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ABSTRACT

Annotating images with tags is useful for indexing and re-
trieving images. However, many available annotation data
include missing or inaccurate annotations. In this paper,
we propose an image annotation framework which sequen-
tially performs tag completion and refinement. We utilize
the subspace property of data via sparse subspace clustering
for tag completion. Then we propose a novel matrix com-
pletion model for tag refinement, integrating visual correla-
tion, semantic correlation and the novelly studied property
of complex errors. The proposed method outperforms the
state-of-the-art approaches on multiple benchmark datasets
even when they contain certain levels of annotation noise.
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1. INTRODUCTION

It is useful to annotate images with textual tags for the
purpose of image indexing and retrieval. To annotate proper
tags, one need to bridge the gap between low level visual
features of an image and corresponding high level semantic
information [16]. Since manual annotation is labor intensive,
automatic annotation has aroused much attention. Many
machine learning based approaches have been developed.

Currently many image annotation data have been col-
lected from crowdsourcing services [21, 12], providing large
amount of data for training while being noisy due to an-
notation errors. Annotation errors are usually complex and
mainly come in two forms: missing tags and inaccurate tags.
Most image annotation approaches solely focus on one of
those two, either trying to impute the missing tags (tag com-
pletion/tag assignment) [11] or correcting inaccurate tags
(tag refinement) [22, 8, 16]. Other existing methods fail to
model the complex errors properly. They either treat them
in the same way [24], ignoring the complex property of the

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. .. $15.00
DOL: http://dx.doi.org/10.1145/2911451.2914693

errors, or rigidly assign fixed weights to different kinds of er-
rors [11], having no adaptability when working on different
datasets with different levels of annotation errors.

In this paper, we propose a framework called Subspace
clustering and Matrix completion with Complex errors (SM-
C). Since current tag refinement methods suffer from the
extreme sparsity problem [20], SMC performs tag comple-
tion and refinement sequentially. During tag completion,
SMC tries to introduce many additional proper tags to im-
ages via exploring subspace property in the image collection.
We then adapt the inductive matrix completion [13] model
to perform the following tag refinement procedure, utilizing
side information such as the correlation between visual fea-
tures and their corresponding tags (visual correlation), cor-
relation between the semantic information of tags (semantic
correlation) and the complex errors.

The main contributions of this paper include:

e We perform tag completion and tag refinement sequen-
tially, showing that tag refinement benefits from tag
completion.

e We formulate tag completion in a subspace clustering
framework to tackle the extreme sparsity problem.

o We novelly adapt the inductive matrix completion mod-
el for tag refinement, taking visual correlation, seman-
tic correlation and our novelly studied complex errors
property into consideration.

2. THE PROPOSED FRAMEWORK

2.1 Overview

We denote the observed tag matrix as O € {0, 1}Vi*Nt,
where each row corresponds to one image, each column cor-
responds to one textual tag, and N; and N; denote the num-
ber of images and tags, respectively. O;; takes value 1 only
if image ¢ is annotated with tag j and 0 otherwise.

We are targeting at modifying the values in matrix O by
matrix completion methods to perform image annotation.
After the matrix completion procedure, if the value of Oj;
changes from nonzero (zero) to zero (nonzero), we say that
the algorithm removes (adds) tag j from (to) image ¢. Meth-
ods based on matrix completion are robust and efficient since
they only operate on the tag matrix, avoiding error propa-
gation from image segmentation.

However, in many cases O is so sparse that some columns
have at most one known entries and some rows have no
known entries at all, making existing methods not applicable
[20]. In order to overcome such extreme sparsity, we first



perform tag completion to make O denser, creating a better
condition for the following tag refinement procedure. More
specifically, we perform subspace clustering over images and
share tags within subspaces.

For tag refinement, existing methods usually depends heav-
ily on image segmentation and visual feature extraction ac-
curacies [1]. However, image segmentation and feature ex-
traction procedures always contain a lot of noises, which
affect the following annotation procedure severely. Mean-
while, recent matrix completion based methods [10, 8, 9]
stand out due to their robustness and efficiency, since these
algorithms avoid the image segmentation procedure.

Our proposed framework is called Subspace clustering and
Matrix completion with Complex errors (SMC), because
it utilizes the subspace property of image collections (Sec-
tion 2.2) and addresses the complex errors and side infor-
mation in an inductive matrix completion model for tag re-
finement (Section 2.3).

2.2 Subspace Clustering for Tag Completion
2.2.1 Subspace Clustering

It is reasonable to assume that images belonging to differ-
ent categories are approximately sampled from a mixture of
several low-dimensional subspaces. The membership of the
data points to the subspaces is unobserved, leading to the
challenging problem of subspace clustering. Here the goal is
to cluster data into k clusters with each cluster correspond-
ing to a subspace.

One of the state-of-the-art method is the sparse subspace
clustering (SSC) model [5]. The idea behind SSC is to ex-
press a data point as a linear (or affine) combination of
neighboring data points. The neighbors can be any other
points in the data set. While every point is a combination
of all other data points, SSC seeks for the sparsest represen-
tation among all the candidates by minimizing the number
of nonzero coefficients [6].

We denote the set of images, represented as visual feature
vectors, as V = [v1,Va,...,Vv,]. Assuming that they are
drawn from a union of k subspaces. Each column of V can
be represented by a linear combination of the bases in a
“dictionary”. SSC uses the matrix V itself as the dictionary
while explicitly considering noise:

min  ||Z]lx + ulE|l%, (1)
st. V=VZ' +E,diag(Z)=0,21=1, (2)

where ZT = [Z1,22,...,2xn] is the coefficient matrix with
each z; being the representation of v; and E is the error
matrix. This problem can be solved efficiently using modern
sparse optimization algorithms, such as linearized alternat-
ing direction methods [17].

Given a sparse representation for each data point, we can
define the affinity matrix as A = |Z| + |Z " |. Subspaces are
then obtained by applying spectral clustering to the Lapla-
cian matrix of A [5].

2.2.2 Tag Sharing

We improve the search based neighbor voting algorithm
proposed in [18] to share tags in each cluster separately. We
rank all the tags for the cluster, taking tag frequency, tag
co-occurrence and local frequency into consideration. The
elements of tag matrix after tag sharing are no longer binary

but take values in [0, 1], representing the confidence level
between each image-tag pair.

2.3 Matrix Completion for Tag Refinement

The tag completion procedure makes the tag matrix much
denser and thus avoids the extreme sparsity problem. Then
we can refine the tag matrix. In our framework we novelly
adapt the inductive matrix completion model (IMC) [13]
for tag refinement, due to its scalability and capability of
incorporating various kinds of side information.

2.3.1 Inductive Matrix Completion

Let v; € Rfi denote the fi-dimensional feature vector of
image 7 and t; € Rt denote the fi-dimensional feature vec-
tor of tag j. Let V. € RNi*/i denote the feature matrix of
N, images, where the i-th row is the image feature vector
v; , and T € RM*ft denote the feature matrix of N, tags,
where the i-th row is the tag feature t, .

For image annotation, we assume that the tag matrix can
be approximated by applying visual feature vectors and tag
feature vectors associated with its row and column entries
onto an underlying low-rank matrix M, i.e. O ~ VMT',
where M = PQ" [13] and P € R\ and Q € R"*/* are of
rank r < N;, N;. The goal is to solve the following problem:

win loss(O, VPQ' T ") + A (rank(PQ")).  (3)

A common choice for the loss function is the squared loss.
The low-rank constraint on PQ" makes (3) NP-hard. A
standard relaxation is to use the trace norm, i.e. sum of
singular values. Minimizing the trace-norm of M = PQ is
equivalent to minimizing 1 (|P||%+[|Q||%) [13]. The relaxed
optimization problem we use in this work is therefore:

, )
min |0 — VPQ'T' | + %(HPII% +lQlE). (@)

2.3.2  Visual Correlation

We want to get the refined tag matrix O0=vrPQ'T"
from the original tag matrix O. Here we represent the ith
row of O as O;, corresponding to the refined tag vector of
image i. Thus we can measure the correlation between image
¢ and image j in two ways: 1) similarity between image
features v; and v, 2) similarity between refined tag vectors
0O; and Oj. Since visually similar images often belong to
similar themes and thus are annotated with similar tags,
these two kinds of similarities should be correlated.

Such visual correlation can be enforced by solving the fol-
lowing optimization

N¢ N
min > D110 - 05, (5)

i=1 j=1

where ||O; — O;||? measures the similarity between tag vec-
tors (A)Z and Oj and g;; measures the similarity between
visual features v; and v;. In this work, we adopt cosine
similarity, i.e. g;; = cos(v;,v;). The formulation forces tag
vectors with large similarities also have large similarity in
their corresponding visual features and vice versa.

The formulation can be rewritten as

min Tr(OL,O ') = win Tr(VPQ' T'L/TQP V'), (6)

where L, = diag(G1) — G is the Graph Laplacian [3] of the
similarity matrix G = (gij).



2.3.3 Semantic Correlation

Similarly, we can also enforce semantic correlation be-
tween tags. Since each column of the matrix O represents
the feature of a tag, we can measure the correlation between
two tags using the similarity between their corresponding
column vectors of O. Meanwhile, semantic similarity be-
tween two tags can be measured using word vectors. These
two kinds of similarities should be correlated as well.

We can enforce the semantic correlation by solving the
following optimization, in a similar form as (6):

win Tr(0"L0) = min TH(TQP ' V'LVPQ'T'), (7)

where L = diag(H1)—H is the Graph Laplacian of the sim-
ilarity matrix H = (h;;), with each element h;; = cos(t;, t;).

2.3.4 Features Vectors

We utilize DeCAFg [4] to extract 4, 096-dimensional visual
features for each image, which have high level information.
Meanwhile, we adopt pre-trained word embedding vectors
(word2vec) [19] to construct 300-dimensional features for
each tag, trying to capture semantic information.

2.3.5 Complex Errors

As we have mentioned, annotation errors come in two
forms: missing tags and inaccurate tags. Since human be-
ings are relatively reasonable, the user-provided tags are rea-
sonably accurate to certain level [24]. Users might miss one
or several proper tags among the few related tags, but may
become less probable to add one or several inaccurate tags
from the massive unrelated tag sets [12]. In other words, if
an image is not originally annotated with a tag, it is more
likely that they really have no relation at all. Thus the
errors are mainly composed of inaccurate tags rather than
missing tags. And we should pay more attention to denoise
the inaccurate tags rather than completing the missing ones.

To model the complex structure of errors, we improve the
matrix completion model by putting less weights on the u-
nannotated positions:

win |0 — VPQ T '||5 - 4l|Ua(0 - VPQ T )|, (8)

where €2 represents the positions where the images are o-
riginally not annotated. U is a projection operator and u
acts as a weighting parameter which changes adaptively in
different datasets according to their noise levels.

Existing methods never model these two kinds of errors
separately. They simply model the errors as Laplacian noise
[24] or Gaussian noise [22]. To our knowledge, our model
is the first to model the missing errors and inaccurate er-
rors separately. The model can further adapt to different
datasets according to their noise levels.

3. FINAL MODEL

Based on the components regarding low-rankness, visu-
al correlation, semantic correlation and complex errors, we
formulate the objective function as follows:

win [0 — VPQT'[|% — 4l|Ua(0 - VPQ T )7

A
+71(HPII% +lQlE)+
A [T (VPQ'T'L,TQP V' +TQP 'V L,VPQ'T")].

By solving P and Q we can then construct the refined tag
matrix O = VPQ T and use it for refined annotation.

We set the regularization terms of visual correlation and
semantic correlation with the same weight A2 for simplicity.
This simplification does not harm performance, as we find
during preliminary experiments.

This objective function is non-convex. To solve the opti-
mization problem, we adapt the solver for low-rank empiri-
cal risk minimization for multi-label learning (LEML) [23],
which naturally fits for the settings of large-scale multi-label
learning with missing labels. The solver uses alternating
minimization (fix P and solve for Q and vice versa) to up-
date the variables. When either P or Q is fixed, the result-
ing subproblem in one variable (Q or P) can be solved using
iterative conjugate gradient procedure.

4. EXPERIMENTAL EVALUATION
4.1 Datasets and Experimental Setup

We evaluate our proposed SMC framework on two bench-
mark datasets: Labelme [21] and MIRFlickr-25K [12]. Ta-
ble 1 demonstrates the detailed statistics. These two dataset-
s, especially MIRFlickr-25K, are rather noisy, with a number
of the tags being misspelled or meaningless. Hence, a pre-
processing procedure is performed. We match each tag with
entries in the Wikipedia thesaurus and only retain the tags
in accordance with Wikipedia.

Table 1: Statistics of 2 Datasets
Statistics Labelme | MIRFlickr-25K
No. of images 2,900 25,000
Vocabulary Size 495 1,386
Tags per Image (mean/max) 10.5/48 12.7/76
Images per Tag (mean/max) | 67.1/379 416.5/76,890

We compare our method with the state-of-the-art meth-
ods, including matrix completion-based models (i.e. LRES
[24], TCMR [8], RKML [9]), search-based models (i.e. JEC
[18], TagProp [11], and TagRelevance [15]), mixture mod-
els (i.,e. CMRM [14] and MBRM [7]) and co-regularized
learning model (FastTag [2]). The tag refinement procedure
by itself, denoted as SMC_IMC, is also compared to veri-
fy the benefit from the tag completion procedure. We tune
the parameters on the validation set of the two datasets
separately for every method in comparison. Note that the
weighting parameter p we tune changes from 0.4 (Labelme)
to 0.7 (MIRFlickr-25K), confirming that as the data become
more and more noisy, we should pay more attention to the
noisy tags and less on missing tags.

We measure all the methods in terms of average preci-
ston@QN (APQN) and average recall@N (ARQN). In the
top N completed tags, precision@N is to measure the ratio
of correct tags and recall QN is to measure the ratio of miss-
ing ground-truth tags, both averaged over all test images.

4.2 Evaluation and Observation

Table 2 and Table 3 show performance comparisons on
the two datasets, respectively.

We can observe that: 1) Generally, methods achieve bet-
ter performance on Labelme, since tags in MIRFlickr-25K
are more noisy. 2) Methods based on matrix completion,
such as SMC, LRES and TCMR, usually achieve the best
performances. 3) Our SMC framework shows increasing ad-
vantage to LRES as the data become more and more noisy,
justifying our assumption and model on the noises. 4) SM-



Table 2: Performance Comparison on Labelme

Labelme
N=2 N=5 N =10

AP [ AR AP | AR AP [ AR
SMC 0.51 | 0.36 | 0.46 | 0.50 | 0.35 | 0.62
SMC_IMC 047 | 0.34 | 0.40 | 048 | 0.31 | 0.59
LRES [24] 042 | 0.32 | 0.35 | 0.45 | 0.27 | 0.56
TCMR [8 044 | 0.32 | 0.37 | 045 | 0.29 | 0.55
RKML [9 0.21 | 0.14 | 0.19 | 0.20 | 0.14 | 0.22
JEC [18] 0.33 | 0.29 | 0.27 | 0.38 [ 0.20 [ 0.48
TagProp [11] | 0.39 | 0.31 0.33 | 045 | 0.25 | 0.56
TagRel [15] 043 | 0.32 | 0.34 | 045 | 0.27 | 0.55
CMRM [14] 0.20 | 0.14 | 0.18 | 0.19 | 0.12 | 0.22
MBRM [7] 0.23 | 0.14 | 0.18 | 0.20 | 0.12 | 0.27
FastTag [2] 043 | 0.34 | 0.37 | 0.44 [ 0.28 | 0.57

Table 3: Performance Comparison on MIRFlickr-

25K
MIRFlickr-25K

N=2 N=5 N=10

AP [AR | AP [AR | AP [ AR
SMC 0.53 | 0.39 | 0.40 | 0.47 | 0.33 | 0.61
SMC IMC 0.45 | 0.34 | 0.36 | 0.43 | 0.30 | 0.52
LRES [24] 043 [ 0.35 | 0.32 | 0.40 | 0.26 | 0.45
TCMR [8 0.45 0.35 0.35 0.41 0.28 0.48
RKML [9 0.21 0.15 0.13 0.23 0.13 0.22
JEC [18] 0.33 | 0.30 | 0.5 [ 0.34 [ 0.19 | 0.35

TagProp [11] | 0.39 | 0.35 | 0.28 | 0.37 | 0.20 | 0.41
TagRel [15] 0.42 | 0.34 | 0.30 | 0.37 | 0.20 | 0.40
CMRM [14] 0.20 | 0.15 | 0.13 | 0.18 | 0.11 | 0.20
MBRM [7] 0.22 | 0.16 0.13 | 0.18 | 0.10 | 0.22
FastTag [2] 0.43 | 0.35 | 0.30 | 0.41 [ 0.27 | 0.42

C nearly outperforms all the other algorithms in all cases.
5) Performance comparison between SMC and SMC_IMC
demonstrate the remarkable benefit of tag completion for
tag refinement. 6) Performance on MIRFlickr-25K in some
sense provides an evidence for the robustness of SMC.

5. CONCLUSION

In this work we present an effective framework for image
annotation by performing tag completion and tag refinement
sequentially. Our method first clusters images using sparse
subspace clustering and shares tags using a neighbor voting
algorithm, then refines tags by adapting inductive matrix
completion while novelly utilizing visual and semantic infor-
mation. Experiments show the effectiveness of our frame-
work and suggest that tag refinement can benefit a lot from
performing tag completion first.
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