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Learning-based partial differential equations (PDEs), which combine fundamental differential invariants
into a nonlinear regressor, have been successfully applied to several computer vision and image pro-
cessing problems. However, the gradient descent method (GDM) for solving the linear combination
coefficients among differential invariants is time-consuming. Moreover, when the regularization or

gradients. In this paper, we propose a new algorithm, called fast alternating time-splitting approach
(FATSA), to solve the linear combination coefficients. By minimizing the difference between the expected
output and the actual output of PDEs at each time step, FATSA can solve the linear combination coeffi-
cients much faster than GDM. More complex regularization or constraints can also be easily incorporated.
Extensive experiments demonstrate that our proposed FATSA outperform GDM in both speed and
quality.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Partial differential equations (PDEs) have been successfully
used to solve many practical problems in computer vision and
image processing [1–3], such as denoising [4,5], enhancement
[6,7], inpainting [8], segmentation [9,10], and optical flow com-
putation [11,12]. However, it is usually difficult to design a PDE
system for a particular task which requires high mathematical
skills and good insight into the problem. According to [13], the
existing methods of designing PDEs can be mainly classified into
two groups. The methods of the first group write down PDEs
directly, which requires good mathematical understandings on the
properties of the PDEs. The methods of second group first define
an energy functional [14], which pursues the expected properties
of the output image or video, and then derive evolution equations
by computing the Euler–Lagrange variation of the energy func-
tional. For example, the ROF model [15] and TV-L1 [16] for image
denoising are designed directly, while the Nambu model [17] and
the PL model [18] for color image processing are designed in the
variational way.

To reduce the difficulty in designing PDEs for complex vision
problems, Liu and Lin et al. [13] proposed a framework that learns
, zlin@pku.edu.cn (Z. Lin),

al., A fast alternating time
/10.1016/j.neucom.2015.10.1
PDEs from training image pairs recently. They first considered
learning PDEs for grayscale image restoration [19], which involve an
anisotropic diffusion term. Then they generalized the idea sig-
nificantly by linearly combining fundamental differential invariants
that are invariant to translation and rotation. These differential
invariants serve as “bases” of differential operators [13,20]. They
utilized the gradient descent method (GDM) to solve the linear
combination coefficients. The learnt PDEs have been successfully
applied to various problems, such as image denoising, debluring,
object detection, color to gray and demosaicking [13,21,22].

However, GDM has several drawbacks. First, the convergence
speed of GDM is very slow due to the fact that objective functional
is flat. Experiments show that the magnitude of gradient is usually
at the order of 10�3 (Fig. 4), even at the beginning iterations.
Therefore, the solution of GDM does not improve the initial value
very much. Second, it needs to solve the adjoint PDEs to obtain the
gradient, which is difficult to deduce and also time-consuming.
Third, when the regularization or constraints on the linear com-
bination coefficients become more complex, e.g., we use L1 norm
as the regularizer or add boundedness constraints, the deduction
of gradient becomes very involved or even non-existent because of
the non-differentiablity of the objective functional. Last, the
quality of learnt PDEs is not very good. For example, the magni-
tudes of coefficients are unbalanced. We can see from Fig. 4(a) that
most of ai(t)'s are close to zeros while some jump to more than 20.
This can cause numerical instability as the differential invariants
-splitting approach for learning partial differential equations,
26i
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Table 1
Fundamental differential invariants up to the second order, where tr is the trace
operator and ∇f and Hf are the gradient and the Hessian matrix of function f,
respectively.

j invjðu; vÞ

0,1,2 1; v;u
3,4 J∇vJ2 ¼ v2x þv2y ; J∇uJ

2 ¼ u2
x þu2

y

5 ð∇vÞT � ∇u¼ vxuxþvyuy

6,7 trðHvÞ ¼ vxxþvyy ; trðHuÞ ¼ uxxþuyy

8 ð∇vÞT �Hv � ∇v¼ v2x vxxþ2vxvyvxyþv2yvyy
9 ð∇vÞT �Hu � ∇v¼ v2xuxxþ2vxvyuxyþv2yuyy

10 ð∇vÞT �Hv � ∇u¼ vxuxvxxþðvxuyþuxvyÞvxyþvyuyvyy
11 ð∇vÞT �Hu � ∇u¼ vxuxuxxþðvxuyþuxvyÞuxyþvyuyuyy

12 ð∇uÞT �Hv �∇u¼ u2
x vxxþ2uxuyvxyþu2

yvyy
13 ð∇uÞT �Hu � ∇u¼ u2

xuxxþ2uxuyuxyþu2
yuyy

14 trðH2
v Þ ¼ v2xxþ2v2xyþv2yy

15 trðHv �HuÞ ¼ vxxuxxþ2vxyuxyþvyyuyy

16 trðH2
uÞ ¼ u2

xxþ2u2
xyþu2

yy
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involve multiplications of second order derivatives. As a result,
blowup might occur whenwe apply the learnt PDEs to test images.
Moreover, we can also see from Fig. 4(c) that bi(t)'s are very close
to zeros, which means that the indicator function is actually
ineffective.

To overcome the above short-comings of GDM, we propose a
new method, called fast alternating time-splitting approach
(FATSA), to solve the linear combination coefficients. We first
discretize the PDEs in time. Then we minimize the difference
between the expected output (ground truth) and the actual output
of the PDEs at each time step n, which is a nonlinear regression
problem and can be solved by alternately minimizing aiðnΔtÞ's and
bjððn�1ÞΔtÞ's. In such a greedy manner, the linear combination
coefficients can be updated sequentially in time. Based on FATSA, it
is convenient to add constrains and regularization on the coeffi-
cients, even when these constrains and regularization are non-
differentiable. Moreover, we do not need to deduce and compute
the adjoint PDEs any longer. Besides, compared with GDM, FATSA
can greatly reduce the training time and the training error. For
grayscale images, the speed of training is accelerated by ten times.
For color images, the training time is cut by half. In summary, the
contributions of this paper are summarized as follows:

� We propose a new fast alternating time-splitting approach
(FATSA) to solve the PDE constrained optimal control problem,
which not only speeds up the learning process, but also
improves the results.

� Compared with GDM, FATSA is much simpler. It computes the
linear combination coefficients in temporal order. It avoids to
compute the adjoint PDEs for evaluating the Gâteaux deriva-
tives [23] of the objective functional.

� FATSA is much more flexible than GDM. When we add more
general regularizations (e.g., non-smooth regularization) and
extra constraints on the linear combination coefficients, it can
also improve the results.

The rest of the paper is organized as follows. First of all, we
review the learning-based PDEs methods briefly in Section 2. Then
we present the main idea of FATSA and the details of alternating
minimization in Section 3. In Section 4, we discuss the complexity
of FATSA and make a detailed comparison with GDM [13]. We also
extend FATSA to solve learning-based PDEs for vector-valued
image processing problems. Then in Section 5, we compare the
performance of FATSA and GDM on some computer vision and
image processing problems. Finally, we conclude our paper and
discuss the future work in Section 6.
1 The images are padded with zeros of several pixels width around them, so
that the Dirichlet boundary conditions, umðx; y; tÞ ¼ 0; vmðx; y; tÞ ¼ 0; ðx; y; tÞAΓ, are
naturally fulfilled.
2. Learning-based PDEs

In this section, we briefly review the framework of learning-
based PDEs for computer vision and image processing problems.
More details can be found in [13,21,22].

2.1. Mathematical formulation

The current learning-based PDEs are grounded on the transla-
tional and rotational invariance of computer vision and image
processing problems. Namely, when the input image is translated or
rotated, the output image should be translated or rotated accord-
ingly. Then it can be proven that the governing equations are
functions of fundamental differential invariants, which form “bases”
of all differential invariants that are invariant with respect to
translation and rotation. We assume that the evolution of the image
u is guided by an indicator function v, which collects large scale
information. As shown in Table 1, there are 17 fundamental
Please cite this article as: Z. Zhao, et al., A fast alternating time
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2015.10.1
differential invariants finviðu; vÞ, i¼ 0;…;16g up to the second
order. For brevity, we denote
invðu; vÞ ¼ ½inv0ðu; vÞ; inv1ðu; vÞ;…; inv16ðu; vÞ�T , where ð�ÞT denoted
the transpose of matrix (or vector).

The simplest function of fundamental differential invariants is a
linear combination of them. Therefore, learning the PDEs can be
transformed into learning the linear combination coefficients
among the fundamental differential invariants, which are func-
tions of time t only and independent of spatial variables [13,21,22].
To this end, one may prepare a number of input/output training
image pairs. By minimizing the difference between the output of
PDEs and the ground truth. We set the initial function as the input
image. This results in a PDEs constrained optimal control problem:

min
a;b

EðaðtÞ;bðtÞÞ ¼ 1
2

XM
m ¼ 1

Z
Ω
ðOm�umðx; y; TÞÞ2 dΩ

þλ1
X16
i ¼ 0

Z T

0
a2i ðtÞ dtþλ2

X16
i ¼ 0

Z T

0
b2i ðtÞ dt; ð1Þ

s:t:

∂um

∂t
� invT ðum; vmÞ � aðtÞ ¼ 0; ðx; y; tÞAQ ;

umðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;

umðx; y;0Þ ¼ Im; ðx; yÞAΩ;
∂vm
∂t

� invT ðvm;umÞ � bðtÞ ¼ 0; ðx; y; tÞAQ ;

vmðx; y; tÞ ¼ 0; ðx; y; tÞAΓ;

vmðx; y;0Þ ¼ Im; ðx; yÞAΩ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where fðIm;OmÞ, m¼ 1;…;Mg denote the M input/output training
image pairs, umðx; y; tÞ is the evolution image at time t with respect
to the input image Im, vmðx; y; tÞ is the corresponding indicator
function, Ω�R2 is the (rectangular) region occupied by the
image,1 T is the temporal span of evolution which can be nor-
malized as 1, Q ¼Ω� ½0; T �, Γ ¼ ∂Ω� ½0; T �, and ∂Ω denotes the
boundary of Ω. The last two terms in (1) are regularization terms
on the coefficients ai(t) and bi(t). We denote it as aðtÞ ¼
½a0ðtÞ; a1ðtÞ;…; a16ðtÞ�T and bðtÞ ¼ ½b0ðtÞ; b1ðtÞ;…; b16ðtÞ�T for brevity.
For inviðv;uÞ, it can be acquired by simply switching u and v in
inviðu; vÞ.
-splitting approach for learning partial differential equations,
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2.2. Gradient descend method

Liu and Lin et al. [13,21,22] proposed a gradient descend
method (GDM) to solve the optimal coefficients ai(t) and bi(t),
where the “gradient” is actually the Gâteaux derivatives [23] of the
objective functional E with respect to the coefficient functions. The
Gâteaux derivatives of E with respect to ai(t) and bi(t) are as fol-
lows:

DE
Dai

¼ λ1ai�
XM
m ¼ 1

Z
Ω
φminviðum; vmÞ dΩ;

DE
Dbi

¼ λ2bi�
XM
m ¼ 1

Z
Ω
ψminviðvm;umÞ dΩ;

8>>>>><
>>>>>:

ð3Þ

where φ and ψ are the solutions to the adjoint equations. Since the
adjoint equations are very complex, we omit the details here.

Based on the Gâteaux derivatives, the local optimal solutions of
aðtÞ and bðtÞ can be computed via linear searching along descent
directions (e.g., conjugate gradient).
Inp

Ini
Ste
wh

1
2
3

4

3. FATSA: fast alternating time-splitting approach

The Gâteaux derivatives shown above are only available for
smooth regularizations, such as squared L2 norms in (1), on the
coefficients. However, when the regularizations are non-smooth or
extra constraints are added to the coefficients, it is nearly impos-
sible to deduce the Gâteaux derivatives. Besides, it is time-
consuming to solve the adjoint equations. Moreover, as the
objective functional is quite flat, the magnitudes of all the Gâteaux
derivatives are very small. As a result, the speed of GDM is very
slow and the obtained coefficients are not very far from their
initial values. Consequently, the performance of learnt PDEs is not
always satisfactory.

To tackle the above drawbacks of GDM, in this paper we pro-
pose a greedy strategy that minimizes the difference between the
expected outputs (ground truth) and the actual outputs of the
PDEs at every time step, rather than minimizing the difference
between the expected outputs and the actual outputs of the PDEs
at T only. In view of the highly non-convex nature of the PDE
constrained optimal control problem, it is very easy for GDM to be
stuck at local minima during solving the optimal coefficients.
Compared with GDM, our new greedy strategy is more effective,
which can be demonstrated by experiments.

In the proposed approach, we first discretize the temporal
variable t with a step size Δt and denote it as ti ¼ i �Δt, i¼ 0;…;N.
At each time step tnþ1, we minimize

Lðtnþ1Þ ¼
1
2

XM
m ¼ 1

Z
Ω
ðOm�umðx; y; tnþ1ÞÞ2 dΩ; ð4Þ

where umðx; y; tnþ1Þ is the solution of PDEs (2) at time tnþ1. The
motivation of minimizing (4) is to attract um to the desired output
Om as fast as possible, while GDM minimizes

E0 ¼ 1
2

XM
m ¼ 1

Z
Ω
ðOm�umðx; y; TÞÞ2 dΩ; ð5Þ

which is the difference between the expected output and the final
outputs of the PDEs (t¼T).

In the sequel, we simply use um
n to denote umðx; y; tnÞ. Other

notations, such as vmn, an, bn and Ln, are denoted in the same way.
Please cite this article as: Z. Zhao, et al., A fast alternating time
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We use the following forward scheme to approximate the
governing equations in (2),

unþ1
m ¼ un

mþΔt � invT ðun
m; v

n
mÞ � an; nZ0;

vnm ¼ vn�1
m þΔt � invT ðvn�1

m ;un�1
m Þ � bn�1; nZ1:

8<
: ð6Þ

By combining (4) and (6), we can obtain that

Lnþ1 ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt � invT ðun

m; v
n
mÞ � an

h i2
dΩ: ð7Þ

Note that when nZ1, Lnþ1 is dependent on an and bn�1, where
the dependence on bn�1 is due to vm

n in invT ðun
m; v

n
mÞ, which can

be computed by the second equation of (6). When n¼0, L1 is only
dependent on a0 as vm

0 is known. So we can initialize a0 by
minimizing L1. Then an and bn�1 ðnZ1Þ can be computed
sequentially by minimizing Lnþ1 ðnZ1Þ.

In order to show the flexibility of our new optimization method
as well as ensure the computation stability, we further add
boundedness constraints on an and bn. Then the problem of
computing a0 is transformed into

min
a0

L1 ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�u0
m�Δt � invT ðu0

m; v
0
mÞ � a0

h i2
dΩ;

s:t: Ja0 J1rη1; ð8Þ
and the problem of solving an and bn�1 ðnZ1Þ is transformed into

min
an ;bn� 1

Lnþ1 ¼ 1
2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt � invT ðun

m; v
n
mÞ

h i2
dΩ;

s:t: Jan J1rη1; Jb
n�1 J1rη2: ð9Þ

Problem (8) is simply a quadratic optimization problem with a
boundedness constraint. As for problem (9), we can use the block
coordinate descent method to update an and bn�1 alternately.
Hence we call our new optimization method as fast alternating
time-splitting approach (FATSA), which is summarized in Algo-
rithm 1. We will present the details in the following subsections.

Algorithm 1. FATSA for training PDEs.
-spli
26i
ut Training image pairs fðIm;OmÞgMm ¼ 1.

tialize u0
m ¼ Im; v0m ¼ Im;Δt ¼ 0:05; ε¼ 10�3;N¼ 100.

p 0 Compute a0 by solving problem (8).
ile not converged do

. Compute an and bn�1 by solving problem (9),
. Compute unþ1

m and vnm by using (6),
. Check the convergence conditions:

j Lnþ1�Ln j=Lnoε or n4N,
. n’nþ1.
d while
en

3.1. Alternating minimization

In this subsection, we focus on solving (9) by alternating
minimization. As for (8), it is easy to see that this problem is same
as the one when we update an with fixed bn�1 in (9) (see (10)
below). So we skip the details of solving (8).

By alternating minimization, (9) reduces to the following two
subproblems. While bn�1 is fixed, we can get vnm ¼ vn�1

m þΔt �
invT ðvn�1

m ;un�1
m Þ � bn�1 and invðun

m; v
n
mÞ. Then the problem for

updating an is transformed into

min
an

Lnþ1
a ¼ 1

2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt � invT ðun

m; v
n
mÞ � an

h i2
dΩ;
tting approach for learning partial differential equations,
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Fig. 1. Flowchart of the proposed FATSA.
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s:t: Jan J1rη1: ð10Þ

When an is fixed, problem (9) is simplified into the following problem:

min
bn� 1

Lnþ1
b ¼ 1

2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt � invT ðun

m; v
n�1
m

h

þΔt � invT ðvn�1
m ;un�1

m Þ � bn�1Þ � an
i2

dΩ;

s:t: Jbn�1 J1rη2: ð11Þ

We initialize bn�1 as 0 and summarize the process of solving
problem (9) in Algorithm 2. The flowchart to solve the whole
problem is presented in Fig. 1. In the following subsections, we
present how to solve (10) and (11).

Algorithm 2. Alternating minimization for solving problem (9).
Inp

Ini

Ste
wh

1

2
3

4
en

Ple
Ne
ut fðun
m;u

n�1
m ; vn�1

m ;OmÞgMm ¼ 1;K ¼ 10.

tialize ε¼ 10�3, k¼0.

p 0 bn�1
0 ¼ 0.

ile not converged do

. Fix bn�1 ¼ bn�1
k and update ank by solving subproblem (10),

. Fix an ¼ ank and update bn�1
kþ1 by solving subproblem (11),

. Check the convergence conditions:

Jbn�1
kþ1�bn�1

k J1oε or k4K ,
. k’kþ1.
d while
ase cite this article as: Z. Zhao, et al., A fast alternating time
urocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2015.10.1
3.1.1. Solving subproblem (10)
In this subsection, we present the details of solving subproblem

(10). From (10),

Lnþ1
a ¼ 1

2

XM
m ¼ 1

Z
Ω

Om�un
m�Δt � invT ðun

m; v
n
mÞ � an

h i2
dΩ

¼ 1
2

XM
m ¼ 1

Z
Ω
ðΔtÞ2 � ðanÞT � invðun

m; v
n
mÞ � invT ðun

m; v
n
mÞ � an dΩ

�
XM
m ¼ 1

Z
Ω
Δt � ðOm�un

mÞ � invT ðun
m; v

n
mÞ � an dΩ

þ1
2

XM
m ¼ 1

Z
Ω
ðOm�un

mÞ2 dΩ:

Note that an is independent of (x,y). Denote

g1 ¼Δt �
XM
m ¼ 1

Z
Ω
ðOm�un

mÞ � invðun
m; v

n
mÞ dΩ;

G1 ¼ ðΔtÞ2 �
XM
m ¼ 1

Z
Ω
invðun

m; v
n
mÞ � invT ðun

m; v
n
mÞ dΩ:

8>>>>><
>>>>>:

ð12Þ

Then subproblem (10) can be rewritten as follows:

min
an

1
2 ðanÞT � G1 � an�gT

1 � an; s:t: Jan J1rη1: ð13Þ

It is a quadratic optimization problem with boundedness con-
straint, which can be conveniently solved by traditional optimi-
zation methods, e.g., the trust region reflective method [24].

3.1.2. Solving subproblem (11)
Subproblem (11) is not a least squares problem and does not

have close-form solution. We adopt the Gauss–Newton method
[25] to solve it iteratively. In each iteration, we linearize the term
in
R
Ωð�Þ2 dΩ of (11) locally and relax (11) to a least squares

problem.
Suppose that bn�1

k has been obtained at the last iteration and
denote hðbn�1Þ ¼Om�un

m�Δt � invT ðun
m; v

n�1
m þΔt � invT ðvn�1

m ;

un�1
m Þ � bn�1Þ � an. Then the linear approximation of h at bn�1

k is

hðbn�1Þ ¼ hðbn�1
k Þþ Dh

Dbn�1
k

 !T

� ðbn�1�bn�1
k Þ; ð14Þ

where Dh
Dbn� 1

k
is the Gâteaux derivatives of h with respect to bn�1. It

can be computed as follows:

Dh

Dbn�1 ¼ �ðΔtÞ2 �
X

ðp;qÞAP
σpqðvnmÞ � invðun�1

m ; vn�1
m Þ; ð15Þ

where

σpqðvnmÞ ¼
∂invT ðun

m; v
n
mÞ

∂ðvnmÞpq
� an ¼

X16
j ¼ 0

anj
∂invjðun

m; v
n
mÞ

∂ðvnmÞpq
;

ðvnmÞpq ¼
∂pþqðvnmÞ
∂xp∂yq

;

8>>>><
>>>>:

ð16Þ

and P ¼ fð0;0Þ; ð0;1Þ; ð1;0Þ; ð2;0Þ; ð1;1Þ; ð0;2Þg is the index set for
partial differentiation.

Then we obtain a relaxed problem

min
bn� 1

1
2

XM
m ¼ 1

Z
Ω

hðbn�1
k Þþ Dh

Dbn�1
k

 !T

� ðbn�1�bn�1
k Þ

2
4

3
5
2

dΩ;

s:t: Jbn�1 J1rη2: ð17Þ
-splitting approach for learning partial differential equations,
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Note that bn�1 is independent of (x,y). Denote

g2 ¼
XM
m ¼ 1

Z
Ω

Dh

Dbn�1
k

� hðbn�1
k Þ� Dh

Dbn�1
k

 !T

� bn�1
k

2
4

3
5 dΩ;

G2 ¼
XM
m ¼ 1

Z
Ω

Dh

Dbn�1
k

� Dh

Dbn�1
k

 !T

dΩ:

8>>>>>><
>>>>>>:

ð18Þ

Then problem (17) can be rewritten as follows:

min
bn� 1

1
2 ðb

n�1ÞT � G2 � bn�1þgT
2 � bn�1; s:t: Jbn�1 J1rη2: ð19Þ

It is also a quadratic optimization problem with boundedness
constraint, which can be conveniently solved by the trust region
reflective method [24]. The iteration terminates when the differ-
ence between bn�1

k and bn�1
k�1 is sufficiently small.
4. Discussions

In this section, we first discuss the complexity of the proposed
approach and then make a comparison between FATSA and GDM
[13]. Finally, we extend FATSA to handle vector-valued processing
problems.

4.1. Computational complexity

In this subsection, we discuss the computational complexity of
the proposed FATSA. As we set the maximum time T ¼NΔt, we can
compute an asymptotic worst-case bound for the time complexity.
We denote ninv as the number of invariants (for gray image
ninv ¼ 17, for color image ninv ¼ 69) and jΩj as the number of pixels
in Ω. Problems (13) and (19) are convex quadratic optimization
problems for the positive definite G1 and G2, respectively. The cubic
time complexity Oðn3

invÞ is an asymptotic worst-case bound. For each
iteration in Algorithm 2, we need to update vm

n. So the time com-
plexity is OðjΩj Þ. When we have M image training pairs and the
maximum number of iteration is K, OðKðM jΩj þn3

invÞÞ is the worst-
case bound for Algorithm 2. As the terminal time T ¼NΔt, the
worst-case bound for Algorithm 1 is OðKNðMjΩj þn3

invÞÞ.

4.2. Comparison between FATSA and GDM

In this subsection, we make a comparison between FATSA and
GDM [13]. For the training speed, we compare the training time
and errors between FATSA and GDM in Section 5.5. It can be seen
from Table 4 that the training time is greatly reduced by FATSA,
and the training errors of FATSA are obviously lower than those of
GDM in all datasets. In this case, FATSA is much faster and more
effective than GDM. For the simplicity, we have shown that FATSA
minimizes (4) at each time step, while GDM minimizes (5) at t¼T
only. This makes the learning of PDEs much simpler as it is
unnecessary to compute the adjoint PDEs for evaluating the
Gâteaux derivatives [23] of the objective functional. For the flex-
ibility, when minimizing (4) at each time step, it can fit for more
general regulations (e.g., non-smooth regularization) and extra
constraints on the linear combination coefficients. Moreover, we
can still run FATSA when t reaches T until the objective function
value of (4) does not decrease sufficiently. For GDM, it is impos-
sible to do so because the dimension of coefficients after temporal
discretization is fixed. Although there are more time steps, FATSA
is still much faster than GDM (see Table 4).

4.3. Handling vector-valued images

In practice, images in many vision tasks are often vector-valued,
such as RGB color images, multi-spectral satellite images and
Please cite this article as: Z. Zhao, et al., A fast alternating time
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multimodal medical images. FATSA can also work for learning
PDEs for vector-valued images. In this case, the optimization
problem at time tn is

min
an ;bn� 1

Lnþ1 ¼ 1
2

XM
m ¼ 1

XC
c ¼ 1

Z
Ω

Oc
m�uc

mðtnþ1Þ
� �2 dΩ;

s:t: Janc J1oη1; c¼ 1;…;C; and Jbn�1 J1oη2; ð20Þ
where um ¼ fuc

m; c¼ 1;…;Cg : Ω-RC are the evolutionary vector-
valued images for input image Im and expected output images
Om ¼ fOc

m; c¼ 1;…;Cg : Ω-RC . We simply take the luminance of
the input image as the initial function of the indicator function v.
So the PDEs system consists of Cþ1 evolutionary PDEs. Accord-
ingly, there are much more fundamental differential invariants,
which are invariant to translation and rotation. The set of such
invariants up to second order is

1; f r ; ð∇f rÞT �∇f s; ð∇f rÞT �Hf m �∇f s; trðHf r Þ; trðHf r �Hf s Þj f r ; f s;
n

f mAfu1;…;uC ; vg�:
If C¼3, there are 69 fundamental differential invariants up to
the second order. For more details, refer to [13,21,22]. Obviously,
fac j c¼ 1;…;Cg are not coupled with each other. So we can still use
alternating minimization to solve (20).
5. Numerical experiments

In this section, we first give more details on implementation.
Then we conduct extensive experiments on various datasets to test
the performance of the proposed FATSA. Note that this paper tar-
gets on solving the PDE constrained optimal control problem better.
So we mainly focus on comparing FATSA with GDM, rather than
comparing the learnt PDEs with state-of-the-art methods for each
vision task, which has been shown in [13,21,22].

5.1. Implementation

To compute the spatial derivatives and integrations, we need to
do spatial discretization. We use central difference to approximate
the derivatives:

∂f
∂x

¼ f ðxþ1Þ� f ðx�1Þ
2

;

∂2f
∂x2

¼ f ðxþ1Þ�2f ðxÞþ f ðx�1Þ:

8>><
>>: ð21Þ

The discrete forms of ∂f
∂y,

∂2 f
∂y and ∂2 f

∂x∂y can be defined similarly. In
addition, we discretize the integrations asZ
Ω
f ðx; yÞ dΩ¼ 1

jΩj
X

ðx;yÞAΩ

f ðx; yÞ; ð22Þ

where jΩj is the number of pixels in Ω.
In the first two experiments, the numbers M of training image

pairs are both 60. For GDM, λ1 ¼ λ2 ¼ 10�7, T¼1 and Δt ¼ 0:05.
For FATSA, η1 ¼ η2 ¼ 10 and Δt ¼ 0:05, but T is not limited to 1.
Rather, we run FATSA until the difference between successive
objective function value is below 10�6 or the number of iteration
reached 100 (see Algorithm 1).

5.2. Image deblurring

We first compare the characteristics of FATSA and GDM [13]
with a fundamental vision problem: image deblurring. For this
task, we take the Berkeley image database [26] and generate the
input images by blurring images using a 5�5 Gaussian kernel
-splitting approach for learning partial differential equations,
26i
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Fig. 2. The coefficients ai's ((a), (b)) and bi's ((c), (d)), i¼ 0;…;16, learnt of GDM [13] and FATSA for debluring.
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with σ¼1. The original images are used as the expected output
images.

The coefficients learnt by GDM and FATSA for image debluring
are shown in Fig. 2. We can observe that the coefficients ai's learnt
by GDM (Fig. 2(a)) have a large variance in magnitude and some
ai's increase abruptly to 20 at the last time step. This may cause
numerical instability, which we indeed have encountered. In
comparison, the coefficients ai's learnt by FATSA (Fig. 4(b)) are
much more balanced, which makes the learnt PDEs more
numerically stable. The coefficients bi's learnt by GDM (Fig. 4(c))
are very small (at a magnitude of 10�2), which implies that the
evolution of indicator function is not effective. In comparison, the
magnitudes of coefficients bi's learnt by FATSA (Fig. 4(d)) are much
larger, which shows that the indicator function evolves effectively
over time.

As for the performance of deblurring, the mean PSNR of FATSA
over 200 test images is 32.60 dB, while that of GDM is 31.98 dB.
Some deblurring results are shown in Fig. 3. We can see that FATSA
restores more edges and textures. It is clear that the images pro-
cessed by FATSA are sharper than those processed by GDM.

5.3. Natural image denoising

We then apply FATSA to learn PDEs for another fundamental
vision problem: image denoising. For this task, we use the images
tested in [13] with unknown natural noises. There are 240 images,
each with a size of 150�150 pixels, of 11 objects taken by a Canon
30D digital camera, whose ISO is 1600. For each object, 30 images
are taken without changing the camera settings (by fixing the
focus, aperture and exposure time) and without moving the
camera position. The average image of them can be regraded as
the ground truth noiseless image, which serve as output training
images.

We first compare the coefficients learnt by FATSA and those by
GDM [13]. From Fig. 4, we can observe the similar phenomenon as
in image deblurring. Most of the coefficients ai's learnt by GDM
(Fig. 4(a)) are zeros and some jump to more than 20, which may
result in numerical instability. The coefficients ai's learnt by FATSA
(Fig. 4(b)) are much smoother. Their magnitudes are also much
more balanced. Moreover, the coefficients bi's learnt by GDM
(Fig. 4(c)) are very small (at the scale of 10�4), which implies that
the indicator function actually does not change much over time. In
comparison, the magnitudes of coefficients bi's learnt by FATSA
(Fig. 4(d)) are much larger.

Next, we compare the denoising results on the test images
between GDM [13] and FATSA. Some results are given in Fig. 5. We
can see that both GDM and FATSA can remove noise effectively,
but FATSA gives the sharper results. Moreover, the PSNRs of FATSA
are higher than those of GDM.
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5.4. Color image demosaicking

In this subsection, we consider a color image processing pro-
blem: image demosaicking. Demosaicking is to infer the two
missing color components for every pixel from a raw image, which
only captures one color component at every pixel due to the fil-
tering of color filter arrays (CFAs) [27,28]. The most commonly
used CFA is the Bayer CFA. For demosaicking, we test our method
on both clean and noisy images. For the clean images demo-
saicking, we choose the Kodak image database [29]. For the noisy
images demosaicking, we choose the publicly available noisy
dataset [30].

5.4.1. Demosaicking on the clean images
First, we take the Kodak image database [29] for clean images

demosaicking. Images 1� 12 are used for training and images 13
� 24 are used for testing. As for saving time and memory cost of
training, we divide each 512�768 image into 12 non-overlapping
150�150 patches and choose the first 60 patches with the richest
texture, which is measured by their variances. After that we
downsample the patches into Bayer CFA raw image. Then we
bilinearly interpolate the CFA raw data (i.e., for each channel the
missing values are bilinearly interpolated from their nearest four
available values) into full-color images and use them as the input
images of the training pairs. Note that bilinear interpolation (BI) is
the naivest way of inferring the missing colors and many artifacts
can occur. We use the original full color clean images as the output
images of the training pairs. We compare the results of FATSAwith
those of GDM [13] on the test images.

Fig. 6 shows some demosaciking results. We can see that FATSA
is better than GDM in all PSNR value, noise reduction, and color
fidelity. GDM [13] gives blurry results with many color artifacts,
while FATSA is capable of eliminating most of the noises. Table 2
shows the comparison on the mean PSNRs of 12 test images. It can
be seen that the mean PSNRs of FATSA are much higher than those
of GDM.

5.4.2. Demosaicking on the noisy images
Next, we want to show that FATSA can also work very well for

noisy images demosaicking. For better comparison, we choose the
publicly available Image Denoising Benchmark dataset [30], which
is generated from the Berkeley Segmentation Database and images
are degraded by additive, uncorrelated Gaussian noise with stan-
dard deviations (std) of 5, 10, 15, 25 and 35. We divide each
320�480 image into 6 non-overlapping 150�150 patches and
select the first 60 patches with the richest texture, which is
measured by their variances. Then we downsample the patches
into Bayer CFA raw data and use bilinearly interpolated results as
the input images of the training pairs.
-splitting approach for learning partial differential equations,
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Fig. 3. The results of image deblurring. (a) Ground truth (GT) images. (b) The images blurred by a Gaussian kernel. (c, d) The deblurring results of GDM [13] and FATSA,
respectively. The PSNRs are presented below each image.
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Some results are given in Fig. 7. It shows the demosaicking
results under different noise levels. We can see that the proposed
FATSA can be used to fully recover Bayer CFA images with low
noise levels and it preserves more texture information than GDM
[13]. It is clear that the proposed FATSA gives sharper images and
less color artifacts in high noise levels. Also, we compute the mean
PSNRs on this dataset and show them in Table 3. We can see that
Please cite this article as: Z. Zhao, et al., A fast alternating time
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the proposed FATSA performs better than GDM [13] in all noise
levels.
5.5. Comparison of training error and time with GDM

Finally, we compare the training error and training time
between GDM [13] and FATSA. The training error is measured by
-splitting approach for learning partial differential equations,
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Fig. 4. The coefficients ai's ((a), (b)) and bi's ((c), (d)), i¼ 0;…;16, learnt by GDM [13] and FATSA in image denoising.

Fig. 5. The results of denoising images with natural noise. (a) Ground truth (GT) images. (b) Images with natural noise. (c, d) Denoised images using GDM [13] and the
proposed FATSA, respectively. The PSNRs are presented below each image.
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(5), where M¼60 for image deblurring and noising and M¼12 for
image demosaicking. The Matlab implementation of GDM and
FATSA are run on a PC equipped with a dual 3.4 GHz CPU and 8 GB
memory.

The training error and time of GDM and FATSA are shown in
Table 4. Obviously, the training time is greatly reduced by FATSA.
For grayscale images, the training speed is accelerated by ten
times. For color images, the training time is cut by more than half.
Moreover, the training errors of FATSA are lower than those of
Please cite this article as: Z. Zhao, et al., A fast alternating time
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GDM. So we can conclude that FATSA is much more effective than
GDM on learning PDEs.
6. Conclusion

In this paper, we propose a new fast alternating time-splitting
approach (FATSA) to efficiently learn PDEs for different visual
tasks. We aim at minimizing the difference between the expected
-splitting approach for learning partial differential equations,
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Fig. 6. The demosaicking results for clean images. (a) Ground truth (GT) images. (b–d) The demosaicking results of bilinearly interpolation (BI), GDM [13] and FATSA,
respectively. The PSNRs are presented below each image.

Table 2
Comparison on the mean PSNRs on 12 test images in the Kodak image database.

Input (BI) GDM [13] FATSA

31.4275.58 dB 37.9673.75 dB 38.7173.61 dB
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output and the actual output of PDEs at every time step, rather
than at the final step only as GDM does. FATSA is much faster than
GDM and also much simpler as it does not require deducing and
solving the adjoint equations. Moreover, it is more flexible than
GDM in incorporating more complex regularizations or constraints
on the linear combination coefficients. Experiments on typical
image processing problems show that FATSA outperforms GDM.

In the future, we plan to improve and enrich our work in the
following aspects. First, we want to carry out theoretical analysis
Please cite this article as: Z. Zhao, et al., A fast alternating time
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on the convergence behavior of FATSA and the properties of learnt
PDEs. Second, we would like to combine other regularizations and
constraints to improve the performance of learnt PDEs. Finally,
-splitting approach for learning partial differential equations,
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Fig. 7. The demosaicking results for noisy images (From the first row to the last row, images are degraded by Gaussian noise with standard deviations (std) of 5, 10, 15, 25
and 35, respectively). (a) Noisy images with different noise level. (b) Ground truth (GT) images. (c, d) The demosaicking results of GDM [13] and the proposed FATSA.
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Table 3
Comparison on the mean PSNRs for increasing noise level of different algorithms.

Noise (std) Input (BI) GDM [13] FATSA

5 28.63 dB 31.46 dB 31.60 dB
10 27.64 dB 29.37 dB 29.39 dB
15 24.47 dB 27.88 dB 27.92 dB
25 20.39 dB 25.93 dB 26.01 dB
35 17.73 dB 24.52 dB 24.83 dB

Table 4
Comparison of training error and time of GDM and FATSA.

Error Time (s)

GDM [13] FATSA GDM [13] FATSA

Debluring 1516 1180 4769 491
Denoising 1602 1521 4729 473
Demosaicking, clean 2630 2548 13349 6210
Noisy, std¼5 4827 4649 10212 2869
std¼10 7147 7035 11333 3499
std¼15 9843 9539 10293 3759
std¼25 15056 14923 13325 5336
std¼35 21087 20261 12263 5021
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beyond learning-based PDEs, we will apply FATSA to solve other
PDE constrained optimal control problems in computer vision
[20], such as optical flow estimation [12,31], tracking [32,33] and
image sequence interpolation models [34,35].
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