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Abstract. High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most
common multishot HDR approach, based on multiple low-dynamic-range images captured with different expo-
sures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) tech-
nology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one
shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures
has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing
imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose
pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology,
Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to
reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts
are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction
method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and quali-
tative results show the superiority of Penrose pixel layout over square pixel layout. © 2016 SPIE and IS&T [DOI: 10
.1117/1.JEI.25.3.033024]
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1 Introduction
The real scene has a huge dynamic range that cannot be com-
pletely captured by a traditional imaging sensor in a single
exposure. Namely, with a high exposure, the obtained image
will be saturated in the bright scene areas but captures the
dark regions well. In contrast, the image taken with a low
exposure will have less saturation in the bright regions
but will be too noisy in the dark areas. As a result, the
image captured by a traditional imaging sensor often con-
tains improperly exposed pixels that are either saturated
or too noisy, where the brightness information is lost.
Such images are called low-dynamic-range (LDR) images.
High-dynamic-range (HDR) imaging aims to enhance the
dynamic range of traditional imaging sensors by hardware
modifications or merging multiple LDR images captured
with varying exposures.1

Most of the literature to date focuses on the multishot
HDR approach.2–17 It sequentially takes multiple LDR
images of the scene with different exposures and then com-
bines them to produce an HDR image. Due to the need for
capturing multiple exposures, the image capture process
inevitably takes a long time, making it challenging to com-
bine LDR images captured in the presence of camera and
object movements. When the camera moves during capture,
an alignment of differently exposed images is needed, which
remains a difficult task.4,5,6,18 Moreover, when there are mov-
ing objects in the scene, ghosting artifacts will be introduced
in the reconstructed HDR image,17,19,20 which degrade the

image quality greatly.13 Additionally, multiple images
require extra storage.

To handle these difficulties, the spatially varying expo-
sures (SVE) technology obtains multiple exposures in a sin-
gle image.21 Since all exposures are captured simultaneously,
the alignment and deghosting operations for the dynamic
scenes are naturally avoided. Also, one only needs to
store a single image for reconstructing an HDR image.
Because of these benefits, the SVE technology has been
applied in commercial products. For example, Fujifilm22

designed the fourth Generation Super CCD that uses paired
octagonal pixels with different light sensitivities [Fig. 2(a)].
The larger pixel is likely saturated, whereas the smaller one is
not. This results in different exposures in a single shot.
Sony23 proposed setting a long and a short exposure times
to two groups of pixels, respectively [Fig. 2(b)]. Note that
the SVE technology can be accomplished via many ways,
e.g., placing an optical mask with spatially varying sensitiv-
ities over a traditional imaging sensor,21,24,25 setting SVE
times to pixels,23,26,28,29 or directly using pixels with different
light sensitivities.22 All these implementations result in the
same effect, i.e., an imaging sensor with SVE. So in this
work, we consider only using optical masks to achieve
the SVE technology, which we call SVE arrays [Figs. 1(b)
and 1(c)], where brighter pixels have a higher light sensitiv-
ity and the darker ones have a lower sensitivity. The obtained
raw images with an SVE array are called SVE images
[Figs. 1(d) and 1(e)], which have SVE of the scene according
to the SVE array. Then, HDR images are estimated from
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SVE images by the HDR reconstruction methods [Figs. 1(i)
and 1(h)].

The main idea of SVE imaging is to achieve higher
dynamic range at the cost of spatial resolution.31 The reduc-
tion of spatial resolution results from the following fact. The
SVE image regions that correspond to the bright scene areas
can only be well exposed at the pixels with a low sensitivity
and will be saturated at those with a high sensitivity. In con-
trast, pixels for the dark scene areas can only be properly
exposed with a high sensitivity. Those improperly exposed
pixel values in the SVE images are unreliable, which should
be regarded as unknown and need to be estimated by an HDR
reconstruction method. Therefore, both the SVE array and
the reconstruction method affect the spatial resolution of
the produced HDR images. As a reconstruction method
takes SVE images as input, one can design the SVE array
to make the subsequent reconstruction more resistant to res-
olution reduction.

However, the study of designing SVE arrays has received
considerably less attention. Only a few literatures consider
this problem.21,24,32,33 There are two aspects for the design
of SVE arrays. The first one is the number of sensitivities
used. The more sensitivities used, the wider of dynamic
range that could be achieved. But a larger number of used
sensitivities will give a lower sampling rate at each

sensitivity, which is a trade-off between the spatial and
brightness resolutions. So the choice of used sensitivities
is only meaningful for a specific application.24 Typically,
one can use two to four different sensitivities.21,24,32 The sec-
ond one is the assignment of sensitivities (e.g., periodic or
aperiodic). Nayar and Mitsunaga21 used a regular SVE
array periodically tiled by a 2 × 2 pattern [Fig. 2(c)].
Based on the difference of color filters in sensitivity of
monochrome light, Konnik et al.32 regarded the regular
Bayer color filter array (CFA)30 as an SVE array for mono-
chrome imaging [Fig. 1(b)]. Hirakawa and Simon,33 on the
other hand, performed HDR color imaging with only the
Bayer CFA. They argued that different light sensitivities
are already implied by the Bayer CFA, which can be further
magnified by using carefully selected photographic filters.
Motivated by the spatial aliasing problem of regular sam-
pling, Schöberl et al.24 used a random SVE array, which
assigns sensitivities aperiodically [Fig. 2(d)]. Their experi-
ments showed that a random SVE array preforms better
than a regular one during the subsequent reconstruction
in mitigating resolution reduction. Note that spatial aliasing
is an effect that high spatial frequencies in the original sig-
nal appear as low spatial frequencies in the spatially
sampled signal, making the faithful reconstruction of the
original signal difficult.34 This implies that reducing
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Fig. 1 Comparison of Penrose and regular SVE imaging. Note the feet of the cartoon character. More
comparisons are shown in Figs. 10–13. (a) An HDR image to simulate a real scene, (b) regular SVE array
based on the Bayer CFA,30 where three colors are replaced by three different sensitivities, (c) Penrose
SVE array with three different sensitivities, (d) regular SVE image, (e) Penrose SVE image, (f) and (g) are
the proper exposure masks to identify the properly exposed pixels (white) and the improperly exposed
ones (black) in the regular and Penrose SVE images, respectively, (h) regular HDR image, and
(i) Penrose HDR image. Note that all HDR images shown in this paper are rendered by using
MATLAB®’s defult tonemap function.

Fig. 2 SVE sensors and regular and random SVE arrays. (a) Fujifilm’s fourth Generation Super CCD,22

(b) Sony SVE sensor,23 (c) regular SVE array with four different sensitivities,21 (d) random SVE array with
two different sensitivities,24 (e) random SVE array with four different sensitivities,25 (f) CFA with row-wise
varying sensitivities,26 and (g) random SVE array based on the random CFA,27 where three colors are
replaced by three different sensitivities.
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aliasing in the sampled image can greatly enhance the pos-
sibility of reconstructing the original one, thereby improv-
ing the spatial resolution of the reconstructed image. The
capability of nonregular sampling in reducing aliasing
has also been testified by other spatial sampling arrays,
e.g., halftone mask35 or CFA.27 However, all of them use
the square pixel layout (square layout for short), i.e., peri-
odic tiling of square pixels.

Some researches in visual physiology have shown that the
irregularity in a sampling array greatly reduces aliasing
caused by undersampling.36,37 Inspired by these studies,
we present the Penrose pixel layout (Penrose layout for
short), an irregular pixel layout in rhombus Penrose tiling,38

for HDR imaging. Rhombus Penrose tiling is an aperiodic
tiling, which tiles the plane in a nonperiodic manner.38

So, with an SVE array, the Penrose layout has both exposure
and pixel aperiodicities. Moreover, rhombus Penrose tiling
uses only two kinds of rhombi, having equal sides but differ-
ent angles [see Fig. 1(c)]. Thus, the manufacture of the
Penrose layout is much easier than those of completely
irregular layouts (e.g., Voronoi tessellation39) (although
not as easy as square layouts), which has been discussed
in detail.40 The superiority of the Penrose layout over
square layout has been tested on superresolution40 and
demosaicking.41 However, super-resolution trades off tempo-
ral resolution for spatial resolution, whereas demosaicking
trades off spatial resolution for spectral resolution.31 It is
unclear whether we can obtain better HDR images with
the Penrose layout using the SVE technology, which trades
off spatial resolution for brightness resolution.31

The contributions of this paper are as follows:

• We propose the Penrose layout for HDR imaging using
the SVE technology. Due to the two aperiodicities of
the Penrose layout, the spatial resolution of the recon-
structed HDR images can be improved.

• We propose an HDR reconstruction method for the
Penrose layout using a Gaussian mixture model42

for regularization. With the proposed method, we
show that the Penrose layout performs better than
the square layout in terms of peak signal-to-noise
ratio (PSNR) and visual quality. We further testify
the effectiveness of irregular pixels for high-quality
HDR imaging.

2 Related Work
In this section, we first review the most popular multishot
HDR imaging. Then we review the existing SVE imaging.
We omit other single-shot HDR approaches, e.g., the
approaches proposed in Refs. 43 and 44.

2.1 Multishot High-Dynamic-Range Imaging
Multishot HDR imaging is the most popular HDR
approach. It sequentially takes multiple LDR images of
the same scene with different exposures and then merges
them into a single HDR image. Both Mann and Picard2

and Debevec and Malik3 reconstructed an HDR image
from multiple LDR images for a static scene with a static
camera. Subsequently, there are broad literatures on noise
reduction,8,9 exposure setting,10–12 image alignment,4–7 and
ghosting removal13–16 for HDR imaging.

Based on detailed models of noise, Hasinoff et al.8 and
Granados et al.9 derived the optimal weights for HDR
reconstruction. Hirakawa and Wolfe10 provided a statistical
analysis of exposure controls. To better deal with dynamic
cameras and objects, Gupta et al.11 presented using exposure
times to capture LDR images that have the Fibonacci prop-
erty, i.e., each exposure is the sum of previous NðN > 1Þ
exposures. More recently, a new exposure setting method
was presented based on the scene information and the cam-
era parameters.12

Despite significant progress of multishot approach over
the years, capturing in the presence of camera and object
movements is still challenging. For a moving camera,
global camera motion models can be considered to register
LDR images,4 e.g., translation,5 rotation,18 or homography
transformation models.6 Also, the brightness consistency
assumption45 is violated for differently exposed images.
Consequently, for robust motion estimation, one can trans-
form the LDR images in the intensity domain to the lumi-
nance domain,46 the gradient domain,47 or the transformed
domain7 by intensity mapping function.48

Without proper treatments in dynamic objects, ghosting
artifacts will appear in the produced HDR images.17

Explicit dynamic object detection is not necessary. One
can handle ghosting artifacts by user corrections,13 iteratively
assigning smaller weights to pixels that are likely to corre-
spond to dynamic objects,14 or producing ghost-free HDR
images with a joint bilateral filter approach.49 Based on
the assumption that the underlying background is static,
HDR reconstruction can be formulated into a rank minimi-
zation problem,16,19 which represents all dynamic objects as
a sparse matrix. Many HDR methods explicitly detect
dynamic objects according to certain observations. For
example, the dynamic objects can cause inconsistent pixels
in patches,50 superpixels,51 or gradient changes.52 The noise
distribution of color values can also be used to identify
dynamic objects.53 Recently, the patch-based approach has
been explored.15,20

2.2 Spatially Varying Exposures Imaging
As discussed previously, the SVE imaging is much less
explored. It is a single-shot HDR approach and, hence,
can produce ghost-free HDR images.21 Although we focus
on proposing SVE arrays, we cannot obtain HDR images
from the SVE images without reconstruction methods. So
we review both the existing SVE arrays and reconstruction
methods.

2.2.1 Spatially varying exposures arrays

The SVE technology is a general principle and can be imple-
mented via many approaches.21 They differ in hardware
design. In addition to those described in Sec. 1, the SVE
technology can also be implemented during the readout of
pixel values. For example, the coded reset/readout signals28

can provide multiple exposures within a single shot. Gu
et al.29 used a coded rolling shutter to obtain multiple expo-
sures simultaneously. Recently, Cho et al.26 proposed using a
coded electronic shutter to acquire row-wise varying expo-
sures in a single image. However, the effects of these
approaches can also be achieved by using SVE arrays.
For instance, the approach of Cho et al. is equivalent to
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using a regular SVE array periodically tiled by a 4 × 2 pat-
tern [see Fig. 2(f)].

2.2.2 Reconstruction methods

The SVE technology trades spatial resolution for brightness
resolution (or dynamic range). To retain the spatial resolution
of HDR images, the reconstruction methods need to estimate
those improperly exposed pixels. Another important issue of
HDR reconstruction is noise reduction, e.g., the photon and
photon–electron transfer noise in the SVE images.54

Furthermore, pixels with a low-sensitivity tend to be quite
noisy, particularly those corresponding to the dark scene
areas. In general, HDR reconstruction from the SVE images
is to inpaint the unknown pixels and denoise the known ones.

Nayar and Mitsunaga proposed two reconstruction meth-
ods in Ref. 21. The aggregation method averaged local pixel
values of an SVE image to directly get the HDR image. The
bicubic interpolation method first discarded the improperly
exposed pixels with appropriate thresholds, then it converted
pixel values into radiance values through a precomputed
response function. It next normalized known radiance values
with their respective exposures and then estimated the
unknown ones using bicubic interpolation. In Ref. 31, a
structural interpolation method was presented. It learned a
polynomial function to map an SVE image patch to the
center pixel of its corresponding HDR image patch.
Konnik et al.32 first calibrated the sensitivities of color
filters in the Bayer CFA. Then, the saturated pixels were esti-
mated from their neighbor pixels. In contrast with the
approach of Konnik et al., Hirakawa and Simon33 considered
color HDR imaging. They proposed a demosaicking-
inspired algorithm to jointly perform demosaicking and
HDR reconstruction from a single image. Schöberl et al.24

reconstructed HDR images by using the frequency selective
extrapolation algorithm.55 With a detailed modeling of noise,

Aguerrebere et al.25 extended the piecewise linear
estimators56 to perform HDR reconstruction.

3 Penrose Pixels for Spatially Varying Exposures
Imaging

In this section, we present the Penrose layout for HDR im-
aging using the SVE technology. We first introduce the proc-
ess of Penrose SVE imaging. Then, we describe the mapping
from the square layout to the Penrose layout. We next present
our HDR reconstruction method for the Penrose layout. We
use upper and lower case bold letters to denote matrices and
vectors, respectively. Images are represented in column
vectors.

3.1 Penrose Spatially Varying Exposures Imaging
As in Ref. 26, we divide the scene into the dark, medium, and
bright areas. We use three different sensitivities to account
for the three types of scene areas. Then, according to
Refs. 21 and 41, we have that monochrome SVE imaging
with three sensitivities that can be treated as the mosaicking
from a color image consisted of three gray-scale images cap-
tured with corresponding exposures, followed by a conver-
sion from radiance values to gray levels. We illustrate the
process of Penrose SVE imaging with three sensitivities
in Fig. 3. So the model of Penrose SVE imaging is given
as follows:

EQ-TARGET;temp:intralink-;e001;326;461p ¼ fðMTsÞ þ e; (1)

where s is the to-be-reconstructed HDR image T ¼
ðTT

1 ;T
T
2 ;T

T
3 ÞT , Ti ¼ tiI is the i’th exposure matrix, I is

the identity matrix, ti is the i’th exposure M ¼
ðM1;M2;M3Þ, Mi is the coefficient matrix of the mapping
from the image taken with ti in the square layout into that in
the Penrose layout, which will be described in Sec. 3.2, e is
the noise, e.g., the photon, photon–electron transfer, and

Fig. 3 Penrose SVE imaging (adapted from Ref. 41, but with a different interpretation). (a) An HDR
image, (b) the three different exposures of the original HDR image, (c) the three exposure subimages
of Penrose SVE image, in which the white rhombus pixel indicates unrecorded value, and (d) the Penrose
SVE image.
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quantization noise,54 and fð·Þ is the monotonic response
function.

As in many works,24–26,32,33 we use a linear response func-
tion for the imaging sensor in the Penrose layout, which
implies that fð·Þ is linear before reaching the saturation
threshold. So Eq. (1) can be written as

EQ-TARGET;temp:intralink-;e002;63;686p ¼ max½minðMTs; BmaxÞ; Bmin� þ e; (2)

where Bmin and Bmax indicate the minimum and maximum
scalar gray levels that the imaging sensor can reliably
present, respectively, maxðx; BminÞ returns a vector the
same size as x with the largest elements taken from x or
Bmin, whereas minðx; BmaxÞ returns the smallest elements
taken from x or Bmax.

3.2 Mapping the Square Layout into the Penrose
Layout

The explanation of the mapping between square and Penrose
layouts has been detailed in Ref. 41. Later, we give a short
introduction to it. We take the third mapping between
Figs. 3(b) and 3(c) as an example. Since the Penrose and
square layouts have different pixel shapes, we first ensure
that they have the same resolution, i.e., they have the
same number of pixels within the imaging area.40 Then,
we assume that pixels have uniform photosensitivity,41,57

which implies that the contribution of a Penrose pixel to a
square pixel is proportional to its area inside the square
pixel and vice versa. So the mapping from the square layout
to the Penrose one is given as follows:

EQ-TARGET;temp:intralink-;e003;63;420p3 ¼ M3rþ e3; (3)

where p3 and r are the column vectors of all the involved
Penrose and square pixels, respectively, and e3 is the
noise. The elements of M3 are the ratios of the areas of
the intersections between the two types of pixels to the
area of Penrose pixel. Namely

EQ-TARGET;temp:intralink-;sec3.2;63;334M3ði; jÞ ¼
A½P3ðiÞ ∩ S3ðjÞ�

A½P3ðiÞ�
;

where P3ðiÞ and S3ðjÞ are the i’th Penrose pixel and the j’th
square pixel, respectively, and AðXÞ represents the area of X.

In the third image of Fig. 3(c), there are four Penrose pix-
els, numbered with 6, 11, 14, and 21, that are completely
inside the imaging area of square layout. The corresponding
M3 is shown in Fig. 4. For instance, if one indexes the square
layout column-wise, then the Penrose pixel numbered with
six covers 0.15, 0.56, 0.22, and 0.07 of the first, second, fifth,
and sixth square pixels, respectively.

3.3 Penrose High-Dynamic-Range Model
We can see from Figs. 1 to 3 that Penrose SVE images are in
the Penrose layout, whereas the reconstructed HDR images

are in the square layout. So, Penrose HDR reconstruction
is inherently more challenging than the square one. The
existing HDR reconstruction methods, e.g., bicubic interpo-
lation,21 frequency selective extrapolation,24 and the exten-
sion of piecewise linear estimators,25 are limited to the
square layout and cannot be directly used to reconstruct
HDR images from Penrose SVE images.

Following previous works,21,24,25 we introduce a proper
exposure matrix U to discard those improperly exposed
(saturated or too noisy) pixels, where U ¼ diagðuÞ and u
indicates whether the pixels are properly exposed [see
Figs. 1(f) and 1(g)]. Namely

EQ-TARGET;temp:intralink-;e004;326;620uðiÞ ¼
�
0; if pðiÞ ≤ Bmin or pðiÞ ≥ Bmax;
1; otherwise:

(4)

The model of Penrose SVE imaging in Eq. (2) leads to the
following fidelity term for reconstruction of s:

EQ-TARGET;temp:intralink-;e005;326;554LðsÞ ¼ 1

2
kUðMTs − pÞk22: (5)

Since U is not of full column rank, minimizing the fidelity
term for s is ill-posed. To make the optimization tractable,
additional image priors must be employed.

The patch-based prior, based on Gaussian mixture models
(GMM), has been shown to outperform other generic priors
for both denoising and inpainting.42 The GMM prior cap-
tures covariance structure and pixel dependencies over
small patches, thereby giving superior performance in mod-
eling the statistics of natural images. This motivates us to use
the GMM prior to regularize HDR images. As in Ref. 42, the
regularization term for HDR image s is

EQ-TARGET;temp:intralink-;e006;326;391−
X
i

log½GMMðRisÞ�; (6)

where GMMðRisÞ ¼
P

K
j¼1 πjNðRis; 0;ΣjÞ, K is the number

of mixture components, Nð0; ·Þ is a Gaussian distribution
with zero-mean, πj is the mixture weight for the j’th mixture
component, Σj is the corresponding covariance matrix, Ri
extracts the i’th patch of s, and Ris is the patch Ris
with mean removed. We learn a 200 component GMM
model with zero mean and full covariance matrices using
a minibatch version of expectation maximization (EM),58

the source code of which is publicly available.59 As in
Ref. 58, we iterate the EM update for 4000 times. At
each iteration, we sample a 2 × 105 patches with a size of
8 × 8 from 167 training images. These images are from
the RIT MCSL HDR Image Database60 and the Funt
et al. HDR dataset,61 which have no overlap with the test
images used in our experiments. We show in Fig. 5 the eigen-
vectors of six covariance matrices with the largest mixture
weights from the learned GMM model.

Fig. 4 An illustration of the coefficient matrix that maps a square layout into a Penrose one (adapted from
Ref. 41).
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Since smooth regions occupy a very large proportion
of an HDR image, especially those corresponding to the
bright and the dark areas of the scene, we also include a non-
negativity constraint for each pixel of s. The non-negativity
constraint has been shown very useful in regularizing the low
frequencies.62 So, our Penrose HDR model is finally formu-
lated as

EQ-TARGET;temp:intralink-;e007;63;538min
s

λ

2
kUðMTs − pÞk22 −

X
i

log½GMMðRisÞ�

s:t:0 ≤ s ≤ 1;

(7)

where λ > 0 is the parameter to balance the fidelity term and
the regularization term, ≤ stands for componentwise less
than or equal to, 0 denotes the all-zero column vector,
and 1 denotes the all-one column vector.

3.4 Solving the Penrose High-Dynamic-Range Model
The optimization problem [Eq. (7)] is nonconvex due to the
use of the GMM prior. Following Ref. 42, we use the half-
quadratic splitting scheme63 to solve it. We first introduce an
auxiliary variable zi for each Ris and rewrite Eq. (7) as

EQ-TARGET;temp:intralink-;e008;63;361min
s;fzig

λ

2
kUðMTs − pÞk22 þ

β

2

X
i

kRis − zik22

−
X
i

log½GMMðziÞ�; s:t:0 ≤ s ≤ 1;
(8)

where β is an increasing parameter to ensure that Ris gets
closer to zi along with the iterations.

Then by the half-quadratic splitting scheme, Eq. (8) can
be solved via the following iterations:

EQ-TARGET;temp:intralink-;e009;63;243slþ1 ¼ argmin
0≤s≤1

λ

2
kUðMTs − pÞk22 þ

βl

2

X
i

kRis − zlik22; (9)

EQ-TARGET;temp:intralink-;e010;63;197fzlþ1
i g ¼ argmin

fzig

βl

2

X
i

kRislþ1 − zik22 −
X
i

log½GMMðziÞ�;

(10)

EQ-TARGET;temp:intralink-;e011;63;139βlþ1 ¼ ηβl: (11)

We solve Eq. (9) as follows. Since Eq. (9) has box con-
straints, we use L-BFGS-B64 to solve it (We download the
C version of L-BFGS-B from Ref. 65). We only need to pro-
vide the objective function of Eq. (9) as well as its gradient

w.r.t. s. The calculation of this objective function is trivial
and the gradient can be computed as

EQ-TARGET;temp:intralink-;e012;326;593λTTMTUTUðMTs − pÞ þ βl
X
i

RT
i ðRis − zliÞ: (12)

The only difference in applying our method with linear and
nonlinear response functions is the computation of this gra-
dient. We solve Eq. (10) as follows. Equation (10) does not
have a closed-form solution. As suggested by Ref. 42, we use
an approximate optimization to solve it. All the patches are
independent of each other and hence can be processed in par-
allel. For each patch Rislþ1, we denote its mean pixel value
as vi and the corresponding mean removed patch as Rislþ1.
We first calculate the assignment probability of Rislþ1 to
each of the K mixture components. Then, we select the mix-
ture component kmax with the largest assignment probability
in the GMM model. We next perform Weiner filtering using
only the kmax’th component and then add the mean pixel
value back

EQ-TARGET;temp:intralink-;sec3.4;326;397zlþ1
i ¼ ðΣkmax

þ I∕βlÞ−1ðΣkmax
Rislþ1Þ þ vi1;

where I is the identity matrix and Σkmax
is the covariance

matrix of the kmax’th mixture component.
The update of β in Eq. (11) is also very important. We set

λ ¼ λ̃ × ð8 × 8Þ∕τ to account for the varying U ¼ diagðuÞ,
where 8 × 8 is the patch size, and τ is the ratio of nonzero
elements in u. In all our experiments, we set λ̃ ¼ 2.5 × 103,
η ¼ 2, and β0 ¼ 100 and iterate [Eqs. (9)–(11)] for 20 times.

Since the optimization problem [Eq. (8)] is nonconvex, a
good initialization is important for achieving a good local
minimum. We initialize the GMM-based model with the
smoothness prior and non-negativity constraints

EQ-TARGET;temp:intralink-;e013;326;242

s0 ¼ argmin
s

μ

2
kUðMTs − pÞk22 þ

1

2
ðkGhsk22 þ kGvsk22Þ

s:t:0 ≤ s ≤ 1; (13)

where Gh and Gv are the convolution matrices correspond-
ing to the partial derivative filters gh ¼ ð−1;1Þ and
gv ¼ ð−1;1ÞT , respectively. We set μ ¼ 2∕τ in all our experi-
ments, where τ is the ratio of nonzero elements in u and
U ¼ diagðuÞ. We also use L-BFGS-B to solve Eq. (13).
Then each auxiliary variable zi in Eq. (9) is initialized as
z0i ¼ Ris0. A comparison of the GMM and the smoothness
priors is shown in Fig. 6. We can see that the GMM prior can
effectively remove sensor noise and well preserve the image
sharpness.

Fig. 5 Eigenvectors of six covariance matrices with the largest mixture weights from the learned GMM
model, sorted by eigenvalues from the largest to the smallest.
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We implement our reconstruction method in MATLAB®.
With our unoptimized codes, the whole reconstruction
method including the initialization process takes about
49 min to restore an image of size 1000 × 1000 pixels on
a 4.00-GHz quad core machine.

4 Experiments
In this section, we test our irregular Penrose layout on syn-
thetic images and compare it with a regular SVE array in the
square layout. The regular SVE array is based on the Bayer
CFA,30 where three colors are replaced by three different sen-
sitivities [see Fig. 1(b)]. So its sampling rate of the median
sensitivity is twice as those of the low and high ones.

In addition, to understand the benefits of irregular pixel of
the Penrose layout, we also include comparison with a ran-
dom SVE array in square layout, which is based on the ran-
dom CFA27 [see Fig. 2(g)]. We choose it for comparison
because it is random (and hence also aperiodic) and uni-
formly assigns three sensitivities. The only difference
from the Penrose layout is that it uses square pixels.

We want to note that the reconstruction methods also
highly affect the quality of HDR images. However, an exten-
sive comparison of reconstruction methods is out of the
scope of this work, so we use only the proposed method
to compare all these SVE arrays.

4.1 Experimental Settings
4.1.1 Simulation of Penrose spatially varying

exposures images

Since the imaging sensor in the Penrose layout has not been
manufactured, we need to simulate it. We first generate a
Penrose layout that has the same resolution as the square lay-
out, which has been detailed in Ref. 41. Then, we use the
coloring algorithm proposed by Sibley and Wagon66 to
assign the three sensitivities. Our empirical tests show that
this assignment of three sensitivities is approximately uni-
form. We simulate the Penrose SVE imaging as follows
(Fig. 3). We first choose a gray-scale HDR image, which
is also the ground truth, to simulate the scene [Fig. 3(a)].
Then, we expose the HDR image with three different expo-
sures [Fig. 3(b)]. For each of the three differently exposed
images, we obtain the corresponding subimage of the noise-
less Penrose SVE image using Eq. (3) [Fig. 3(c)]. Following
Ref. 33, we add the Poisson–Gaussian noise54 at the ISO 800
setting to the noiseless Penrose SVE image to simulate the
sensor noise. According to Eq. (2), the radiance values of the
noisy image are converted into gray levels. We quantize the
gray levels into 12 bits to finally obtain the Penrose SVE

image. Then, we compute the corresponding proper expo-
sure matrix U by Eq. (4). The simulation of SVE process
for the square layout is exactly the same. The only difference
is the layout mapping from Figs. 3(b) and 3(c). For square
layout, the layout mapping is simply a subsampling process,
i.e., drawing pixels from three differently exposed images as
specified by the SVE array.

The noise model for each pixel of SVE images is54

EQ-TARGET;temp:intralink-;sec4.1.1;326;514y ¼ xþ epðxÞ þ eg;

where y is the observed noisy pixel value in the SVE image,
x is the noiseless pixel value, epðxÞ is the signal-dependent
Poisson noise term, and eg is the signal-independent
Gaussian noise term. The distributions of the two noise com-
ponents are as follows:

EQ-TARGET;temp:intralink-;sec4.1.1;326;427xþ epðxÞ ∼ aPðx∕aÞ; eg ∼ Nð0; bÞ;

where P and N denote the Poisson and Gaussian distribu-
tions, respectively, and a > 0 and b > 0 are parameters.
For pixel values between 0 and 1, a ¼ 0.0018679 and b ¼
3.3089 × 10−5 correspond to the ISO 800 setting.54

Another important issue is the setting of three exposures as
well as the reliable gray level range of the imaging sensor, i.e.,
ftig3i¼1, Bmin, and Bmax in Eq. (2). We determine these param-
eters based on a given ratio ρ of the dark and bright areas in the
scene, where the dark and bright ones have equal proportions.
For an HDR image s, which simulates the scene, we first
sort all its n radiance values in ascending order to have
~s, where ~sð1Þ ¼ Imin and ~sðnÞ ¼ Imax. Then, we set
Bmin ¼ s̃½roundðnρ∕2Þ� and Bmax ¼ s̃fround½nð1 − ρ∕2Þ�g,
where round ð·Þ is the rounding operator. We next set the
three exposures as follows:

EQ-TARGET;temp:intralink-;e014;326;230

8<
:

t1 ¼ Bmax∕Imax;
t2 ¼ 1;
t3 ¼ Bmin∕Imin;

(14)

where t1 and t3 exactly map Imax and Imin into the gray level
range of the imaging sensor, respectively. This implies that the
pixels of s, whose values are less than or equal to Bmin, are
regarded as the components of the dark scene areas, whereas
the values of which are greater than or equal to Bmax belong to
the bright areas. As shown in Fig. 7, the larger ρ is, the more
pixels will be categorized into the dark and bright scene areas.
It should be noted that we use ρ to divide the scene into the
dark, median, and bright areas. It is not the ratio of improperly
exposed pixels indicated by u [see Eq. (4)].

Fig. 6 Comparison of the GMM and the smoothness priors. (a) The scaled original HDR image, in which
the red rectangle indicates the selected patch to blow up, (b) the ground truth, and (c) and (d) the recon-
structed HDR patches with the smoothness and the GMM priors, respectively.
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4.1.2 Dataset and evaluation metrics

We select nine HDR images from the RIT MCSL HDR
Image Database60 and the Funt et al. HDR Dataset61 for
the test, and the remaining 167 images of the two datasets
for training. (Note that the Funt et al. HDR dataset consists
of paired images. One has a Colorchecker in it and the other
does not. We use only the images without Colorcheckers in
them.). We first crop a region with a large dynamic range
from each of the nine images, the sizes of which vary
among 1000 × 1000, 512 × 768, and 391 × 587. Then, we
transform the cropped images from the RGB to the YIQ
color spaces using MATLAB®’s default rgb2ntsc func-
tion. We use only the luminance channel of each YIQ
image as the HDR image, which is also the ground truth.
Figure 8 shows all nine images used in our test.

There are some subjective and objective image quality
measures that have been proposed.67,68 Following most of
the existing literature in SVE imaging,24,25,31–33 we use
PSNR to measure the performance: PSNRðx̂; xÞ ¼
10 log10ðn∕kx̂ − xk22Þ, where x is the ground truth and its
radiance values are between 0 and 1, x̂ is its reconstruction,
and n is the number of elements in x. Note that x can be
formed by either all the radiance values or the selected
ones of an HDR image. We also compare the HDR results
by visual evaluation.

4.2 Comparison with Regular Spatially Varying
Exposures Array

We first compare Penrose SVE array with the regular one in
the square layout under four different settings of ρ. Table 1
shows the individual and average PSNR values of regular

and Penrose SVE arrays on all test images. The correspond-
ing percentage of unknown pixels [improperly exposed
pixels indicated by u Eq. (4)] for each scenario is shown
in Fig. 9.

Since the regular SVE array has twice the median expo-
sures as the low and high ones [see Fig. 1(b)], we can see that
it always results in fewer unknown pixels. Nonetheless, in
terms of PSNR, we can see that Penrose SVE array outper-
forms the regular one for every ρ on both individual image
and the whole test images, being only slightly inferior on the
#9 image under ρ ¼ 0.05 (indicated by italics in Table 1).

We present part of the visual comparison in Figs. 10–13.
We can see that the visual quality of Penrose HDR images is
better than that of the regular ones, especially in reconstruct-
ing highly contrasted edges (read the captions for the
descriptions on visual difference).

4.3 Effectiveness of Irregular Pixels
We have shown that the Penrose layout can produce high-
quality HDR images. We are also interested in investigating
whether this benefits from the irregularity of the Penrose lay-
out. In this section, we further compare Penrose SVE array
with a random one in the square layout. As mentioned ear-
lier, it is based on the random CFA27 [see Fig. 2(g)] and uni-
formly randomly assigns the three sensitivities. The only
difference from the Penrose SVE array is that it uses square
pixels. Accordingly, we can see from Fig. 9 that the random
SVE array always results in identical percentages of
unknown pixels as the Penrose one does.

From Table 1, we can see that the Penrose SVE array is
slightly inferior to the random one when ρ ¼ 0.05. However,
the Penrose SVE array significantly outperforms the random
one under the other three settings of ρ and the superiority
increases with the value of ρ. One possible reason is that
the random SVE array has inherent advantage in PSNR, par-
ticularly when the percentage of unknown pixels is small.
This is because we use an HDR image in a square layout
to simulate the scene and PSNR is based on computing
the pixel-wise difference between the reconstructed image
and the ground truth. For the ideal imaging case, there is
no noise and every pixel in the SVE image is properly
exposed. Then, for the square layout, the normalized SVE
image by respective exposures of all pixels is identical to
the ground truth, i.e., the SVE imaging is invertible. For
the Penrose layout, however, the invertibility is true only
in theory. The simulation error of layout mapping always
exists in real computation. Nonetheless, when we compare
the visual quality in Figs. 10–13, the Penrose SVE array
is better at reconstructing fine details than the random one is.

To further test the performance of the Penrose layout, we
also compute PSNR values only on the dark and bright scene

Fig. 7 Correspondence between ρ and the dark and bright areas in the scene (indicated by the white
pixels).

Fig. 8 The test HDR images used in our experiments. These
images are numbered from 1 to 9 in the order of left to right and
top to bottom.
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Fig. 9 The percentage of unknown pixels of each compared SVE array with varying ρ.

Fig. 10 One blowup of the reconstructed #2 image with varying ρ. (a)The scaled original image, in which
the red rectangle indicates the selected patch to blow up, (b) the ground truth. From groups 1 to 4, the ρ
are 0.05, 0.1, 0.15, and 0.2, respectively. In each group, (c)–(e) are the HDR images reconstructed from
regular, random, and Penrose SVE images, respectively, where the percentages are the unknown pixel
ratios of these SVE images. Note the space between the circle and the large character “G.”

Table 1 PSNR values on the whole images. The individual and average PSNR values are reported. For each ρ, the best values are in boldface.

ρ ¼ 0.05 ρ ¼ 0.1 ρ ¼ 0.15 ρ ¼ 0.2

Image ID Regular Random Penrose Regular Random Penrose Regular Random Penrose Regular Random Penrose

1 37.79 38.23 38.37 36.81 37.57 37.98 35.45 35.86 36.67 33.43 33.60 34.63

2 39.06 39.07 39.20 38.62 38.71 38.89 37.86 37.77 38.24 35.89 35.58 36.29

3 37.71 38.27 38.15 36.93 37.68 37.67 36.01 36.42 36.79 33.81 33.82 34.75

4 35.82 35.96 36.03 34.69 35.34 35.71 34.00 34.97 35.47 33.06 33.87 34.74

5 38.62 39.02 38.80 37.59 38.49 38.29 36.82 37.70 37.64 35.79 36.35 36.72

6 36.71 36.81 36.79 36.45 36.54 36.61 35.92 36.03 36.18 34.65 34.75 35.05

7 35.42 35.25 35.65 31.94 31.57 32.50 29.62 29.25 30.11 27.87 27.39 28.27

8 38.08 38.35 38.27 37.56 37.90 37.94 37.19 37.67 37.73 36.93 37.44 37.63

9 37.75 38.13 37.72 33.69 33.61 34.71 29.34 29.29 30.44 25.96 26.07 26.68

Average 37.77 38.18 38.05 35.25 35.59 36.35 32.39 32.57 33.55 29.69 29.83 30.66
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Fig. 11 One blowup of the reconstructed #3 image with varying ρ. The notations are the same as those in
Fig. 10. The characters are “ETT.” Note the character “E.”

Fig. 12 One blowup of the reconstructed #7 image with varying ρ. The notations are the same as those in
Fig. 10. Note the feet of the cartoon character.

Fig. 13 One blowup of the reconstructed #9 image with varying ρ. The notations are the same as those in
Fig. 10. Note the characters.
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areas (indicated by the white pixels in Fig. 7), where the spa-
tial resolutions are highly reduced. The individual and aver-
age PSNR values are shown in Table 2. We can see that the
Penrose SVE array significantly outperforms the other ones
on both individual image and the whole test images.

These experiments testify that the irregularity of Penrose
SVE array is important for preventing the loss of resolution
in the reconstructed HDR images, especially those image
regions that correspond to the dark and bright scene areas.

The effectiveness of irregular pixels can be explained as
follows. For the square layout, every to-be-reconstructed
square pixel is either completely covered by a known square
SVE pixel or not covered by any known square SVE pixel.
For the Penrose layout, almost every to-be-reconstructed
square pixel is partly covered by a known irregular SVE
pixel [see Fig. 3(c)]. Accordingly, for the square layout,
the unknown pixel completely loses its information. In con-
trast, irregular SVE array results in less information loss as
the captured value of every Penrose pixel is always a mixture
of those of nearby square pixels [see Fig. 3(c)]. It can also be
understood as that every square pixel is contributed by multi-
ple Penrose pixels that jointly cover it, which often contain at
least one known Penrose pixel value. That is why the Penrose
layout can better capture the dark and bright areas of
the scene.

5 Conclusions
In this paper, we present the Penrose layout for HDR imag-
ing using the SVE technology, making it aperiodic in both
exposure and pixel arrangements. Since the Penrose layout is
irregular and aperiodic, the existing HDR reconstruction
methods are not applicable to it. We develop an HDR
reconstruction method with a GMM model for regulariza-
tion. Extensive experiments show that the Penrose layout

is advantageous in alleviating the reduction in spatial reso-
lution of the reconstructed HDR images.
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