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This documents provides the proof details of the convergence results of our proposed fast methods. First, in Section 1, we give
some useful results which are useful for the convergence analysis of Fast PALM in Section 2 and Fast PL-ADMM-PS in Section
3.

1. Some Lemmas

Lemmal [2] Let g : R™ — R be a continuously differentiable function with Lipschitz continuous gradient and Lipschitz
constant L. Then, for any x,y € R™,

L
9(x) < g(y) + (x =y, Vg(y)) + 5 [Ix - y[I* (D
Lemma 2 Given any a, b, ¢, d € R™, we have

(@a-ba-c)=(la-b*+a—c|*~|b-c|?). 2

| =

1
(a=be—d) =3 (la—d|* —lla—c|” —[b—d|* +[b—c|). 3)

Lemma 3 Assume the sequences {a®)} and {b*)} satisfy a(® = 1,0 < a**V) — ¥} < 1 and b*® > 0. Then we have

K K
Za(k) (b*) — pk+1)y < Z bk 4)
k=0 k=0
Proof. We deduce
K K-1
Za(k)(b(k) _ b(k+1)) = aOp0 4 Z a1 _ k))b(k-H) aFE)p(K+1)
k=0
K-1 K
< B0 YR =N "p®),
k=0 k=0
|
Lemma 4 Define the sequence {9(’“)} as 00 =1, % (,f(flt)l) (0(%))2 and 0%) > 0. Then we have the following properties

gUk+1) — —(0%)2 4+ /(0R)1 + 4(0))2

5 ; (&)
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ZT = 9<K>> ©

k=0
1 1
0< RG] <1, N
2
o) < Pt ®)
and
o) < 1. 9)

ol SV/CIRNE T

Proof. From the definition of 61 it is easy to get that f(*+1) = . This implies that (%) is well

defined for any £ > 0. Furthermore, since 9(k+1) = (0(1"’}'1))2 — (9@)2 and 00 = 1 we have
S| 1 =1 1 = 1\ 1 1 11 0
ZW 0(0) + Z gk+1) — p(0) + H+1)) (g(k))z O] + (0(K))2 - (6(0)2 - (9F)2" (10)
k=0 k=0 k=0
From g(k1+1) = (g(lerl))z — (0(%))2, 6*) > 0 and #*—1) > 0, we can easily get
1 1
g g O (5
and
1 1 1 1 — g(k+1) 1 —+/1—gk+1) 1 ] 12
g(k+1) — pk) — gk+1) g(k+1) - g(k+1) - 1+ 1 - gk+D) <L (12)
Next we proof o) < k+2 by induction. First 0 =1< 0+2 Now assume that (%) < m and we prove R+ < %JFB We
deduce
QU+1) _ (g(k) + \/ O(R))4 4 4(9(k)) B 2(9(k))2
2 (02 + \/ (6(F))2
2 2
- = Sy
L+ 1+ g 1+ 1+ (k +2)2 +
So (8) holds. Note that k) ig decreasing by (7) and 6 = 1, we have (9). The proof is completed. |

2. Convergence Analysis of Fast PALM

In this section, we give the convergence analysis of Fast PALM for solving the following problem

min f(x), st A(x)=hb, (13)

where f(x) = g(x) + h(x), both g and h are convex, and g € C*1:
IVg(x) = Vy(y)ll < Llx=-yl, vxy. (14)

For the completeness, we give the Fast PALM in Algorithm 1.
It is worth mentioning that the definition of #*+1) in (20) is equivalent to #(®) = 1, %g(fiklt)l; =1 9(,%))2 and #*) > 0 in Lemma

4. Such a property will be used in the following analysis several times.
The anaysis of our algorithms is based on the following property:

Lemma S [1] X is an optimal solution to (13) if and only if there exists o« > 0, such that

F() = F(x") + (A% AR) = b) + 5 [LAR) — b = 0. (1s)



Initialize: x°, z0, A?, 5(0) = 9(0) =1,
fork=0,1,2,--- do

B — (1 — 9F))xF 4 gR) g (16)
2 = argming(y*™) + (Vg(y* ), x = y¥) + h(x)
(k) Lo%)
FORAG) —b) + 400 b2+ P 2 (1)
XL = (1= 0R)xF 4 gk gkt (18)
Ak+1 _ Ak + ﬂ(k)( ( k+1) _ b), (19)
g+ —(0™)* + \/ 0% +4(6™)2 7 20)
L @
T+
end
Algorithm 1: Fast PALM Algorithm
Proposition 1 In Algorithm 1, for any X, we have
1 — gk+1) k+1) (x) AT(/\k+1 k+1
(6R+1))2 (f(x - fx) - e(k) ( ), x—z"")
1—6% L
< gy U0 = 100) + 5 (I =] = I+ ). 22)
Proof. From the optimality of z**! to (17), we have
0 € OhEZ""Y) 4+ Vay*+h) + AT(AF) 4+ B0 AT (A(z"1) — b) + LOW) (2 — 2F)
_ ah(zk+1> +vg(yk+1) +AT()\k+1) +L0(k)(zk+1 —Zk), (23)
where (23) uses (19). From the convexity of h, we have
h(x) — h(zFt1) > <—Vg(yk+1) — AT(AF) - Le(k)(zk—b—l ) x — Zk+1> ) (24)



On the other hand,

FEEY < gyt + <Vg(yk+1),xk+1 _ yk+1> I gnxkﬂ — P2 g (xR 25)

— g(y* + <vg(yk+1)’ (1= §W)xk 4 g gh+1 _ yk+1>

Jé”(l 0 )xk gk _ k12 4 ((1 TCINN 9<k>zk+1) 26)
< (1=0%) (oM + (VgyF ), xF — y* ) + h(xb))

+0P) (g(y" ) + (Vg (y* ), 28T — y* 1) 4 n(2"h)) + WIIZ"c+1 — 2" @7
= (1-6W) (") + (Vgy™ ™), x* —y"*1) + h(x¥))

+0(k) (g(yk+l) + <vg(yk+1)’x o yk+1> + <vg(yk+l),zk+l o X> + h(zk-i-l))

+L(9;k))2 2+t — 2t
< (=0 FE 0 (9(0) + (Vo™ ), 2 = x) + h(2") + wl\zk“ — 2|7 (28)
< (1= 0W) ")+ 0% (g(x) + hx) + (AT + Lo0 (251 = 2), x — 2541 ) (29)

L(Q(k))2
S =

(k)\2
= (0 o) 0% £ (x) 69 (AT (V) - ) - BT (e k) o)

where (25) uses (1), (26) uses (18), (27) is from the convexity of h, (28) is from the convexity of g, (29) uses (24) and (30) uses
(2). Rerangging the above inequality leads to

(1) = £0) — 009 (AT(AF1), x — 2441)

(k) k LW 2 k41 2
< (1=0") (P& = f60) + === (12" ==l = [Iz*" —xII%) . (31)
Diving both sides of the above inequality by (6(*))? leads to
1 k+1 1 T(y\k+1 k+1
W(f(x )*f(x))*m<v4 (A"),x —z >
16" k Lok 2 k+1 2
< G ) = 160) + 5 (It =P = 27 —x]?).
The proof is completed by using the property of (%) in Lemma 4. [ ]

Proposition 2 In Algorithm 1, the following result holds for any A

(A b A= x) + 2 )

1
= ggm (AT =2 = I = X)) (32)

Proof. By using (19) and (2), we have
(A(Z"1) — b, A = AFH)

1

= AT AR AT
1

= g (XA = I X R X 2)
1

(k)
_ E o212 _ xk+1 22\ _ B E+1y 112
= 5® (I = X = A = XJ?) = == A2"+) — b,



The proof is completed.

Theorem 1 In Algorithm 1, for any K > 0, we have

f(xK+1) _
2

(K + 2)?

fx

(LD;. + D3.).

*)+<)\*,A(XK+1)7b>

Proof. Let x = x* and A = A* in (22) and (32). We have

1— 9(k+1)

k+1 * * * k+1

L * * *
< 3 (2" — x| = [z — x| )JT(k (A" = AL A2 ) — b)

L k * (12 k+1 * (12 1 k * (12 k+1 * (12 k+1
< 5 (= 12 1)+ g (A= X2 = XA ()
= 3 (llz" = x*|? = 2" = x*|1?) + 5 (NS = A2 = A = N)12) - TCEIE A1) = b|1?,

where (36) uses the fact A(x*) = b, (37) uses (32) and (38) uses %) = %
Summing (35)-(38) from k£ = 0 to K, we have

1— pK+1) Ko . 1-60 S| N A(ZFH
W(f(x )_f(X))_W ;T )—b>
L 1 W
Lo o2 Ln0 w2 k41 2

< Szt =X+ SlIAT = AT kz: GRIE 5 1A(z") — bl
I K
Ly o 2y 0 (2 gh+1 2

< Sl =X+ SN0 - ) kZ%(k)HA( )~ b2,

1—6%)

where (40) uses (9). Also note that #(®) = 1. So the second term of (39) disappears.
On the other hand, by the property of (%) in Lemma 4 and (18), we have

So

K ht1
szo g(k)
K
-y L e 1200,
P (0(k))2 (0k))2
K .
_ Z 1 — gk+1) R 1— %) o
prt (9(k+1))2 (g(k))2
_ 1D o 1-00 0
(9(K+1))2 (9(0))2
1—gK+D K+1
= (O(K+1))2 X
1 K+1
- WT))?X
X 1
* k *
Z §(k) (A z1) —b) = (0(K))2 (A AR
k=0

+ G

~blf?

—b]?

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)



By the convexity of || - ||2, we have

K
Z k:—i—l) b||2

k=0

1 0 K))2 k+1 2
= 2(9(]{))2 Z 9(F) HA(Z ) - b”
k=0

1 9 K gkt
> ) A Zr(k) ~b 43)
k=0
<E+1) _pl12
sy A b (44)
where (43) uses (6) and (44) uses (41).
Substituting (42) into (39) and (44) into (40) respectively, we obtain
o (P = F(x) + ooy (A AGH) — b 4 b AR —bE )
(9(K+1))2 (9(K))2 ’ Q(Q(K))Q
L 1
< Sl = x4 IR = AT (46)
2 2
Multiplying (45) and (46) by ((%))? and using (8) leads to
1
PO = FO) 4 (N, A = b) o AGRH) — b2
2
< L 0 _ *|2 AO _ A* 2
< e W - A - X))
2
= ———— (LD% +D3.).
( K+ 2)2 ( x- T DX )
The proof is completed. ]
3. Convergence Analysis of Fast PL-ADMM-PS
In this section, we give the convergence analysis of Fast PL-ADMM-PS for solving the following problem
i Z fi(xi), s.t. ; Ai(x;) = b, (47)

where f;(x;) = gi(x;) + hi(x;), both g; and h; are convex, and g; € C'-1. The whole procedure of Fast PL-ADMM-PS is shown
in Algorithm 2.

Proposition 3 In Algorithm 2, for any x;, we have

1— g+ k1 T} kt1 41
W (f( - fz(Xz)) 90 <-A ()‘ )X -zt >
1-60 Li
< o (i) = 1)) + = (12 =l = 2+ = i)
BEm; 2 1 2 B+l k2
+ 29(k) (sz - XZ” - ||z1 - xi” - sz —Z; ” ) ) (53)

where -
AT = A4 B0 (A(ZF) — D). (54)



Initialize: XO’ ZO’ AO? 0(0) = 1, fix /B(k) = ﬂ for k > O’ n; > n||ALH29 1= 1a N,
fork:071727... do
//Update y;, z;, X;,% = 1,- -+ ,n, in parallel by

yEH = (1= 9W)xE 4 9®) gk, 48)
2+ = angmin (Vi (y ), x) + huox) + (N A+ (50T (AN = b))

D) ‘ i — Z§||2§ (49)

xFHE = (1 — gW)xk 4 gk g+, (50)

A= A4 B8 (A — ) (51)
k

Q1) _ —(6")2 4 \/(9(@)44_4(9(1@))2' )

2

end

Algorithm 2: Fast PL-ADMM-PS Algorithm

Proof. From the optimality of z" ™ to (49), we have

0 € Ohi(z; ™)+ Valy; ™) + AT (A") + g% T(A(zk)—b) (L™ + W) (25 — 2)

= Ohi(z™) + Vai(yFh) + AT (N + (L0 + pR) (25 — 2F), (55)
where (55) uses (54). From the convexity of h;, we have
hi(xi) = hi(z ) > < Vailyth) = AT = (Li0™) + 800 (2T — 2), %, — Z§+1> : (56)
On the other hand,
RO < gy )+ (Vo) — ) Tt g7 k) 57)

= g(y"h+ <Vgi(3’f+1), (1— 0™k 4 g+t — Yf+1>

FE 00t 1 00T B2 g (1 00k 4 g5k (58)
< 1=09) (g5 + (Vo). xf—yf+l>+h» <)
g(k)( i (yh k+1 <ng k+1 Zht1 _ l_c+1>+ k+1 )+ 2||Zk+1 I;HQ (59)
= (10" (g:(yi*) +(Vaily ’““),X’? “>+h 3))
O (g:(yi ) + (Vailyl ™ )oxi = yi ™)+ (Vailyd ™), 20 = xi) + ha(2))
2
(2 ) sz+1 k||2 (60)
k k k k+1y _k+1 k+1 Li(e(k))2 k+1 k2
< (L= 0L + 0" (i) + (Varlyi ) 2l = i) + ha(af ) + TE I - 2P 6
< (1=0W)fixf) + 0 (gi(xi) + hi(xi) + <AiT(5\k+1) + (L™ + W) (2 —2f), % — Zf+1>)
L;(0%))2
$ LT g gy (62)

= (1= 0W) £ + 0% fi(x) + 00 (AT (R, x; — 2l

_Li(e(k))Q +0W gk, (|l 2+
2 1

Li(e(k))Q
2

= xil|? — l|zf = xil|? + |25 — 27]%) + Izt =212, (63)



where (57) uses (1), (58) uses (50), (59) is from the convexity of h;, (61) is from the convexity of g;, (62) uses (56) and (63) uses
(3). Rerangging the above inequality leads to

(Fih ™) = fi(xa)) = 00 (AT (AF4),x; = 250

(00))2
< (L= 0W) (filxh) = filxa) + L0 (2 = xil* = ll28*" = xi]]?)

2
0F) k),
o (2 =il = [ = xil? = 2 - 2 (64)

Dividing both sides of the above inequality by (6(*))? leads to

(H(k)) (fz( k+1) fl(xl)) H(k) <_AT()\k+1) . Zf+1>

1- 9k Lo e v ik
= oo () = £i0) + 5 (I = = ™ =)
s i
+ogamy (2 = xill® = 12 = xif® = [z — 2f)?)
The proof is completed by using 20_(,?&?)1; = (0(}1>)2_ .

Proposition 4 In Algorithm 2, the following result holds for any A
A~ ba— 3 + 00 g k*l) b

<

1
250 (IA° = AP = X = AJP) Zmllz‘“+1 zF )%, (65)

—y i 2 .
where o = min{n%_l, {7(’77:_%1)“"11’“"2 Ji=1,--- ,n}}
Proof. By using (51) and (3), we have

<A(Zk+1) _ b, A — j\k+1>

1 .
_ ﬂ(k) <Ak+1 Ak’)\ _ Ak+1>

_ 1 kyj2 k12 1 SkHL Zk(2 kel jk+1)2

= g0 (A= NP = = NFH) = s (JARE N AR = 3R7) (66)



Now, consider the last two terms in the above inequality. We deduce

1 < -
2l8(k) (||>\k+1 _ )\k”Q . H)\kJrl _ >‘k+1H2)
5k n 2 " 2
= 5 ZAi(Zf)*b - ZAi(Zi‘CH*Z?)
i=1 i=1
pk) - k P 2|, k+1 k|2
> E IS i) — b =S nllilPalt - 2k
i=1 i=1
Y [k ni — nflAil” -
= T ZAl(Zf)i +Z HA ||2 HAinHZ?J’_l*Z?H2*Z?’]i”2§+1 7Z5H2
i=1 i=1
pk) - k - k1 2 kel k2
> S e+ [ A -b| + Z | Ai(zf T = 2] Zmnz 25|
i=1 i=1
pk) S B+l E+1 k2
> oD A Zmuz z; | (67)
i=1
— M a k41 2 R & k+1 2
= THA(Z )= bl > ;m“zi z | (68)
The proof is completed by substituting (68) into (66). ]

Theorem 2 In Algorithm 2, for any K > 0, we have

f(XKJrl) —f(X*)+<>\*,.A(XK+1 b>+ ||A K+1 b”2

WomaxD2  2BnmaxD% 2D} (69)
T (K +2)? K +2 B(K +2)
where oo = min{%_‘_l’ {%,Z =1,- n}}, Loyox = maX{Li,i =1, ,TL} and Nmax — max{m,i =1,--- ’TL}.

Proof. Letx; = x; and A = A* in (53) and (65). We have

m _n (filxi™) = fulx))) = 17(:; 5 eli (A", Ai(zF) = b)) (70)
< ;iu(uzf—xﬂﬁwwfﬂ—x ) W)fm (2 = 2 = 1257 = ;2 — 1260 — 252
2
ﬁ@\* SR A(ZFY) b (71)
< ;iu(uzf—x:ntnzf*l ) 29(k)2m 2 i 2 = 2 )
Z
+m (IAF = 2712 = [|A+ = a%?) 20(k) im| FHL k2 29(k HA( kL) )2 (72)
IS (e 1 )+ L Zm— (I = x 2 = 125+ = X))
=1 i
b (I = X = A x2) = D) e 73

2600k 5(F)



where (71) uses the fact A(x*) = b and (72) uses (65).
Summing (70)-(73) from k = 0 to K and fixing 3*) = 3 > 0, we have

1 70(K+1) . K+1 * 1- 9( ) o 1 A* k+1
W (f’L( ) = filx})) — 00)2 Z(fz( JF;W )—b) (74
1 . * 1 - k * k+1 *
< 3> Ll -xI? o S B (It = 2 = [l = x; )
i=1 k=0 i=1
K 1 K
+ 3 g (A" = VI - IX ) - Z 7A@ ) — b
1 - * *
< §ZL1-IIZ?—XZ-II2 ZZﬂm 7 — x7||* + 252\\*’“ A7~ 229 a AT =bl?,(75)
i=1 k 0i=1
1 1 S
< 3 (LmaxDi* + K BimaxDx + BKDA — ﬁaz WHA(ZM—I) - b2> (76)
k=0

where (75) uses (4). Also note that 8(®) = 1. So the second term of (74) disappears.

Note that (42) and (44) also holds here. Substituting (42) into (74) and (44) into (76) respectively and using 29_&0((% =

W, we obtain

# - (K1 s # * K+1 570‘ K+1 2
@y 2 (O = f6) + Gy (N7 ACT) = b) + 2 G — bl
1=
1 9 ) 1
< 5 LmaXDx* + KﬁnmaxDX + BKDA .
The proof is completed by multiplying both sides of the above inequality with (%) and using (8). [

Theorem 3 Assume the mapping A(x1,- - ,x,) = > i, Ai(x;) is onto!, the sequence {z*} is bounded, Oh(x) and Vg(x)
are bounded if x is bounded, then {x*}, {y*} and {\F} are bounded.

Proof. Assume ||z*|| < Cy for all k and ||x°|| < Cy. Then from (50) we can easily get ||x*|| < C; for all k. Then from (48) we
have ||y*|| < C; for all k. Assume ||0h(x)|| < Cq and ||Vg(x)|| < Cq if |x|| < C;. Then from (55), we have

(L0 + 5(’“)771)(2’1““ — z})

(2

0 € =Y 4+ Vgly* ) + ATAF) 4+ O AT (A(Z") — b) + | (L:6® + g* )( AL _ gk

(Ln0®) + B® ) (2 — 27)

and

(L10%) + *) ) (25 — 2f)

—AAT(NY) e A On(EMT) + Vg(yM ) + BV AT(A(2") — b) + | (Li0®) + 8P m)( i —ap)

(L™ + 8", ) (2 — 2f)

IThis assumption is equivalent to that the matrix A = (A1, -+, Ay) is of full row rank, where A; is the matrix representation of A;.




So we have

(L160%) + BRI, ) (2T — 2F)
N < [(AAT) TR A | ORr(zMTY) + Vg(y* ) + BRI AT (AZ —b) + | (Li6™) + R (25! — 2F)
(Lno(k) + B(k)nn)(zﬁ+1 - Zﬁ)
< AAT) LAY (J10RE) + [9 9l )] + 18 AT Az | + 8D AT + (Linaxd® + 8O ) (12541 + [12]))
< (A4 A (202 + BWATA|Cy + BP | ATD| + 2(Limaxd™ + 5<k>nmx)cl) .
for all . |
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