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Integrated Low-Rank-Based Discriminative
Feature Learning for Recognition

Pan Zhou, Zhouchen Lin, Senior Member, IEEE, and Chao Zhang, Member, IEEE

Abstract— Feature learning plays a central role in pattern
recognition. In recent years, many representation-based feature
learning methods have been proposed and have achieved great
success in many applications. However, these methods perform
feature learning and subsequent classification in two separate
steps, which may not be optimal for recognition tasks. In this
paper, we present a supervised low-rank-based approach for
learning discriminative features. By integrating latent low-rank
representation (LatLRR) with a ridge regression-based classifier,
our approach combines feature learning with classification,
so that the regulated classification error is minimized. In this way,
the extracted features are more discriminative for the recognition
tasks. Our approach benefits from a recent discovery on the
closed-form solutions to noiseless LatLRR. When there is noise,
a robust Principal Component Analysis (PCA)-based denoising
step can be added as preprocessing. When the scale of a problem
is large, we utilize a fast randomized algorithm to speed up
the computation of robust PCA. Extensive experimental results
demonstrate the effectiveness and robustness of our method.

Index Terms— Feature learning, low-rank representa-
tion (LRR), recognition, robust principal component analysis
(PCA).

I. INTRODUCTION

FEATURE learning is a critical step for almost all
recognition tasks, such as image classification and face

recognition. There has been a lot of work [1]–[10] focusing
on learning discriminative features. For example,
Belhumeur et al. [1] projected the image space to a low-
dimensional subspace based on Fisher’s linear discriminant
and produce well-separated features. Lazebnik et al. [2],
Huang et al. [3], and Liu et al. [4] viewed distances between
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samples as features and Wang et al. [6] projected each
descriptor into a local-coordinate system as a feature.

Recently, representation-based feature learning
methods [5], [7], [8], [11]–[14] have drawn a lot of
attention. The first representation-based method may be
sparse representation classification (SRC) [5]. SRC finds
the smallest number of training samples to represent a test
sample and adopts the representation coefficients as a feature
vector of the test sample. It is reported that SRC achieves
surprisingly high accuracy in face recognition even under
occlusion [5]. Unfortunately, SRC breaks down when the
training data are wildly corrupted, e.g., under unreasonable
illumination or pose. To overcome this drawback, a series
of low-rank representation (LRR)-based feature learning
methods [7], [8], [11]–[14] have been proposed. These
methods assume that the samples in the same class should
be located in the same low-dimensional subspace. Since
the dimension of the subspace corresponds to the rank of
the representation matrix, these methods enforce a low-rank
constraint on the representation matrix, and thus enhancing
the correlation among the representation coefficient vectors.
As a result, these methods have achieved great success in a lot
of recognition problems, such as face and object recognitions.

However, most existing representation-based methods
consist of two separate steps: 1) extracting discriminative
features by learning from training data and 2) inputting
the features into a specific classifier for classification. Such
separation may limit the overall recognition performance.
To overcome this problem, in this paper, we propose a
simultaneous feature learning and data classification method,
by integrating latent LRR (LatLRR) with a ridge regression-
based classifier. LatLRR is a recently proposed method for
unsupervised feature clustering and learning [15]. We choose
LatLRR because when there is no noise it has nonunique
closed-form solutions [16], which is remarkable among all
representation-based methods.

The contributions of this paper are as follows.

1) We propose a simple yet effective model for
simultaneous feature learning and data classification.
By integrating the closed-form solutions to LatLRR with
a ridge regression-based classifier, our model
achieves an overall optimality in recognition in some
sense.

2) While most existing representation-based methods
minimize the sparsity or the rank of some solutions
related to feature learning, which is not directly
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TABLE I

SUMMARY OF NOTATIONS FREQUENTLY USED IN THIS PAPER

connected to the subsequent recognition problem, our
model directly minimizes the regularized classification
error. As a consequence, our method achieves higher
accuracy in recognition.

3) Due to the closed-form solutions to LatLRR, our
feature learning approach is fast. When there is
noise, we propose to denoise the data with a robust
Principal Component Analysis (PCA) [17] first. We also
incorporate a fast randomized algorithm for solving the
robust PCA when the rank is relatively low compared
with the matrix size. As a consequence, our method also
excels in speed when the scale of a problem is large.

Extensive experimental results testify the advantages of our
method. Note that the idea of incorporating empirical error
into specific learning tasks has appeared before. For example,
Argyriou et al. [18] incorporated an empirical error into
multitask feature learning. Mairal et al. [19] proposed a
task-driven dictionary learning (TDDL) method, which
incorporated the empirical error into the dictionary learning.
There are other similar works, such as [20] and [21].
By comparison, we focus on integrating empirical error with
representation-based discriminative feature learning, which is
different from prior work.

The remainder of this paper is organized as follows.
Section II reviews related work on the existing representation-
based feature learning methods for classification.
In Section III, we present our integrated a low-rank-based
feature learning method, which integrates the closed-form
solutions to LatLRR with a ridge regression and utilizes
the labels of data to learn discriminative feature on clean
data. The way to handling corrupted data by a robust PCA
and the fast randomized algorithm for the robust PCA are
also presented. Section IV presents the experimental results
and analysis. Finally, Section V concludes this paper and
discusses the future work.

II. RELATED WORK

In this section, we review the existing representation-based
feature learning methods. For brevity, we summarize some
main notations in Table I. We further denote the training data
matrix as X = [X1, X2, . . . , Xs ] ∈ Rd×m , where Xi ∈ Rd×mi

is the data submatrix of class i and m = ∑s
i=1 mi . We also

denote the dictionary as D = [D1, D2, . . . , Dk ] ∈ Rd×n ,
where Di ∈ Rd×ni is the subdictionary associated with the
i th class and n = ∑k

i=1 ni .

A. Sparse Representation-Based Feature Learning

SRC [5] may be the first representation-based method. The
main idea of SRC is to represent the input sample y ∈ Rd

as a linear combination of a few atoms in an overcomplete
dictionary D. The corresponding sparse representation α ∈ Rn

can be computed by the following �1 minimization problem:
min

α
‖y − Dα‖2

2 + λ‖α‖1. (1)

Suppose that α = [αT
1 , αT

2 , . . . , αT
k ]T , and αi is the subvector

associated with the dictionary Di of the i th class. A test
sample y is classified as class j∗ if class j∗ results in the
least reconstruction error

j∗ = arg min
j

‖y − D jα j ‖2
2. (2)

Although such a sparse coding method has achieved great
success in face recognition, it requires the atoms in the
dictionary to be well aligned for a reconstruction purpose,
which is not always satisfied. Several methods have been
proposed to resolve this issue. Wagner et al. [22] pro-
posed an extended SRC to handle variations of faces in
illumination, alignment, pose, and occlusion. Zhang et al. [12],
Yang and Zhang [23], and Yang et al. [24] also extended
SRC to deal with outliers, such as occlusions in face
images. In their methods, collaborative representation-based
classification (CRC) [12] achieved a much higher face recogni-
tion rate. However, when all the data (both training and testing
images) are corrupted, these methods do not work well [7], [8].
Furthermore, sparse coding methods represent each test sample
independently. This mechanism does not take a full advantage
of structural information from the data set [7], [8], [25].
Actually, data from the same class may share common
(correlated) features. Therefore, Jenatton et al. [25] utilized the
structure of data to encourage a group sparse representation.

B. Low-Rank Representation-Based Feature Learning

Before we introduce the LRR-based feature learning
methods, we first introduce the robust PCA [17], since some
methods, including ours, are based on or related to it.

Robust PCA is a low-rank matrix recovery method. It aims
to decompose a data matrix X into A + E , where A is a
low-rank matrix that we want to recover, which stands for the
clean data lying on a low-dimensional subspace, and E is a
sparse error matrix. The separation is achieved by solving the
following principal component pursuit problem [17]:

min
A,E

‖A‖∗ + λ‖E‖1, s.t. X = A + E (3)

where the nuclear norm and the �1 norm are convex surrogates
of the rank function and the �0 pseudonorm, i.e., the number
of nonzero entries, respectively. λ is a positive parameter
tradingoff between low rankness and sparsity. A can be exactly
recovered from X as long as the rank of A is sufficiently low
and E is sufficiently sparse [17].

A low-rank matrix recovery with a structural incoherence-
based classification (LRSIC) method [7] is a feature learning
method based on the robust PCA [17]. It uses the robust PCA
to decompose the training data matrix X = [X1, X2, . . . , Xs ]
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into a low-rank matrix A = [A1, A2, . . . , As ] and a sparse
error matrix E = [E1, E2, . . . , Es], where Xi is the training
data matrix for class i , and Ai and Ei are decompositions
of Xi . To remove the noise in data and reduce the feature
dimension, Chen et al. [7] applied PCA to A to obtain a
projection matrix W , and then projected both training data
and testing data with W . Finally, they used SRC [5] for
classification. This method is called the low-rank matrix
recovery-based classification (LRC) method. To promote
discriminating ability of the LRC method, structure incoher-
ence is considered. The model of the LRSIC (LRC with
structure incoherence) can be written as follows:

min
A,E

s∑

i=1

(‖Ai‖∗ + ‖Ei‖1) + η
∑

j �=i

∥
∥AT

j Ai
∥
∥2

F

s.t. Xi = Ai + Ei , i = 1, 2, . . . , s (4)

where η is a positive parameter. Then, similar to LRC, PCA
and SRC are used for classification. However, Zhang et al. [8]
pointed out that these two methods could not preserve
structural information well. Moreover, these two methods
require a removal of noise from training samples class by class.
This process is computationally expensive when the number
of classes is large [8].

Structured LRR for classification (SLRRC) [8] is another
low-rank-based feature learning method. It first learns a
structured low-rank dictionary by introducing an ideal
coding-based regularization term. Then with the learned
dictionary, it learns a sparse and structured representation
for an image classification. More specifically, suppose that
D = [D1, D2, . . . , Dk ] ∈ Rd×n is the dictionary we need
to learn, where Di is associated with class i . Ideally, the
optimal representation matrix Z ∈ Rn×m should be block
diagonal, i.e., the samples in different classes are not chosen
for representing each other. By further assuming that the
ideal within-class representation coefficients should be all
ones, Zhang et al. [8] used an ideal representation matrix
Q = [q1, q2, . . . , qm ] ∈ Rn×m as a prior, where qi correspond-
ing to sample xi is in a form of [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]T .
Namely, if xi belongs to class j , the coefficients in qi for D j

are all ones, while the others are all zeros. Then, the model
for learning dictionary D can be formulated as

min
Z ,D,E

‖Z‖∗ + β‖Z‖1 + α‖Z − Q‖2
F + λ‖E‖1

s.t. X = DZ + E (5)

where λ, α, and β are all positive parameters. By solving the
above problem (5), a dictionary D can be obtained. After the
dictionary D is learned, the representations Z of all samples
(training and testing samples) are computed by disregarding
the term with Q in (5), i.e., solving the following model:

min
Z ,E

‖Z‖∗ + β‖Z‖1 + λ‖E‖1

s.t. X = DZ + E . (6)

Zhang et al. [8] also proposed learning a dictionary by setting
α = 0, i.e., removing the ideal representation matrix Q
from (5). We call this method the LRRC method, as it
removes the structural information encoded in Q.

Fig. 1. Examples of decomposition of data matrix by LatLRR, adapted
from [15].

Zhang et al. [8] reported good results of image classification
by the SLRRC and LRRC methods. However, using Q as
the ideal representation matrix is questionable, because it is
unreasonable that the within-class coefficients are all ones.
Moreover, the problem (5) is nonconvex. Its solution depends
on initialization (it uses the K singular value decomposi-
tion (SVD) [26] method to initialize D). Finally, it is also
difficult to tune the three parameters.

LatLRR [15] is a recently proposed feature learning
method, which is also based on the LRR. To handle the
case of insufficient samples, which often happens for
high-dimensional data, LatLRR supposes that some
unobserved samples should be involved in representing
the observed samples. Its model can be formulated as

min
Z

‖Z‖∗, s.t. X = [X, X H ]Z (7)

where X is the observed sample and X H is the unobserved
hidden sample. With Bayesian inference,1 X can be repre-
sented as X = X Z + L X , where Z ∈ Rm×m is the LRR of
X ∈ Rd×m and L ∈ Rd×d is a low-rank projection matrix.
So, the LatLRR can be formulated as

min
Z ,L

‖Z‖∗ + ‖L‖∗, s.t. X = X Z + L X. (8)

From the experimental results (Fig. 1), they found that
the features represented by X Z were visually similar to
PCA features. For a certain image, its principal features can
be roughly regarded as its projection onto a subspace that
represents the image [15]. Hence, they called the features
X Z principal features. They also noted that the features
L X correspond to the key object parts (e.g., the eyes) and
are usually discriminative for recognition. So, they call the
features L X salient features. If the data matrix X is noisy,
sparse noise E is considered

min
Z ,L

‖Z‖∗ + ‖L‖∗ + λ‖E‖1

s.t. X = X Z + L X + E (9)

where λ is a positive parameter.
However, recently, Zhang et al. [16] doubted the effective-

ness of LatLRR. They proved that the solution to the noiseless
LatLRR model (8) would be nonunique. Such nonuniqueness
makes the recognition performance of LatLRR unpredictable.

All the aforementioned representation-based methods per-
form feature learning and classification in two separate steps.

1Please refer to [15] for the details of deduction.
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Such mechanism may not be optimal for recognition tasks
as feature learning, which mainly exploits sparsity and low
rankness, is not closely related to the classification error.

To overcome this drawback, we present a novel feature
learning method. We integrate the closed-form solutions
to LatLRR with a ridge regression-based classifier, where
the regulated classification error is minimized for choosing
the optimal linear transform L. Therefore, the recognition
accuracy can be significantly improved. In Section III,
we provide a detailed description of our method.

III. INTEGRATED LOW-RANK-BASED DISCRIMINATIVE

FEATURE LEARNING

In this section, we first present how to integrate the closed-
form solutions to LatLRR with the ridge regression and utilize
the labels of data to learn discriminative features of clean
data. More often than not, data are corrupted (e.g., noise) in
real applications. Then, we extend our framework to handle
corrupted data. The features extracted by our method can be
used for recognition directly.

A. Closed-Form Solutions to Noiseless LatLRR

To begin with, we quote the following theorem in [16]
on the complete closed-form solutions to the noiseless
LatLRR model (8).

Theorem 1 [16]: The complete solutions to problem (8) are
as follows:

Z∗ = VX (I − S)V T
X and L∗ = UX SU T

X (10)

where UX�X V T
X is the skinny SVD of X and S is any

block-diagonal matrix that satisfies two constraints: 1) its
blocks are compatible with �X , i.e., if (�X )ii �= (�X ) j j , then
Si j = 0 and 2) both S and I − S are positive semidefinite.
Note that S can usually be chosen as diagonal with diagonal
entries being any number between 0 and 1.

Although the nonuniqueness of solutions undermines the
validity of LatLRR, it also brings us a benefit. Namely,
we can choose the most appropriate solution for subsequent
classification among the solution set.

B. Model for Integrated Low-Rank-Based
Discriminative Feature Learning

Our basic idea is to utilize the supervised information,
e.g., the labels of training samples, to learn discriminative
features L X resulting from the LatLRR model. During the
training phase of classification, features of samples are fed
into a classifier f (x, W ) to learn its model parameters W .
We aim at optimizing for L by minimizing the classification
error. In this way, our discriminative feature learning method is
tightly coupled with classification. Our objective function for
learning projection matrix L and parameters W of classifier
can be defined as

min
L ,W

m∑

i=1

ϕ(hi , f (Lxi , W )) + α‖W‖2
F

s.t. L = UX SU T
X (11)

where xi ∈ Rd is the i th sample in X ∈ Rd×m , d is the
dimension of feature vectors, and m is the number of samples.
UX ∈ Rd×r and S ∈ Rr×r satisfy the constraints in Theorem 1,
where r is the rank of X . W is the parameters of classifier
f (x, W ). ϕ is the classification loss function. hi is the label
vector of the i th sample. α > 0 is a regularization parameter.

In this paper, we use a linear predictive classifier
f (x, W ) = W x and a quadratic loss function, i.e., adopt the
multivariate ridge regression [27], where W ∈ Rc×d and c is
the number of categories. For other classifiers, the optimization
can still be performed but is more involved. We leave it as a
future work. By our choice, the optimization problem (11) can
be written as

min
W,L

‖H − W L X‖2
F + α‖W‖2

F

s.t. L = UX SU T
X (12)

where H = [h1, h2, . . . , hn] ∈ Rc×m is the label matrix and
hi = [0, 0, . . . , 1, . . . , 0, 0]T ∈ Rc is the label of xi . The term
‖H − W L X‖2

F represents the classification error [19], [21].
By solving this optimization problem, an optimal projection
matrix L and parameters W can be learned. Accordingly,
discriminative features L X can be obtained.

C. Solving the Optimization Problem

To solve problem (12) more easily, we do some
simplifications. First, we observe that the singular values
of the data matrix X are usually distinct from each other,
i.e., (�X )ii �= (�X ) j j when i �= j . So, the S in the
solution (10) degenerates to a diagonal matrix, with all its diag-
onal entries ranging from 0 to 1. Second, since we only focus
on learning the discriminative features, the constraint that
I − S is positive semidefinite is not necessary for our purpose.
So, we only need to bound Sii ≥ 0, ∀i = 1, . . . , r . Suppose
that U�V T is the full SVD of X , then only the first r singular
values are nonzeros. Assume that matrix 	 ∈ Rd×d is a square
matrix and diag(	) = (S11, S22, . . . , Srr , 0, 0, . . . , 0) ∈ Rd ,
then we have

L = UX SU T
X = U	U T . (13)

As UU T = I , U T U = I , and V V T = I , we can deduce the
following:

‖H − W L X‖2
F + α‖W‖2

F

= ‖H − WU	U T U�V T ‖2
F + α‖W‖2

F

= ‖H V − WU	�‖2
F + α‖W‖2

F

= ‖H V − WU	�‖2
F + α‖WU‖2

F . (14)

Let H̃ = H V and W̃ = WU , then the objective function can
be further written as

‖H − W L X‖2
F + α‖W‖2

F

= ‖H̃ − W̃	�‖2
F + α‖W̃‖2

F

=
r∑

i=1

‖H̃i − Sii σi W̃i‖2
2 +

m∑

i=r+1

‖H̃i‖2
2

+ α

r∑

i=1

‖W̃i‖2
2 + α

m∑

i=r+1

‖W̃i‖2
2. (15)
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Therefore, we can see that for the optimal W̃ , W̃i = 0, and
i = r + 1, . . . , m.

Now we focus on solving for Sii and W̃i , where
i = 1, . . . , r . The optimization problem reduces to

min
S11, . . . , Srr
W̃1, . . . , W̃r

r∑

i=1

(‖H̃i − Sii σi W̃i‖2
2 + α‖W̃i ‖2

2

)

s.t. Sii ≥ 0, i = 1, 2, . . . , r. (16)

But the optimization problem (16) is not well defined, as
the optimal W̃i should approach zero, while Sii approaches
infinity. To circumvent this situation, we add an additional
constraint

∑r
i=1 Sii σi = t , where t is a positive constant.

We use this constraint because Sii σi is the coefficient of W̃i ,
and hence, it can make the entries in W̃ more balanced. We do
not use the constraint

∑ r
i=1 Sii = t , because the magnitudes of

σi ’s can vary significantly, resulting in very unbalanced entries
in W̃ .

Let g = [S11σ1, . . . , Srr σr ]T and Q = [S11σ1W̃1, . . . ,

Srr σr W̃r ], problem (16) is reformulated as the following
problem:

min
g,Q

r∑

i=1

(

‖H̃i − Qi‖2
2 + α

g2
i

‖Qi‖2
2

)

s.t.
r∑

i=1

gi = t, gi ≥ 0, i = 1, 2, . . . , r. (17)

The optimization problem (17) is not jointly convex
with respect to (Q, g). Therefore, we solve it by alternate
minimization.

We first solve for Q. By fixing g, the updating of Q is
rewritten as

Qi = arg min
Qi

‖H̃i − Qi‖2
2 + α

g2
i

‖Qi‖2
2

= g2
i

g2
i + α

H̃i , i = 1, . . . , r. (18)

However, when Q is fixed, the updating of g needs a little
more effort

g = arg min
r∑

i=1
gi =t,gi≥0

r∑

i=1

α

g2
i

‖Qi‖2
2. (19)

We use the method of Lagrange multiplier to solve for g. The
Lagrangian function of (19) is

L(g, τ ) =
r∑

i=1

α‖Qi ‖2
2

g2
i

+ τ

(
r∑

i=1

gi − t

)

. (20)

Then, we compute the derivative of L with respect to g

∂L
∂gi

= −2α‖Qi‖2
2

g3
i

+ τ. (21)

By combining
∑r

i=1 gi = t and ∂L/∂gi = 0, we can obtain
the following solution:

gi = t‖Qi ‖
2
3
2

∑r
i=1 ‖Qi‖

2
3
2

. (22)

Algorithm 1 Integrated Learning of Discriminative Features
from Clean Data

Input: The training data Xtr , the testing data Xts , the label
matrix H of Xtr . The parameters α > 0 and ε > 0, and the
constant t > 0.
Initialize: Conduct full SVD of Xtr :

Xtr = U�V T

to obtain the rank r of Xtr and H̃ = H V . Set g0
i = t

r ,
Q0 = 0, and k = 0.
While ‖gk+1 − gk‖∞ > ε or ‖Qk+1 − Qk‖∞ > ε do
1. Fix gk to update Qk+1

Qk+1
i = (gk

i )
2

(gk
i )2 + α

H̃i , i = 1, . . . , r.

2. Fix Qk+1 to update gk+1,

gk+1
i = t‖Qk+1

i ‖
2
3
2

r∑

i=1
‖Qk+1

i ‖
2
3
2

, i = 1, . . . , r.

end while
4. Compute the projection matrix L = U	U T , where
	ii = gi/σi (i = 1, . . . , r ) and the values of other entries
are all zeros.
5. Compute the extracted features Ztr = L Xtr , Zts = L Xts .
6. Compute the classifier parameters W . First, compute W̃ ,
W̃i = Qi/gi (i = 1, . . . , r) and W̃i = 0 (i = r + 1, . . . , m).
Then compute W = W̃U T .
Output: Discriminative features Ztr , Zts , and parameters W
of the linear classifier.

The detailed optimization procedure is presented
in Algorithm 1.

D. Convergence Analysis
In this section, we give the convergence analysis of our alter-

native minimization algorithm (i.e., Algorithm 1). We show
that our algorithm decreases the objective function value
monotonically, and any accumulation point of the sequence
{(Qk, gk)} generated by our algorithm is a Karush-Kuhn-
Tucker (KKT) point of problem (17).

Theorem 2: Assume that F(Q, g) = ∑r
i=1(‖H̃i − Qi‖2

2 +
(α/g2

i )‖Qi‖2
2) is our objective function. The sequence

{(Qk, gk)} generated by Algorithm 1 satisfies the following
properties.

1) F(Qk, gk) is monotonically decreasing. Actually, it sat-
isfies the following inequality:
F(Qk, gk) − F(Qk+1, gk+1)

≥ γ − L

2
‖Qk+1 − Qk‖2

F ≥ 0 (23)

where L = 2 is the Lipschitz constant of function
f (x) = ‖y − x‖2

2, in which x and y are two vectors.
γ is a constant satisfying L = 2 < γ ≤ 4.

2) lim
k→∞ ‖Qk+1 − Qk‖2

F = 0, lim
k→∞ ‖gk+1 − gk‖2

2 = 0.

3) The sequences {Qk} and {gk} are both bounded.
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Then, we can prove that any accumulation point of the
sequence {(Qk, gk)} generated by our algorithm is a KKT
point of problem (17), as stated in Theorem 3.

Theorem 3: Assume that {(Qk, gk)} is the sequence gener-
ated in Algorithm 1. Then, any accumulation point (Q∗, g∗)
of {(Qk, gk)} is a KKT point of problem (17).

The proofs of Theorems 2 and 3 can be found in the
supplementary material.

E. Handling Corrupted Data

Now, we consider the situation when data X are corrupted.
In this case, the LatLRR model is defined as problem (9).
When the data are noisy, LatLRR (9) uses the contaminated
data as the dictionary (the term X Z ) and also extracts features
from noisy X (the term L X). However, Wei and Lin [28]
and Favaro et al. [29] pointed out that adopting the con-
taminated data as the dictionary is valid only when the
percentage of corruption is relatively low and the noise level
is also low. To overcome this limitation, Wei and Lin [28],
Favaro et al. [29], and Zhang et al. [30] proposed to denoise
X first, and then apply the noiseless LRR or the LatLRR to
the denoised data. This leads to the following model [30]:

min
Z ,L ,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖1

s.t. X − E = (X − E)Z + L(X − E). (24)

Zhang et al. [30] proved that solving the above problem is
equivalent to denoising X with the robust PCA [17] first
to obtain (A, E), and then solving noiseless LatLRR (8)
with X replaced by A. They proved the following theorem.

Theorem 4 [30]: Let the pair (A∗, E∗) be any optimal
solution to the robust PCA problem. Then, the new noisy
LatLRR model (24) has minimizers (Z∗, L∗, E∗), where

Z∗ = VA(I − S)V T
A and L∗ = UA SU T

A (25)

in which UA,�A, VA, and S satisfy the conditions
in Theorem 1, with X replaced by A.

Accordingly, solving (24) simply reduces to solving the
robust PCA problem, and thus the computation cost is greatly
reduced. In our method, we first use the robust PCA to remove
the noise of training data Xtr and obtain clean data Atr . Then,
we utilize Atr to obtain the clean data Ats = UAtr U T

Atr
Xts

of testing data matrix Xts , where the columns of UAtr are
the left singular vectors of skinny SVD of Atr , since clean
training data Atr and clean testing data Ats should span the
same subspace. Our feature learning method in the case of
noise is described in Algorithm 2. Note that the rank r of
training data is estimated by robust PCA and we can control
it by tuning the parameter λ in the robust PCA.

F. Classification

When (12) is solved, we obtain both the extracted features
Z = [Ztr , Zts] and a linear classifier’s parameters W . We can
directly use the obtained classifier parameters W for classifi-
cation. In this way, we do not normalize the extracted features.
Suppose z ∈ Zts is the feature of a testing sample, its label is
assigned as

j∗ = argmax
j

(W z) j . (26)

Algorithm 2 Integrated Learning of Discriminative Features
From Corrupted Data

Input: The training data Xtr , the testing data Xts , the label
matrix H of Xtr . The parameters λ, α and ε > 0, the
constant t > 0.
1. With the parameters λ and ε, conduct Robust PCA on the
training data matrix Xtr and obtain the clean data Atr and its
skinny SVD Atr = UAtr �Atr V T

Atr
. Then we can obtain the

clean data Ats = UAtr U T
Atr

Xts of testing data matrix Xts .
2. With input Atr , Ats , H , α, ε and t , use Algorithm 1 to
obtain discriminative feature Ztr and Zts and parameters W
of the linear classifier, where the full SVD of Atr need not
be recomputed because the skinny SVD of Atr is output by
Robust PCA [31] and we only need to augment UAtr and
VAtr with their respective orthogonal complements.
Output: Discriminative features Ztr and Zts and
parameters W of the linear classifier.

This is our original integrated low-rank discriminative feature
learning (ILRDFL) method. But empirically, we find that nor-
malizing extracted features can lead to even better recognition
results. A possible reason is that normalized features may have
a more uniform statistical distribution. In this case, parameters
W need to be updated accordingly, which does not take much
time since ridge regression has a closed-form solution. So, we
view these two extra low-computation steps as postprocessing.
We call this method the normalized ILRDFL (NILRDFL)
method. In Section IV, we will compare these two methods
with state-of-the-art ones.

G. Parameter Settings

At a first glance, our algorithm has three parameters to tune,
λ, α, and t . In reality, we only need to tune one parameter λ
in the robust PCA problem (3). Indeed, the parameter α is
a regularization parameter in the optimization problem (17)
and our methods are insensitive to it, which can be seen
in Fig. 5. In all of our experiments, we set α = 10−4.
As for the parameter t , we simply set t = d . In the ILRDFL
method, we directly use the learned classifier parameters W
for recognition. In the NILRDFL method, after computing S,
we normalize the extracted features and then retrain the ridge
regression classifier. Therefore, only the parameter λ needs
to be tuned. Fortunately, Candès et al. [17] have provided a
suggested value 1/(max (d, m))1/2, which provides good
reference on the order of magnitude when we tune λ.

H. Fast Algorithm for Robust PCA [32]

The major computation of our algorithm lies in the step 1
of Algorithm 2. It requires performing the robust PCA, whose
complexity is O(rdm) at each iteration, where r is the rank of
data matrix and d × m is the size of data matrix [31]. When
the size of data set is large, it is a very expensive computation
task. Liu et al. [32] presented an algorithm called �1-filtering,
which is a fast randomized algorithm for solving the robust
PCA. Its complexity is O(r2(d + m)) at each iteration [32],
which is much lower than O(rmd) when d and m are large.
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Fig. 2. Samples of face databases. (a) Samples of Extended YaleB.
(b) Samples of the AR database. (c) Samples of the PIE database.

When r/ min (d, m) is sufficiently small, with high probability,
the �1-filtering produces the same solution as by solving the
full-scale robust PCA directly [32]. However, if this condi-
tion is not satisfied, using �1-filtering for solving the robust
PCA may cause a degraded recognition rate. The detail of
�1-filtering can be found in the supplementary material.

IV. EXPERIMENTS

In this section, we first evaluate our ILRDFL and NILRDFL
on three widely used face databases: 1) Extended YaleB [33];
2) AR [34]; and 3) PIE [35]. Note that the difficulties of these
three face databases are not the same. As shown in Fig. 2,
Extended YaleB is relatively simple. For each individual, it
has ∼64 near frontal images under different illuminations. The
challenge of AR is that it contains different facial expressions,
illumination conditions, and occlusions (sun glasses and scarf).
The PIE database is taken under different poses, expressions,
and illuminations. Compared with the first two databases,
it is more difficult to identify. We also test our methods
on three more different types of databases: 1) Caltech 101
database [36], for object recognition; 2) Fifteen Scene
Categories [2], for scene classification; and 3) UCF50 [37],
for action recognition. Since the feature dimensions of
Caltech 101, Fifteen Scene Categories, and UCF50 are too
high, PCA is applied to reduce their dimensions to 1500, 3000,
and 3000, respectively.

In all the above recognition tasks, we compare our
two methods with SRC [5], CRC [12], the locality constrained
linear coding (LLC) methods [6], LRC [7], LRSIC [7],
LRRC [8], SLRRC [8], and TDDL [19]. To further demon-
strate that our methods benefit more from a feature extraction,
we also compare our methods with LatLRR [15] and robust
PCA [17]. Since some methods, we compare with and our
methods all use the multivariate ridge regression classifier,
which usually achieves better performance than K-Nearest
Neighbors. For fairness, LatLRR and robust PCA also use the
multivariate ridge regression classifier. In each specific task,
we further compare with other state-of-the-art methods for that
task. The platform is MATLAB 2013a under Windows 8 on a
PC equipped with a 3.4-GHz CPU and 16-GB memory.

TABLE II

RECOGNITION RATES (%) ON THE EXTENDED YaleB DATABASE

A. Face Recognition

In the face recognition task, besides, for example, SRC,
that we have mentioned above, we further compare with
Fisherfaces [1].

1) Extended YaleB: Extended YaleB [33] consists of 2414
cropped frontal face images of 38 people. Every image
has 192 × 168 = 32 256 pixels. There are between
59 and 64 images for each person. In the experiments, we
down-sample these images by 4 such that the down-sampled
feature dimension d is 2016. We randomly select 10, 15, 20,
and 25 training images from each person and the remaining
images are used for testing. Every experiment runs 10 times.

As a common setting, Fisherfaces reduce the feature dimen-
sion to 37 [38]. When we evaluate SRC [5], CRC [12],
LRC [7], and LRSIC [7], all training samples are used as the
dictionary. The number of neighbors of LLC [6] is set to 5,
which is the same as that in [6]. As [8] did, the dictionary
size for LRRC [8], SLRRC [8], and TDDL [19] is all 140,
i.e., the trained dictionary has five atoms for each person.
We set λ = 0.03 in our methods. The experimental results are
summarized in Table II. Note that we also report the standard
deviations of our two methods next to our average recognition
rates. We can see that with different numbers of training
samples, our two methods always achieve the best recognition
results. Furthermore, our NILRDFL method obtains better
results than our ILRDFL method.

The discriminative feature faces of Extended YaleB
extracted by ILRDFL are shown in Fig. 3. The ILRDFL
method is different from dimensionality reduction methods.
Actually, the ILRDFL method does not reduce the feature
dimension. It only aims to find the most discriminative feature,
while dimensionality reduction methods aim to reduce feature
dimension and retain some discriminant information at the
same time.

We then test the robustness of our methods. In this
experiment, all images are resized to 48 × 42 pixels.
We randomly select 25 training samples per person and the
remaining ones are used for testing. As [5] and [8] did,
a percentage of randomly chosen pixels in the training samples
are replaced with independent identically distributed noise,
which is uniformly distributed on [0, ymax], where ymax is
the largest possible pixel value. The percentage of corrupted
pixels varies from 10% to 90%. Fig. 4 shows the recognition
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Fig. 3. Examples of discriminative features extracted from the Extended
YaleB database. (a) and (b) First rows are original face images and the second
rows are the corresponding discriminative features.

Fig. 4. Recognition rates on Extended YaleB under different percentages of
random corruption.

rates of our methods and other nine competitors. Our methods
outperform the others at all levels of corruption.

2) AR: The AR database [34] contains over 4000 color
images corresponding to 126 people’s faces (70 men and
56 women). Each person has 26 face images taken during two
sessions. In each session, each person has 13 images, in which
three images with sunglasses, another three with scarfs, and
the remaining seven with different facial expressions and illu-
mination conditions. All these images are of 165×120 pixels.
Following the common experimental setting [7], [8], we select
a subset of the database consisting of 2600 images from
50 male subjects and 50 female subjects. In this experi-
ment, we also down-sample all images. When testing the
LLC algorithm, the down-sample rate is two, while for other
methods the down-sample rate is three. The reason we set
different down-sample rates is that LLC encodes the Scale-
Invariant Feature Transform (SIFT) features [39] and we
should maintain a certain amount of SIFT features. The
number of neighbors of LLC is set to five. Fisherfaces still
reduce the feature dimension to 37. SRC, CRC, LRC, and
LRSIC take all training samples as the dictionary. The trained
dictionary for LRRC, SLRRC, and TDDL has 500 atoms. The

TABLE III

RECOGNITION RATES (%) ON THE AR DATABASE

parameter λ in our methods is set to 0.032. As [7] and [8] did,
we consider the following three scenarios.

a) Sunglasses: In this scenario, the training samples
contain seven neutral images and one image with the occlusion
of sunglasses from session 1. Testing samples consist of
seven neutral images from session 2 and five images with
sunglasses, in which two are the remaining images with
sunglasses and three from session 2.

b) Scarf: In this scenario, we only consider unobscured
images and corrupted images due to the occlusion of scarf.
We select seven unobscured images plus one image with scarf
from session 1 for training. The remaining images with scarf
(from sessions 1 and 2) and the unobscured images from
session 2 are used for testing.

c) Sunglasses and scarf: In this scenario, we choose
seven neutral images plus one with sunglasses and one
with scarf from session 1 for training. All the remainder in
sessions 1 and 2 are used for testing. Namely, we use nine
images for training and the remaining seventeen images for
testing.

We repeat these experiments three times and report the
average recognition rates in Table III. The performances of our
two methods are both better than all our compared methods.
For the sunglasses, the scarf, and the mixed scenarios, the
ILRDFL method achieves ∼0.9%, 4.7%, and 4.3% improve-
ments, respectively, while NILRDFL makes ∼2.1%, 5.1%,
and 3.7% improvements, respectively. Compared with other
methods, our methods are very robust when there exists much
noise in data, due to the effectiveness of robust PCA in
removing corruptions.

3) PIE: The PIE database [35] contains 41 368 images
of 68 people, each with 13 different poses, 43 different
illumination conditions, and 4 different expressions. We select
a subset of PIE for experiment, which contains five near
frontal poses (C05, C07, C09, C27, C29) and all the images
are taken under different illuminations and expressions. In our
experiment, there are about 170 images for each person.
In the LLC method [6], each image is normalized to a size
of 64 × 64 pixels. In other methods, the size of each image
is only 32 × 32 pixels. The down-sample rates are different
because of the same reason as before. All the training samples
are used as the dictionary for SRC [5], CRC [12], LRC [7],
and LRSIC [7]. The size of learned dictionary for LRRC [8],
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TABLE IV

RECOGNITION RATES (%) ON THE PIE DATABASE

Fig. 5. Effects of parameter α on our two methods.

SLRRC [8], and TDDL [19] is 340. We set λ = 0.06 in our
methods.

We select different numbers of training samples per person
to test these methods. The recognition rates are summarized
in Table IV. Our methods achieve good results and outperform
the compared methods.

As stated earlier, our methods are insensitive to the
regularization parameter α in the multivariate ridge
regression (12). We verify this by testing the effect of
the value of α on our algorithms on three data sets,
Extended YaleB, AR, and PIE. As shown in Fig. 5, when the
value of α ranges from 10−1 to 10−8, all the recognition rates
on Extended YaleB, AR, and PIE are stable. Our methods
are robust to the choice of α.

B. Object Recognition

In our experiment, we use the Caltech 101 database [36] to
evaluate our methods for object recognition. Caltech 101 is a
widely used database for object recognition. It contains a total
of 9146 images, split between 101 distinct objects (including
faces, watches, ants, pianos, and so on) and a background
category. So, there are 102 categories in total. Each object
category contains about 31 to 800 images. The size of each
image is roughly 300 × 200 pixels.

As [8] and [21] did, we also evaluate our methods using
spatial pyramid features. The features can be computed as
follows. First, we extract SIFT descriptors of 16 × 16 over

TABLE V

RECOGNITION RATES (%) ON CALTECH 101 DATABASE

a grid with a spacing of eight pixels. Second, we build
three-level spatial pyramid features based on the extracted
SIFT features with three kind of grids with size 1 × 1, 2 × 2,
and 4 × 4, respectively. Then, we code the three-level spatial
pyramid features with a codebook of size 1024. Since the
feature dimension is too high, PCA is used to reduce the
feature dimension to 1500. In the experiments, we randomly
select 30 samples per category as training data and use the
remaining samples for testing. As [21] did, LLC [6] is the
original LLC, which uses sparse coding to encode SIFT
descriptors [39], while LLC∗ uses sparse coding to encode
the spatial pyramid features. For fairness, SRC [5], CRC [12],
LRC [7], LRSIC [7], LRRC [8], SLRRC [8], LatLRR [15],
robust PCA [17], and our two methods all use the spatial
pyramid features. We evaluate SRC, CRC, LRC, LRSIC,
LRRC, SLRRC, and TDDL [19] with a dictionary size 3060,
i.e., for 30 dictionary items per category. We set both the
neighborhood size of LLC and LLC∗ as 30. The parameter λ
in our methods is 0.3.

As Table V shows, our NILRDFL method performs the best
among all the compared methods and has ∼1.6% improvement
over the runner-up. ILRDFL also achieves a good recognition
rate. It is worth noting that when we evaluate ILRDFL and
NILRDFL, there are a total of twelve and seventeen classes
that achieve 100% recognition rate, respectively.

C. Scene Classification

We test scene classification with the Fifteen Scene
Categories database [2]. It is a database of 15 natural scene
categories that expands on the 13-category database released
in [45]. It contains 4485 images falling into 15 categories,
such as bedrooms, kitchens, streets, and country scenes. Each
category has 200 to 400 images.

The feature data of Fifteen Scene Categories are
provided in [21], which can be downloaded from
http://www.umiacs.umd.edu/~zhuolin/projectlcksvd.html. The
features are computed as follows. First, computing a spatial
pyramid feature with a four-level spatial pyramid and a
SIFT-descriptor codebook with size of 200, and then PCA is
applied to reduce the feature dimension to 3000. As [2] did,
we randomly select 100 images per category as training
data and use the remaining samples for testing. The detailed
comparison results are shown in Table VI. SRC, CRC,
LRC, LRSIC, SLR, LRRC, SLRRC, LatLRR, robust PCA,
and our two methods all use the spatial pyramid feature
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TABLE VI

RECOGNITION RATES (%) ON 15 SCENE CATEGORIES DATABASE

Fig. 6. Confusion matrix of ILRDFL on the Fifteen Scene Categories
database. The average classification rates of each class are along the diagonal.
The entry in the ith row and j column is the percentage of images from class i
that are misidentified as class j .

provided in [21]. The dictionary sizes of SRC, CRC, LRC,
LRSIC, LRRC, SLRRC, and TDDL are all 450. LLC and
LLC∗ both have 30 neighborhoods. We set the parameter
λ = 0.5 in our methods.

As Table VI shows, our methods perform the best
among all the competitors. ILRDFL and NILRDFL make
∼2.3% and 2.5% improvement over the third best method,
respectively. The confusion matrix of the ILRDFL method can
be seen in Fig. 6, where the average recognition rates for each
class are along the diagonal. There is no class that is classified
badly and the worst recognition rate is as high as 91%.

D. Action Recognition

Finally, we test our methods and related algorithms with
action recognition, using the UCF50 database [37]. The
UCF50 database is one of the largest action recognition
databases, consisting of realistic videos taken from Youtube.
It contains 50 action categories with a total of 6617 action
videos and the categories are Baseball Pitch, Basketball
Shooting, Biking, Diving, Tennis Swing, and so on. Some
images from this database are shown in Fig. 7.

For this database, we use the action feature representations
presented in [48], whose code and feature data can be down-
loaded from http://www.cse.buffalo.edu/~jcorso/r/actionbank.
As the dimension of action feature is very high, we use

Fig. 7. Ten categories in the UCF50 database.

TABLE VII

RECOGNITION RATES (%) ON UCF50 DATABASE

Fig. 8. Confusion matrix of ILRDFL on the UCF50 database. The
classification rates are not shown. The color legend is drawn on the right,
best viewed in color.

PCA to reduce the feature dimension to 3000. Then, we
take dimension-reduced feature to evaluate SRC, CRC, LLC,
LRC, LRSIC, LRRC, SLRRC, TDDL, LatLRR, robust PCA,
and our methods. Following the common experiment
settings [48]–[51], we test these methods with the fivefold
groupwise cross-validation methodology. The dictionary sizes
for SRC, CRC, LRC, LRSIC, TDDL are all 1500, i.e.,
30 dictionary atoms for each category. When we
evaluate LLC∗, we use the original LLC method to
encode the action feature and the neighborhood number is 30.
We set λ = 0.5 in our methods.

Table VII presents the detailed comparison results. Note that
our methods outperform the others. ILRDFL and NILRDFL
make ∼3.9% and 6.2% improvement over the third best,
respectively. The confusion matrix of our ILRDFL method,
which is shown in Fig. 8, shows a dominant diagonal with no
stand-out confusion among the classes. Only two categories
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TABLE VIII

AVERAGE TESTING TIME (SECONDS) ON THE SIX DATABASES

Fig. 9. Average training time (seconds) on the six databases. The training
time of our methods contains the robust PCA denoising time.

(Pizza Tossing and Skijet) obtain relatively bad classification
rates. Other categories are all classified well.

E. Comparison of Computation Time

In the above sections, we have compared our methods with
other state-of-the-art methods in terms of the recognition rate.
Now, we compare the average training and testing time of
our methods with those of SRC [5], LRC [7], LRSIC [7],
LRRC [8], SLRRC [8], and TDDL [19] on the six testing
databases. Note that the testing phases of LatLRR and robust
PCA are similar to ours (these two methods only need to
do projection and use a linear classifier for classification),
so we do not report the testing time of these two methods.
The experimental settings in this section are as described in the
above sections, respectively. The training time is defined as the
time spent on training parameters of a model (it may contain
denoising, such as the robust PCA denoising time, learning
a dictionary, a projection matrix, and classifier parameters).
The testing time is the time from inputting a test sample to
outputting its label. The average training time and testing time
are both computed as an average over all the training samples
and the testing samples, respectively. Note that SRC has no
training time and only has testing time, since it only needs to
represent inputting testing samples as a linear combination of
dictionary items, then use the representation coefficients for
recognition. So, when evaluating the average training time,
we select LRRC and SLRRC as our competitors. In Fig. 9,
we compare our two methods with LRRC and SLRRC on
the six benchmark databases. ILRDFL and NILRDFL are
about six and ten times faster than LRRC and SLRRC on the
Extended YaleB and the remaining five databases, respectively.
We also note that NILRDFL is roughly as fast as ILRDFL,
since both the time for normalization and retraining a ridge
regression classifier are negligible.

The average testing time on each one of the six databases
is reported in Table VIII. Both ILRDFL and NILRDFL are
more than 20 times faster than the compared methods. This
is because in the testing phase, SRC, LRC, LRSIC, LRRC,
SLRRC, and TDDL all need to encode the testing samples
with a dictionary, which requires a lot of time to solve
an optimization problem. In contrast, our methods are very
simple. They only need to do projection and use a linear
classifier to conduct classification, which is very time efficient.
It should also be noticed that all the state-of-the-art methods
cost much more testing time on Caltech 101 than on the others.
The reason is that when the dictionay size is large, it will be
much more computationally expensive, and Caltech 101 has a
much larger size of dictionary than other testing databases.

F. Speed Up With the Fast Algorithm

In the previous experiments, we just solve the full-sized
robust PCA for our methods. Most of our training and testing
processes are faster than other representation-based methods.
In this section, we show the effectiveness of speeding up
the training process of our methods by solving the robust
PCA problem with the �1-filtering algorithm, called fast
ILRDFL (F-ILRDFL), when handling large scale databases.
We still use Extended YaleB [33], Caltech 101 [36], and
UCF50 [37], but we do not reduce the feature dimension. The
experimental settings are as follows.

1) Extended YaleB: The size of data matrix is
37 600 × 2414. We randomly select 30 training images
per person and use the remaining for testing. SRC, LRC, and
LRSIC use all the training samples as the dictionary. The
dictionary for LRRC, SLRRC, and TDDL has 30 dictionary
atoms for every person. In the �1-filtering used in our methods,
the size of seed matrix is 1140 × 1140 and we set λ = 0.1
when we apply robust PCA to recover the seed matrix.

2) Caltech 101: The size of feature matrix is
21 506 × 9144. We randomly select 30 training samples
each category and use the remaining for testing. All the
training samples are used as the dictionary for SRC, LRC,
and LRSIC. For LRRC, SLRRC, and TDDL, we also train a
dictionary with 30 atoms for every class. We set the size of
the seed matrix as 2500 × 2500 and λ = 0.08 in our methods.

3) UCF50: The size of feature matrix is 14 965 × 6617.
We use the fivefold groupwise cross-validation methodology
to evaluate these methods. The dictionary sizes for SRC,
LRC, LRSIC, LRRC, SLRRC, and TDDL are all 1500,
i.e., 30 dictionary atoms for each category. We set the size
of seed matrix as 2500 × 2500 and λ = 0.06.
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TABLE IX

AVERAGE RECOGNITION RATES (%) AND AVERAGE TESTING TIME (SECONDS) ON THE THREE DATABASES,

WHERE THE FEATURE DIMENSIONS ARE NOT REDUCED

Fig. 10. Average training time (seconds) for fast algorithm on the three test
databases. The training time of our methods contains the robust PCA denoising
time.

We first compare the average training time of our
two methods with LRRC and SLRRC. The results are shown
in Fig. 10. Our F-ILRDFL and F-NILRDFL are both several
times faster than LRRC and SLRRC. When the size of data
is large, learning dictionary and representations of training
samples are computationally expensive, since LRRC and
SLRRC have to solve a nonconvex problem with a lot of
parameters, which converges slowly. We use the �1-filtering
algorithm to speed up the training process of our methods and
the effect is evident.

The average testing time and the recognition accuracy are
summarized in Table IX. Both F-ILRDFL and F-NILRDFL
are several hundred times faster than the compared methods.
In the testing phase, all our compared methods have to solve an
optimization problem to obtain the representations of testing
samples under a learned dictionary. When the scale of data
matrix is large, the speed of these methods drop dramatically.
However, the testing process of our methods are much simpler,
since we have no optimization problem to solve and we only
project the testing samples and classify them with a linear
classifier. We also note that though the data matrix is large,
its rank is low. With high probability, the �1-filtering in our
methods produces the same solution as by solving full-scale
robust PCA directly. From Table IX, our F-ILRDFL and
F-NILRDFL both achieve higher recognition rates than the
compared methods. In conclusion, our fast methods not only
run fast, but also achieve better performance.

V. CONCLUSION

We propose a novel supervised a low-rank-based
discriminative feature learning method. Unlike other
representation-based feature learning methods that separate

a feature learning process and subsequent classification
into two steps and optimize sparsity or low rankness to
extract features, our method learns discriminative features by
integrating LatLRR with ridge regression to minimize the
classification error directly. This way, the extracted features
are directly related to the recognition rate. We also adopt the
�1-filtering algorithm to speed up the computation of robust
PCA, which we use for denoising data robustly. Finally, our
method has only one parameter that needs tuning, which
makes the performance tuning very easy.

Extensive experimental results demonstrate that our method
obtains better classification results than other representation-
based methods and state-of-the-art recognition methods, even
with a simple linear classifier. Our method is also much more
robust than other methods in comparison. On large scale data
sets, by adopting the �1-filtering algorithm our method is also
much faster than other methods in comparison.

In the future, in the same spirit, we will try integrating other
feature learning methods with more sophisticated classification
errors.
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