and ρ. We conduct two
experiments to examine the sensitivity of IRLS to μc and ρ,
respectively. The first one is to fix ρ = 1.1 and examine
different values of μc. The second one is to fix μc = 0.1 and
examine different values of ρ. The experiments are performed
on a synthetic data set.

The synthetic data is generated by the same procedure
as that in [5] and [12]. We generate k = 15 independent
subspaces {Si }k

i=1 whose bases {Ui }k
i=1 are computed by

Ui+1 = T Ui , 1 ≤ i ≤ k, where T is a random rotation
matrix and U1 ∈ R

d×r is a random orthogonal matrix. So each
subspace has a rank of r = 5 and the data dimension
is d = 200. We sample ni = 20 data vectors from each
subspace by Xi = Ui Qi , 1 ≤ i ≤ k, with Qi being an
r × ni i.i.d N (0, 1) matrix. We randomly chose 20% samples
to be corrupted by adding Gaussian noise with zero mean and
standard deviation 0.1||x ||2.

Figs. 1(a) and (b) show the convergence curves of IRLS with
different values of μc and ρ. It is observed that a small value
of μc will lead to an inaccurate solution in a few iterations.

2The codes can be found at http://sites.google.com/site/canyilu/

Fig. 2. Convergence curves of APG, ADM, LADM, LADMAP, LADMAP(A)
and IRLS algorithms on the synthetic data with different LRR model para-
meters: (a) λ = 0.1, (b) λ = 0.5, and (c) λ = 1.

But a large value of μc will delay the convergence. Similar
phenomenon can be found in the choice of ρ. A large value of
ρ will lead to fast convergence, while a small value of ρ will
lead to a more accurate solution. For an accurate solution, μ
should not converge to 0 too fast. Thus μc cannot be too small
and ρ should not be too large. We observe that μc = 0.1 and
ρ = 1.1 work well.

B. LRR for Subspace Segmentation

In this section, we present numerical results of IRLS
and the other state-of-the-art algorithms, including APG,
ADM, LADM [29], LADMAP and accelerated LADMAP [12]
(denoted as LADMAP(A)) to solve the LRR problem for
subspace segmentation. All the ADM type methods use
PROPACK [30] for fast SVD computing. We implement IRLS
algorithm by Matlab without using third party package. For
LADMAP(A), we set the maximum iteration number as 10000
(the default value is 1000). This is because LADMAP(A) is
usually fast but not able to converge within 1000 iterations
in some cases. Except this, we use the default parameters of
all the competed methods in the released codes from Lin’s
homepage.3 For IRLS, we set μ0 = μc||X ||2 = 0.1||X ||2,
μt+1 = μt/ρ and ρ = 1.1. All experiments are run on a
PC with an Intel Core 2 Quad CPU Q9550 at 2.83GH and
8GB memory, running Windows 7 and Matlab version 8.0.

1) Synthetic Data Example: We use the same synthetic data
as that in Section V-A. We emphasize on the performance
with different LRR model parameter λ. Usually a larger λ
leads to lower rank solution. This experiment is to test the
sensitiveness of the competed methods to different ranks of the
solution. Fig. 2 shows the convergence curves corresponding
to λ = 0.1, 0.5 and 1, respectively (only the results within
1000 iterations are plotted). Table II shows the detailed results,
including the achieved minimum at the last iteration, the
computing time and the number of iterations. It can be seen
that IRLS is always faster than APG, ADM and LADM.
IRLS also outperforms LADMAP and LADMAP(A) except
when λ = 0.1. We find that the linearized ADM methods need
more iterations to converge when λ increases. That is because
when λ is not small enough, the rank of the solution will be
not small. In this case, partial SVD may not be faster than
the full SVD [11]. Hence using PROPACK may be unstable.
Compared with LADMAP(A), IRLS is a better choice for
the small-sized or high-rank problems because it completely
avoids SVD.

3http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
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TABLE II

EXPERIMENTS ON THE SYNTHETIC DATA WITH DIFFERENT LRR MODEL

PARAMETERS. THE OBTAINED MINIMUM, RUNNING TIME (IN SECONDS)

AND ITERATION NUMBER ARE PRESENTED FOR COMPARISON

Fig. 3. Example face images from the (a) Yale B and (b) PIE databases.

2) Face Clustering: We test the performance of all the
competed methods for face clustering on the Extended Yale B
database [31]. Some example face images are shown in Fig. 3.
There are 38 subjects in this database. We conduct two
experiments by using the first 5 and 10 subjects of face images
to form the data X [32]. Each subject has 64 face images.
These images are resized into 32 × 32 and projected onto
a 30D subspace by PCA for 5 subjects clustering problem
and a 60D subspace for 10 subjects clustering problem. The
affinity matrix is defined as (|Z∗| + |(Z∗)T |)/2, where Z∗ is
the solution to the LRR problem obtained by different solvers.
Then the Normalized Cut [33] is used to produce the clustering
results based on the affinity matrix. The LRR model parameter
is set to λ = 1.5 which leads to the best clustering accuracy.

Fig. 4 and Table III show the performance comparison of
all these methods. It can be seen that IRLS is the fastest and
the most accurate method. ADM also works well but needs
more iterations. The linearized methods are not efficient since
they do not converge within 1000 iterations.

3) Motion Segmentation: We also test all the com-
peted methods for motion segmentation on the Hopkins

Fig. 4. Convergence curves of compared algorithms on two subsets of the
Extended Yale B database: (a) 5 subjects and (b) 10 subjects.

TABLE III

COMPARISON OF FACE CLUSTERING BY LRR BY USING DIFFERENT

SOLVERS ON TWO SUBSETS OF THE EXTENDED YALE B DATABASE:

5 SUBJECTS AND 10 SUBJECTS. THE OBTAINED MINIMUM,

RUNNING TIME (IN SECONDS), NUMBER OF ITERATION

AND CLUSTERING ACCURACY (%) OF EACH METHOD

ARE PRESENTED FOR COMPARISON

155 database.4 This database has 156 sequences, each of
which has 39 to 550 data points drawn from two or three
motions. In each sequence, the data are first projected onto a
12D subspace by PCA. LRR is performed on the projected
subspace, the best LRR model parameter is set to λ = 2.4.
Table IV tabulates the comparison of all these methods. It can
be seen that IRLS is the fastest method. LADMAP(A) is
competitive with IRLS but it requires much more iterations.

C. Inductive Robust Principal Component Analysis

Inductive Robust Principal Component Analy-
sis (IRPCA) [28] aims at finding a robust projection to
remove the possible corruptions in data. It is done by solving
the following nuclear norm regularized minimization problem

min
P

||P||∗ + λ||P X − X ||1,2. (17)

Here we use the �1,2-norm ||E ||1,2, sum of the �2-norm of
each row of E instead of �1-norm in [28] to handle the data
with row corruptions (caused by continuous shadow, e.g., face
with glass or scarf).

The �1,2-norm can be smoothed as
||E ||1,2 = ∑

i (||Ei ||22 + μ2)
1
2 , where Ei denotes the

4http://www.vision.jhu.edu/data/hopkins155/
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TABLE IV

COMPARISON OF MOTION SEGMENTATION BY LRR BY USING DIFFERENT

SOLVERS ON THE HOPKINS 155 DATABASE. THE AVERAGE RUNNING

TIME (IN SECONDS), AVERAGE ITERATIONS NUMBER AND AVERAGE

SEGMENTATION ERRORS (%) ARE REPORTED FOR COMPARISON

Fig. 5. Comparison of (a) accuracy and (b) running time of ADM,
LADMAP(A) and IRLS for solving IRPCA problem on the Yale B and
PIE databases.

i -th row of E . Thus IRLS solves (17) by iteratively solving

Mt P + λNt (P X − X)X T = 0,

where Mt = (Pt PT
t + μ2 I )− 1

2 and Nt is a diagonal matrix
with (Nt )ii = (||(Pt X − X)i ||22 +μ2)− 1

2 . We test our IRLS by
comparing with ADM in [28] and LADMAP(A) [12] for face
recognition. After the projection P is learned by solving (17)
from the training data, we can use it to remove corruption
from a new coming test data point. We perform experiments
on two face data sets. The first one is the Extended Yale B,
which consists of 38 subjects with 64 images in each subject.
We randomly select 30 images for training and the rest for
test. The other one is the CMU PIE face dataset [34], which
contains more than 40,000 facial images of 68 people. The
images were acquired across different poses. We use the one
near frontal pose C07, which includes 1629 images. All the
images are resized to 32 × 32. For each subject, we randomly
select 10 images for training, and the rest for test. The support
vector machine (SVM) is used to perform classification. The
recognition results are shown in Fig. 5. It can be seen that

Fig. 6. (a) Some corrupted test face images from the Yale B database;
(b) Recovered face images by IRPCA projection obtained by IRLS.

the recognition accuracies are almost the same by different
solvers. But the running time of ADM and LAMDAP(A) is
much larger than our IRLS algorithm. Fig. 6 plots some test
images recovered by IRPCA obtained by our IRLS algorithm.
It can be seen that IRPCA by IRLS successfully removes the
shadow and corruptions from faces.

VI. CONCLUSIONS AND FUTURE WORK

Different from previous Iteratively Reweighted Least
Squares (IRLS) algorithm which simply solved a single sparse
or low rank minimization problem, we proposed a more gen-
eral IRLS to solve the joint low rank and sparse matrix min-
imization problems. The objective function is first smoothed
by introducing regularization terms. Then IRLS is applied for
solving the relaxed problem, we provide a general proof to
show that the solution by IRLS is a stationary point (globally
optimal if the problem is convex). IRLS can also be applied
to various optimization problems with the same convergence
guarantee. An interesting future work is to use IRLS for
solving nonconvex structured Lasso problems (e.g., �p-norm
regularized group Lasso, overlapping/non-overlapping group
Lasso [25], and tree structured group Lasso [26]).

APPENDIX

A. Proof of Lemma 1

Proof: By the definition of concave function, we have

n∑

i=1

gi

(
||Yi ||22

)
− gi

(
||Xi ||22

)

≥
n∑

i=1

∇gi

(
||Yi ||22

) (
||Yi ||22 − ||Xi ||22

)

= Tr
(
(Y T Y − X T X)N

)
. �

Lemma 3 [27]: Given X, Y ∈ Sn++. Let λ1(X) ≥ λ2(X) ≥
· · · ≥ λn(X) ≥ 0 and λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λn(Y ) ≥ 0
be ordered eigenvalues of X and Y , respectively. Then
Tr(XY ) ≥ ∑n

i=1 λi (X)λn−i+1(Y ).

B. Proof of Lemma 2

Proof: By using Lemma 3, for any X, Y ∈ Sn++, we have

Tr(X T Y p−1) ≥
n∑

i=1

λi (X)λn−i+1(Y p−1)

=
n∑

i=1

λi (X)λ
p−1
i (Y ).



LU et al.: SMOOTHED LOW RANK AND SPARSE MATRIX RECOVERY BY IRLSs MINIMIZATION 653

Then we deduce

Tr(Y p) − Tr(X p) + Tr(p(X − Y )T Y p−1)

≥
n∑

i=1

[
λi (Y

p) − λi (X p) + pλi (X)λ
p−1
i (Y ) − pλi (Y

p)
]

=
n∑

i=1

[
λ

p
i (Y ) − λ

p
i (X) + pλ

p−1
i (Y )(λi (X) − λi (Y ))

]

≥ 0. (18)

The last inequality uses the concavity of x p with 0 < p < 1
on (0,∞) in (12). Thus Tr(X p) is concave from (18). �

C. Proof of Theorem 2

Proof: We denote Et = X Zt − X . Since Zt+1 solves (7),
we have

pZt+1Mt + λq X T (X Zt+1 − X)Nt = 0. (19)

A dot product with Zt − Zt+1 on both side of (19) gives

p(Zt − Zt+1)
T Zt+1Mt

= −λq(X Zt − X Zt+1)
T (X Zt+1 − X)Nt

= −λq(Et − Et+1)
T Et+1 Nt .

This together with (16) gives
∥∥∥∥

[
Zt

μI

]∥∥∥∥
p

Sp

−
∥∥∥∥

[
Zt+1
μI

]∥∥∥∥
p

Sp

≥ p

2
Tr

((
Z T

t Zt − Z T
t+1 Zt+1

)T (
Z T

t Z T
t + μI

) p
2 −1

)

= p

2
Tr

(
(Zt − Zt+1)

T (Zt − Zt+1) Mt

)

+p Tr
(
(Zt − Zt+1)

T Zt+1Mt

)

= p

2
Tr

(
(Zt − Zt+1)

T (Zt − Zt+1) Mt

)

−λq Tr
(
(Et − Et+1)

T Et+1 Nt

)
. (20)

By using (14), we have

λ

∥∥∥∥
[

Et

μ1T

]∥∥∥∥
2,q

− λ

∥∥∥∥
[

Et+1

μ1T

]∥∥∥∥
2,q

≥ λq

2
Tr

((
ET

t Et − ET
t+1 Et+1

)
Nt

)

= λq

2
Tr

(
(Et − Et+1)

T (Et − Et+1) Nt

)

+λq Tr
(
(Et − Et+1)

T Et+1 Nt

)
. (21)

Now, combining (20) and (21) gives

J (Zt , μ) − J (Zt+1, μ)

= p

2
Tr

(
(Zt − Zt+1)

T (Zt − Zt+1)Mt

)

+λq

2
Tr

(
(Et − Et+1)

T (Et − Et+1)Nt )
)

≥ 0. (22)

The above equation implies that J (Zt , μ) is non-increasing.
Then we have

||Zt ||p
Sp

≤ Tr(Z T
t Zt + μ2)

p
2 ≤ Tr(M

− p
2−p

t ) + λTr(N
− q

2−q
t )

= J (Zt , μ) ≤ J (Z1, μ) � D. (23)

Thus the sequence {Zt } is bounded. Furthermore, (23) implies
that the minimum eigenvalues of Mt and Nt satisfy

min{min
i

λi (Mt ), min
i

λi (Nt )}
≥ min{D

p
2−p , λ−1 D

q
2−q } � θ > 0.

By using Lemma 3, (22) implies that

J (Zt , μ) − J (Zt+1, μ)

≥ p

2

n∑

i=1

λn−i+1(Mt )λi

(
(Zt − Zt+1)

T (Zt − Zt+1)
)

+λq

2

n∑

i=1

λn−i+1(Nt )λi

(
(Et − Et+1)

T (Et − Et+1)
)

≥ θ

2

(
p||Zt − Zt+1||2F + λq||Et − Et+1||2F

)
.

Summing all the above inequalities for all t ≥ 1, we get

D = J (Z1, μ) ≥ θ

2

∞∑

t=1

(p||Zt − Zt+1||2F
+ λq||Et − Et+1||2F ). (24)

In particular, (24) implies that lim
t→∞ ||Zt − Zt+1||F = 0. The

proof is completed. �

D. Proof of Theorem 3
Proof: If p, q ≥ 1, problem (6) is convex. The stationary

point is globally optimal. Thus we only need to prove that Zt

converges to a stationary point of problem (6).
The sequence {Zt} is bounded by Theorem 2, hence

there exists a matrix Ẑ and a subsequence {Zt j }, such that
lim

j→∞ Zt j → Ẑ . Note that Zt j+1 solves (7), i.e.,

pZt j+1 Mt j + λq X T (X Zt j+1 − X)Nt j = 0. (25)

Let j → ∞, (25) implies that Zt j+1 also converges to some Z̃ .
From the fact that lim

t→∞ ||Zt − Zt+1||F = 0 in Theorem 2, we
have

||Ẑ − Z̃ ||F = lim
j→∞ ||Zt j − Zt j+1||F = 0.

That is to say Ẑ = Z̃ . Denote Ẑ as Z∗, and let j → ∞, (25)
can be rewritten as

pZ∗M∗ + λq X T (X Z∗ − X)N∗ = 0,

where M∗ and N∗ are defined in (8) (9) with Z∗ in place
of Zt+1. Therefore, Z∗ satisfies the first-order optimality
condition of problem (6). �
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