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ABSTRACT
It is a very challenging task to recognize emotion in the
wild. Recently, combining information from various views
or modalities has attracted more attention. Cross modal-
ity features and features extracted by different methods are
regarded as multi-view information of the sample. In this
paper, we propose a method to analyse multi-view features
of emotion samples and automatically recognize the expres-
sion as part of the fourth Emotion Recognition in the Wild
Challenge (EmotiW 2016). In our method, we first extract
multi-view features such as BoF, CNN, LBP-TOP and audio
features for each expression sample. Then we learn the corre-
sponding projection matrices to map multi-view features into
a common subspace. In the meantime, we impose `2,1-norm
penalties on projection matrices for feature selection. We ap-
ply both this method and PLSR to emotion recognition. We
conduct experiments on both AFEW and HAPPEI datasets,
and achieve superior performance. The best recognition ac-
curacy of our method is 55.31% on the AFEW dataset for
video based emotion recognition in the wild. The minimum
RMSE for group happiness intensity recognition is 0.9525 on
HAPPEI dataset. Both of them are much better than that
of the challenge baseline.
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1. INTRODUCTION
Automatic emotion recognition attracts more and more

attention in computer vision due to its important role in
many applications, such as human computer interaction
(HCI) and psychological research. Many methods [25, 38]

have been proposed for expression recognition during the
past decades. However, former researchers mainly focus on
static images based emotion recognition under lab-controlled
environment. In recent years, with the organizing of sev-
eral emotion recognition competitions such as Audio Video
Emotion Challenges (AVEC) [26] and Emotion Recognition
challenge in the Wild [6, 5], video based emotion recogni-
tion in the wild has been greatly promoted. Compared with
previous static images based recognition under controlled
environment, video based emotion recognition in the wild
is more challenging as it has large pose and illumination
variations caused by uncontrolled real-world environment.

Several methods have been proposed to recognize video
based emotion in the wild and achieved very good perfor-
mance. For instance, Zhao et al. [39] used LBP-TOP features
to encode spatial-temporal patterns in dynamic images se-
quence. Liu et al. [14] used Riemannian manifold kernels to
represent each expression video clip. Sikka et al. [22] applied
multiple kernel learning to combine different features. Yao et
al.[37] encoded facial feature relations with graph structure.
Wu et al. [33] extracted multiple features from video clips
and fused them based on the partial least square regression
(PLSR) [32].

As facial emotion video clips contain much spatial-temporal
and multi-modality information, it’s important to represent
it from multi different views [30]. Another issue is that how
to make full use of these multi-view features to improve emo-
tion recognition. Towards these two issues, in this paper, we
first extract different kinds of features such as LBP-TOP [39],
BoF [12], CNN [19] and audio features. Those features are
regarded as various views of emotion samples for better rep-
resentation. After multi-view features extraction, we propose
a common space learning method to utilize multi-view and
multi-modality features to improve the classification. In the
common space learning method, we use common space pro-
jection to measure the relevance among multi-view features,
and `2,1-norm penalty term is used to select relevant and
discriminative features. An iterative algorithm is presented
to solve the regularized linear regression problem. On the
other hand, we also utilize PLSR [32] to calculate the re-
gression score of each view features as [33] did. Finally, we
combine the projected features together. An overview of
our proposed multi-view common space learning method is
shown in Figure 1.

The rest of this paper is organized as follows. We first
introduce the extracted multi-view features in Section 2.
Then we present the details of multi-view common space
learning method and PLSR in Section 3. In Section 4, we
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Figure 1: Framework of the proposed multi-view common space learning method. For video or image emotion
samples, we first detect and align the face. Then we extract multi-view features, such as SIFT, LBP, audio
features and et al. Finally, we learn the projection matrix for each view to map the data into one common
space. In the common space, we can combine the mapped multi-view features to improve the recognition.

conduct extensive experiments on both AFEW and HAPPEI
datasets. Finally, Section 5 concludes our paper.

2. MULTI-VIEW FEATURES

2.1 Audio Features
For video based emotion recognition, audio information

plays an important role [2]. We use the openSMILE toolkit [8],
an open-source feature extractor that unites feature extrac-
tion algorithms from the speech processing and the Music
Information Retrieval communities, to extract audio features
based on INTERSPEECH 2010 audio template [21]. We
use 21 energy & spectral related functionals and 19 voic-
ing related functionals to extract corresponding low-level
descriptors and delta regression coefficients. With another 2
voiced/unvoiced durational features, there are 1582 dimen-
sional features in total. For detailed feature information,
please refer to [9].

2.2 LBP-TOP Features
Local Binary Patterns from Three Orthogonal Planes

(LBP-TOP) [39], extending from the widely used LBP [18]
operator, is proposed to handle the influence of varying rota-
tion and lighting condition on dynamic textures. LBP-TOP
considers the co-occurrence statistics of dynamic textures
in three directions, concatenating LBP on three orthogonal
planes: XY, XT, and YT, where the XY plane provides the
spatial texture information, and the XT and YT planes pro-
vide information about the spacetime transitions. Features
of LBP-TOP [39] are robust to gray-scale and rotations varia-
tions. It has been successfully applied to video based emotion
recognition while the video can be regarded as a sequence
of dynamic facial expression images. We adopt LBP-TOP
to extract dynamic features for expression recognition in the
wild.

2.3 Features of the BoF Model
Bag of Features(BoF) [3] is one of the most popular and

effective image classification frameworks in recent literature.
It has achieved the state-of-the-art performance in many
classification tasks [12], including the emotion recognition.
The commonly used BoF framework generally consists of
four basic modules: local features extraction, codebook gen-
eration, descriptors encoding and spatial pyramid pooling.
In this paper, we use two kinds of coding methods to extract
video features.

We first divide each image or each frame of the emotion
video into many overlapped grid blocks with a fixed step
size, and then extract SIFT [16] features on each block. The
extracted SIFT [16] features are invariant to image scale and
rotation. Based on the SIFT features, we simply use the
classical K-means [15] clustering algorithm to learn the dictio-
nary for encoding. Then we adopt locality-constrained linear
coding (LLC) [29] and group saliency coding (GSC) [34],
which are two commonly used encoding methods of BoF.
The core idea of LLC [29] is to reconstruct features with
closest codewords via resolving a least square based opti-
mization problem with locality constraints on the codewords.
Different from reconstruction based coding method LLC,
GSC [34] is developed from the saliency based coding [11].
For detailed information and comparison of these encoding
methods, please refer to [12]. Finally, we use the spatial
pyramid matching (SPM) [13] method to partition the image
into increasingly finer spatial subregions. Max pooling [36] is
adopted to pool all responses on each codeword in a specific
subregion into one value. Final representation is obtained by
concatenating descriptions of all blocks.

After feature extraction of the BoF [3] model, the dimen-
sion of extracted feature vectors is very high, especially when
the number of spatial pyramids levels is large. High dimen-
sional features will influence both the efficiency and accuracy
of classification. In this case, it is necessary to reduce the
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features dimension. We use the principle component analysis
(PCA) [17] to reduce dimension. The core idea of PCA [17]
is to maximize the total variance of projection.

2.4 CNN Features
Convolutional Neural Networks (CNN) have achieved the

state-of-the-art performance in many computer vision tasks,
such as face recognition [19]. One of the most famous CNN
architectures is the deep convolutional network [23] designed
for ImageNet Challenge 2014. For image based emotion
recognition, we adopt the 16 weight layers CNN network
presented in [23] to extract CNN features. This network
contains 13 convolution and 3 fully-connected(FC) layers.
For detailed architecture information, please refer to [23].
We directly use the parameters trained on the face dataset
of [19], which contains 2.6 million faces of 2622 celebrities.
In our experiment, the features after the first FC layer are
used to represent the images.

3. MULTI-VIEW ANALYSIS
In this section, we first present the framework to learn the

common space for multi-view features. Then, we give an
iterative algorithm to optimize the linear regression problem.
Finally, we introduce another regression method PLSR for
emotion recognition.

3.1 Multi-view Common Space Learning
As we have multi-view features of emotion clips or images,

there are mainly two important issues that we need to take
into consideration for improving the recognition accuracy.
On the one hand, we need to measure the similarity among
various views features. On the other hand, we need to select
the relevant and discriminative features during learning. In
this case, we propose a multi-view common space learning
(MCSL) method with `2,1-norm penalty to achieve the above
two requirements.

3.1.1 Problem Formulation of MCSL
Let Xq = [xq1, x

q
2, · · · , xqn] ∈ Rdq×n, q = 1, 2, · · · ,M denote

the q-th view labeled data matrices, where n is the num-
ber of train samples, M is the total number of views and
dq is the dimension of each feature in the q-th view. Each
pair{x1i , x2i , · · · , xMi }, i = 1, 2, · · · , n represents M views fea-
tures of i-th sample and belongs to the same class. Let
Y = [y1, y2, · · · , yn]T ∈ Rn×c denote the class label matrix,
where c is the number of classes. The class indication matrix
Y satisfies that yij = 1 if data point xi belongs to the j-th
class, yij = 0 otherwise. The common space learning method
aims to map the multi-view features into the common space
defined by the class labels by learning a projection matrix for
each view features. In the meantime, we impose l2,1-norm
on the projection matrices for feature selection. Then, we
can get the objective function for common space learning:

min
W1,··· ,WM

M∑
q=1

‖XT
q Wq − Y ‖2F + λ

M∑
q=1

‖Wq‖2,1, (1)

where Wq ∈ Rdq×c is the projection matrix for q-th view
data. For matrix U ∈ Rn×m, let U (i) denote its i-th row.
The Frobenius norm of the matrix U is defined as ‖U‖F =√∑n

i=1 ‖U (i)‖22. The `2,1-norm [1] of U is defined as the sum

of the `2-norm of the rows of M : ‖U‖2,1 =
∑n

i=1 ‖U
(i)‖2. In

the objective function Eq. 1, the first term is multi-view linear

regression, which can help us to map all different view data
into one common space and compute their similarity. The
second term is used for feature selection. As the `2,1-norm
encourages the sparsity of W ’s columns, the discriminative
features that are relevant to the class label will get large
weights.

3.1.2 Optimization Algorithm for MCSL
The optimization of Eq. 1 is equal to optimize the following

M subproblems:

min
Wq

‖XT
q Wq − Y ‖2F + λ‖Wq‖2,1, q = 1, 2, · · · ,M. (2)

As the sub-problem in Eq. 2 contains a nonsmooth regu-
larization terms of `2,1-norm, it’s complicated to solve Wq

directly. Thus, we use an alternative iterative algorithm to
solve this problem. When the `2-norm of i-th row of q-th

view projection matrix equals to zero, that is ‖W (i)
q ‖2 = 0,

then Eq. 1 is not differentiable. Following [28, 31], we can
introduce a small perturbation ε to `2-norm of each row, and

‖Wq‖2,1 can be replaced with
∑n

i=1

√
‖W (i)

q ‖22 + ε. Here, ε

is usually set to be a small constant value. It is easy to
verify that when ε→ 0, the derived minimization problem is
obviously equal to the problem Eq. 2.

Then, we can get the derivative of the objective function in
Eq. 2 with respect to Wq, and set it to zero. We can obtain
that:

XqX
T
q Wq −XqY + λDqWq = 0, q = 1, 2, · · · ,M, (3)

where Dq is a diagonal matrix with the i-th diagonal element
as 1√

‖W (i)
q ‖22+ε

. Further we have:

Wq = (XqX
T
q + λDq)−1XqY, q = 1, 2, · · · ,M. (4)

We need to mention that Dq is dependent on Wq which is
still unknown variable. Under this circumstance, we use an
iterative algorithm to solve the problem Eq. 4. The algorithm
is described in Algorithm 1.

Algorithm 1 An Iterative Algorithm for Multi-view Com-
mon Space Learning (MCSL)

Input:
Multi-view data Xq ∈ Rdq×n, q = 1, 2, · · · ,M ,
class label matrix Y ∈ Rn×c.

Initialize:
Set t = 1 and initialize W 1

q by solving:

minWq ‖XT
q Wq − Y ‖2F , q = 1, 2, · · · ,M .

while not converge do

1. Calculate the diagonal matrix Dt
q for q = 1, 2, · · · ,M ,

where the i-th diagonal element is 1√
‖W (i)

q ‖22+ε
.

2. Compute W t+1
q for q = 1, 2, · · · ,M according to Eq. 4.

3. t = t+ 1.

end while
Output:

Projection matrices Wq ∈ Rdq×c, q = 1, 2, · · · ,M .

In Algorithm 1, we first initialize the projection matrix
W 1

q by solving the simple linear regression problem without
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(a) Some example frames of expression videos in the wild (b) Some example images for group happiness intensity
recognition in the wild

Figure 2: Some example images of AFEW 6.0 and HAPPEI datasets.

penalty. This can be achieved byW 1
q = (XqX

T
q )−1XqY, q =

1, 2, · · · ,M . While the algorithm does not converge, we com-
pute the diagonal matrix Dt

q in step 1. In step 2, we compute
the optimal projection matrices W t+1

q for each view data.
The computation cost of MCSL is very low. According to

Algorithm 1, since it’s easy to compute the diagonal matrix
Dt

q with Wq, the computation cost of step 1 is trivial. In
step 2, instead of directly computing the matrix inverse
with cubic complexity, we can update W t+1

q by solving a
system of linear equations with quadratic complexity. Let
d represents the largest dimension value among dq, that is
d = max(dq), q = 1, 2, · · · ,M . Then the time complexity
of MCSL is about O(kd2), where k is the total number of
iterations until Algorithm 1 converges. In our experiments, it
takes less than 10 iterations before the algorithm converges.
Therefore, the whole algorithm of MCSL can be solved very
efficiently.

3.2 PLSR
Besides the MCSL, we also apply the PLSR to emotion

recognition in the wild. We adopt the same PLSR manner as
that in [14, 33]. PLSR can be regarded as the combination of
PCA [17] and canonical correspondence analysis (CCA) [24] .
For each category, we design an one-vs-all PLSR to calculate
the regression value. Let X be feature variables and Y be
the 0-1 labels. According to [20], PLSR decomposes these
variables into:

X = TPT + E,

Y = UQT + F,
(5)

where T and U contain the latent vectors, P and Q are
orthogonal loading matrices, and E and F are residuals.
PLSR tries to find the optimal weights wx and wy to get the
maximum covariance such that:

[cov(t, u)]2 = max
|wx|=|wy|=1

[cov(Xwx, Y wy)]2. (6)

Then we can get the regression projection matrix B [20] as:

B = XTU(TTXXTU)−1TTY. (7)

The regression score can be estimated by:

S = XB. (8)

Following the above process, we can calculate the regression
value of test samples.

3.3 Combination Strategy
For each view features, we utilize both the MCSL and

the PLSR methods to learn their corresponding projection
matrix, which is used to map the data into the common space
defined by the label matrix. The projected result of each view
data represents the confidence score that this sample belongs
to each class. Then we adopt the score level combination
method and assign specific weight to the confidence score of
each view data:

Scomb =

M∑
q=1

αqS
q, (9)

where Scomb denotes the combined confidence score, and
Sq represents the confidence score computed on q-th view
features. The weights which vary from view to view are
relevant to the performance of each view. We learn the
optimal weights on the validation dataset. The final predicted
label of emotion sample is the category with the largest
combined confidence score.

4. EXPERIMENTAL RESULTS

4.1 EmotiW 2016 Challenge
The emotion recognition in the wild challenge (EmotiW

2016) [5] contains two sub-challenges. One is video based
emotion recognition challenge and the other is image based
group level happiness recognition challenge. All the data
of EmotiW 2016 are collected in the wild, which is very
close to real world conditions. We take part in both two
sub-challenges to evaluate the performance of our methods.

The dataset for video based emotion recognition (VER) is
AFEW [7] 6.0 dataset, which includes 773 train video clips,
383 validation video clips and 593 test video clips. All train
and validation video clips are collected from movies. The test
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Table 1: Recognition accuracy comparison between PLSR and MCSL on validation dataset of AFEW with
single view features for video based emotion recognition.BoFLLC stands for the LLC based BoF method and
BoFGSC denotes the GSC based BoF method.

Audio features LBP-TOP features LLC based BoF (BoFLLC) GSC based BoF (BoFGSC)

PLSR 33.96 % 37.74% 47.44% 45.82%

MCSL 33.42% 38.54% 45.82% 49.06%

Table 2: Performance comparison of different methods on both validation and test datasets for video based
emotion recognition.

Methods
Accuracy

Val Test

Baseline (LBP-TOP) 38.81% 40.47%

Audio+

Video

Multi-view features with MCSL 49.87% 51.43%

Multi-view features with PLSR 49.87% 51.94%

Multi-view features with PLSR (Customized) – 55.31%

data consists of both movies data and reality TV data, which
is the major difference between EmotiW 2016 and earlier
years’ challenge. Figure 2(a) shows some example images
of seven expressions taken from video clips. The major
task of VER is to classify each video clip into seven basic
expression types, such as angry (AN), disgust (DI), fear (FE),
happy (HA), neutral (NE), sad (SA) and surprise (SU).

HAPPEI [4] dataset is collected for group level happiness
recognition sub-challenge. This dataset contains 1500 train
images, 1138 validation images and 496 test images. Each
image contains group of people. The task is to infer the
happiness mood intensity of the group as a whole on a scale
from 0 to 5. In Figure 2(b), we present some example images
of six levels happiness.

4.2 Parameter Setting
For our MCSL method, we fine tune the parameter λ in

Eq. 1 by searching the grid of {10−3, 10−2, · · · , 102, 103}. λ
is set to 1 in all experiments.

For video based emotion recognition, organizers first apply
pre-trained face models [40] to detect faces in each video clip.
Then, they adopt the intraface tracking library [35] to align
the detected facial images. And each facial image is aligned
to size 128× 128.

LBP-TOP [39] features are extracted from non-overlapping
spatial 4× 4 blocks by the organizers. We directly use the
aligned facial images as well as the extracted audio and
LBP-TOP features provided by organizers.

Similar to LBP-TOP features, BoF features are also ex-
tracted for both video based emotion recognition and group
happiness intensity recognition. We divide each facial image
into overlapped blocks with step 1 and size 16× 16. Then
we use the Vlfeat [27] to extract 128-dimensional SIFT fea-
tures in each block. Based on the SIFT features, we learn
the dictionary by the K-means [15] clustering algorithm
with 1024 centres. Both the nearest neighbours number
for LLC [29] and groups number for GSC [34] are set to
5. During the pooling process, we employ the SPM with
levels of [1× 1, 2× 2, 4× 4, 8× 8]. We adopt max pooling
to pool the features in each region of the image for group
happiness intensity recognition and across all the frames of
each video for video based emotion recognition. Under the

above settings, dimension of the final BoF representation for
each sample is 1024× 85 = 87040. We further use PCA [17]
to reduce dimension with principle components ratio 97%.

We only extracted CNN features for image based group
level happiness intensity recognition. We adopt the 16 weight
layers CNN network presented in [23]. For detailed architec-
ture information, please refer to [23]. We directly use the
parameters trained on the face dataset of [19], which contains
2.6 million faces of 2622 celebrities. In our experiments, we
use the features after the first FC layer to represent the
images. The dimension of each CNN feature is 4096.

In the combination process, as the multi-view features for
two tasks are different, the combination methods for these
two tasks are different. For video based emotion recognition:

Scomb
V = α1S

audio + α2S
LBP−TOP + α3S

LLC + α4S
GSC .

(10)
we set the optimal weights as α1 = 0.25, α2 = 0.15, α3 = 1.00
and α4 = 0.50 for PLSR, and α1 = 0.95, α2 = 0.16, α3 = 1.00
and α4 = 0.11 for MCSL, respectively. For group happiness
intensity recognition:

Scomb
G = β1S

GSC + β2S
LBP−TOP + β3S

CNN . (11)

We set the optimal weights as β1 = 1.0, β2 = 0.2 and β3 = 1.5
for PLSR, and β1 = 1.0, β2 = 0.44 and β3 = 0.08 for MCSL,
respectively. All the weights are learned on the validation
dataset.

4.3 Video Based Emotion Recognition
In Table 1, we compare the performance of PLSR and

MCSL with different single view features of validation dataset.
We can see that the recognition accuracy of MCSL is com-
parable to that of PLSR. Especially on GSC based BoF
features, the proposed MCSL can achieve 49.06%, which is
the highest recognition accuracy on single view data. Table 2
shows the multi-view results of MCSL and PLSR on both
validation and test datasets. The baseline recognition accu-
racy is 38.81% and 40.47% on validation and test datasets,
respectively. With multi-view features of both audio and
video, both the MCSL and PLSR reach 49.87% on validation
dataset. On the test dataset, the MCSL achieves 51.43%,
which is a little lower than the performance 51.94% of PLSR.
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Table 3: Recognition RMSE comparison between PLSR and MCSL on validation dataset of HAPPEI with
single view features for group happiness intensity recognition. Strategy 1 uses the label corresponding to
the largest combined confidence score as the predicted intensity, while strategy 2 sums the product of each
intensity and its corresponding confidence score.

CNN LBP-TOP GSC based BoF

Strategy 1
PLSR 0.5463 0.7379 0.5408

MCSL 0.5426 0.6196 0.5399

Strategy 2
PLSR 0.4225 0.8543 0.4510

MCSL 0.4170 0.6205 0.3987

Table 4: RMSE comparison of PLSR and MCSL on validation and test dataset of HAPPEI dataset for group
happiness intensity recognition.

Methods
RMSE

val test

Baseline (LBP-TOP) 0.78 1.3

Multi-view features with PLSR 0.3686 0.9536

Multi-view features with MCSL 0.3666 0.9525

The recognition results on both two datasets largely surpass
the baseline.

In Table 4, we present the confusion matrices of MCSL
and PLSR on the test dataset, which are similar to each
other. We can easily find that angry, happy and neutral
expressions are easily to be recognized correctly, while other
expressions such as disgust, fear, sad and surprise are more
likely to be misclassified. We also notice that it is difficult to
recognize surprise and disgust expression, and fear expression
samples are easily misclassified to surprise for PLSR. This
phenomenon might relate to few train samples of surprise and
high correlation between surprise and fear. We need to note
that total sample numbers of fear and surprise expressions on
the test dataset are 66 and 28, respectively. By analysing the
statistics in Figure 4(b), we further customize our method
slightly. For predicted surprise and disgust expressions of
PLSR, we use the category with the second largest confidence
score instead of the largest value as the predicted label. The
corresponding recognition result is shown in Figure 3, and
the overall recognition accuracy become 55.3%.

4.4 Group Happiness Intensity Recognition
For group happiness intensity recognition [4, 10], we first

detect and alignment the facial images in each group image.
Then, we classify the happiness level of each face with the
proposed methods. The group level happiness is simply
decided by the mean confidence score of all faces in this
image. The performance is evaluated by the Root mean
square error(RMSE), which is defined by:

RMSE =

√∑n
i=1(Ipre − Ignd)2

n
, (12)

where n is number of test samples, Ipre denotes the predicted
intensity and Ignd stands for the ground truth intensity of
test sample.

Besides using the label corresponding to the largest com-
bined confidence score as the predicted intensity, we propose
another strategy to decide the predicted intensity based on
the combined confidence score. As the intensity of group

Figure 3: Confusion matrix of customized method
on the test dataset of AFEW for video based emo-
tion recognition.

happiness is continuous, we sum the product of each intensity
and its corresponding confidence score, that is:

Ipre = round(

5∑
I=0

I ∗ PI), (13)

where I denotes the intensity label, PI denotes the probability
that this sample belongs to intensity I, and round means
choosing the nearest intensity as the predicted label Ipre.

Table 3 shows the recognition results of PLSR and MCSL
on validation dataset of HAPPEI with single view features
under two different strategy. It can be easily seen from
the table that the result with the second strategy is much
better than that of the first one. On the other hand, the
performance of the proposed MCSL is better than that of
the PLSR.

In Table 4, we compare the multi-view performance of the
PLSR and MCSL on HAPPEI dataset for group happiness
intensity recognition. On both validation and test datasets
of HAPPEI, the RMSE of MCSL is slightly better than that
of PLSR. On the test dataset, the minimum RMSE of MCSL
is 0.9525, which is much better than the baseline 1.3.
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(a) Confusion matrix of PLSR on the test dataset (b) Confusion matrix of MCSL on the test dataset

Figure 4: Confusion matrices of the PLSR and MCSL on the test dataset of AFEW for video based emotion
recognition.

5. CONCLUSIONS
In this paper, we propose a multi-view common space

learning method for emotion recognition in the wild. We first
extract audio features, LBP-TOP, BoF and CNN features
as multi-view features of emotion sample. Then we learn
the projection matrix for each view to map the features into
one common space defined by the class label matrix. In
the meantime, `2,1-norm is imposed for feature selection. In
the projected common space, we assign different weights
to different view results and combine them together to im-
prove the recognition. We apply both MCSL and PLSR for
emotion recognition. We evaluate the performance of our
methods on both the AFEW 6.0 dataset and the HAPPEI
dataset as part of the fourth Emotion Recognition in the
Wild Challenge (EmotiW 2016). Our method achieves very
good performances on both two sub-challenges. As multi-
view features can well represent the video and image emotion
samples for emotion recognition in the wild, in the future,
we will further investigate how to make full use of multi-view
information to facilitate recognition.
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