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Tensor LRR and Sparse Coding-Based
Subspace Clustering
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Abstract— Subspace clustering groups a set of samples from
a union of several linear subspaces into clusters, so that the
samples in the same cluster are drawn from the same linear
subspace. In the majority of the existing work on subspace
clustering, clusters are built based on feature information,
while sample correlations in their original spatial structure are
simply ignored. Besides, original high-dimensional feature vector
contains noisy/redundant information, and the time complexity
grows exponentially with the number of dimensions. To address
these issues, we propose a tensor low-rank representation (TLRR)
and sparse coding-based (TLRRSC) subspace clustering method
by simultaneously considering feature information and spatial
structures. TLRR seeks the lowest rank representation over orig-
inal spatial structures along all spatial directions. Sparse coding
learns a dictionary along feature spaces, so that each sample can
be represented by a few atoms of the learned dictionary. The
affinity matrix used for spectral clustering is built from the joint
similarities in both spatial and feature spaces. TLRRSC can well
capture the global structure and inherent feature information of
data and provide a robust subspace segmentation from corrupted
data. Experimental results on both synthetic and real-world data
sets show that TLRRSC outperforms several established state-
of-the-art methods.

Index Terms— Dictionary learning, sparse coding (SC),
subspace clustering, tensor low-rank representation (TLRR).

I. INTRODUCTION

IN RECENT years, we have witnessed a huge growth
of multidimensional data due to technical advances in

sensing, networking, data storage, and communication tech-
nologies. This prompts the development of a low-dimensional
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Fig. 1. Illustration of subspace clustering with high-dimensional data.

representation that best fits a set of samples in a high-
dimensional space. Linear subspace learning is a type of
traditional dimensionality reduction technique that finds an
optimal linear mapping to a lower dimensional space. For
example, principle component analysis (PCA) [40] is essen-
tially based on the hypothesis that the data are drawn from
a low-dimensional subspace. However, in practice, a data set
is not often well described by a single subspace. Therefore,
it is more reasonable to consider data residing on a union
of multiple low-dimensional subspaces, with each subspace
fitting a subgroup of data. The objective of the subspace
clustering is to assign data to their relevant subspace clusters
based on, for example, assumed models. In the last decade,
subspace clustering has been widely applied to many real-
world applications, including motion segmentation [14], [20],
social community identification [9], and image clustering [3].
A famous survey on subspace clustering [44] classifies most
existing subspace clustering algorithms into three categories:
statistical methods [19], algebraic methods [38], [49], and
spectral clustering-based methods [14], [29].

In the existing traditional subspace clustering
algorithms [44], one usually uses an unfolding process to
rearrange samples into a list of individual vectors, represented
by a matrix X = [x1, x2, . . . , xN ], with each sample xi

(1 ≤ i ≤ N) being denoted by a column vector. However,
in many applications, samples may have multidimensional
spatial structural forms, such as 2-D/mode hyperspectral
images. In the 3-D hyperspectral image case, one wishes
to cluster all the pixels, each of which is represented as a
spectrum vector consisting of many bands, as shown in Fig. 1.
As a result, the performance of traditional subspace clustering
algorithms may be compromised in practical applications for
two reasons: 1) they do not consider the inherent structure
and correlations in the original data and 2) building a model
based on original high-dimensional features is not effective to
filter the noisy/redundant information in the original feature
spaces, and the time complexity grows exponentially with the
number of dimensions.
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For the first issue, tensor is a suitable representation for
such multidimensional data, such as hyperspectral images, in
a format of a multiway array. The order of a tensor is the
number of dimensions, also known as ways or modes. Thus,
a set of hyperspectral images with a 2-D spatial structure
can be denoted by an order-3 tensor X ∈ R

I1×I2×I3 , with
mode-i (1 ≤ i ≤ 2) denoting the sample’s position along its
two spatial directions, and the mode-3 denoting the sample
feature direction, e.g., a range of wavelengths in the spectral
dimension. Fu et al. [50] proposed a novel subspace clustering
method called tensor low-rank representation (TLRR), where
the input data are represented in their original structural form
as a tensor. It finds a lowest rank representation for the input
tensor, which can be further used to build an affinity matrix.
The affinity matrix used for spectral clustering [54] records
pairwise similarity along the row and column directions.

For the second issue, finding low-dimensional inherent
feature spaces is a promising solution. Dictionary learning [51]
is commonly used to seek the lowest rank [29], [52], [53]
or sparse representation [14], [55] with respect to a given
dictionary, which is often the data matrix X itself. LRR and
sparse representation/sparse coding (SC) take sparsity into
account in different ways. The former defines a holistic
sparsity on a whole data representation matrix, while the
latter finds the sparsest representation of each data vector
individually. SC has been widely used in numerous signal
processing tasks, such as imaging denoising, texture synthesis,
and image classification [26], [36], [48]. Nevertheless, the
performance of SC deteriorates when data are corrupted.
Therefore, it is highly desirable to integrate spatial information
into SC to improve the clustering performance and reduce the
computational complexity as well.

Against this background, we propose a novel subspace
clustering method, where the input data are represented in
their original structural form as a tensor. Our model finds the
lowest rank representation for each spatial mode of the input
tensor, and a sparse representation with respect to a learned
dictionary in the feature mode. The combination of similarities
in spatial and feature spaces is used to build an affinity matrix
for spectral clustering. In summary, the contribution of this
paper is threefold.

1) We propose a TLRR to explore spatial correlations
among samples. Unlike previous work that merely con-
siders sample feature similarities and reorders original
data into a matrix, our model takes sample spatial
structure and correlations into account. Specifically, our
method directly seeks an LRR of natural structural
form—a high-order tensor.

2) This paper integrates dictionary learning for sparse rep-
resentation in the feature mode of tensor. This setting
fits each individual sample with its sparsest represen-
tation with respect to the learned dictionary, conse-
quently resolving exponential complexity and memory
usage issues of some classical subspace clustering
methods (e.g., statistical- and algebraic-based methods)
effectively.

3) The new subspace clustering algorithm based on our
model is robust and capable of handling noise in

the data. Since our model considers both feature and
spatial similarities among the samples, even if data
are severely corrupted, it can still maintain a good
performance, since the spatial correlation information
is utilized in order to cluster data into their respective
subspaces correctly.

II. RELATED WORK

Vidal [44] classifies the existing subspace clustering
algorithms into three categories: statistical methods, algebraic
methods, and spectral clustering-based methods.

Statistical models assume that mixed data are formed by
a set of independent samples from a mixture of a certain
distribution, such as Gaussian. Each Gaussian distribution
can be considered as a single subspace, and then subspace
clustering is transformed into a mixture of Gaussian model
estimation problems. This estimation can be obtained by
the expectation maximization algorithm in the mixture of
probabilistic PCA [41], or serial subspace searching in ran-
dom sample consensus (RANSAC) [17]. Unfortunately, these
solutions are sensitive to noise and outliers. Some efforts
have been made to improve algorithm robustness. For exam-
ple, agglomerative lossy compression [31] finds the optimal
segmentation that minimizes the overall coding length of the
segmented data, subject to each subspace being modeled as a
degenerate Gaussian. However, the optimization difficulty is
still a bottleneck in solving this problem.

Generalized PCA (GPCA) [45] is an algebraic-based
method to estimate a mixture of linear subspaces from the
sample data. It factorizes a homogeneous polynomial whose
degree is the number of subspaces and the factors (roots)
represent normal vectors of each subspace. GPCA has no
restriction on subspaces and works well under certain con-
ditions. Nevertheless, the performance of the algebraic-based
methods in the presence of noise deteriorates as the number
of subspaces increases. Robust algebraic segmentation [38]
is proposed to improve its robustness, but the complexity
issue still exists. Iterative methods improve the performance
of the algebraic-based algorithms to handle noisy data in a
repeated refinement. The k-subspace method [6], [19] extends
the k-means clustering algorithm from the data distributed
around cluster centers to data drawn from the subspaces
of any dimensions. It alternates between assigning samples
to subspaces and re-estimating subspaces. The k-subspace
method can converge to a local optimum in a finite number
of iterations. Nevertheless, the final solution depends on good
initialization and is sensitive to outliers.

The works in [14], [29], and [38] are representative of
spectral clustering-based methods. They aim to find a linear
representation, Z, for all the samples in terms of all other
samples, which is solved by finding the optimal solution to
the following objective function:

min
Z
‖Z‖b + λ

2
‖E‖q

s.t. X = XZ+ E (1)

where ‖ · ‖q and ‖ · ‖b denote the norms for error and the new
representation matrix Z, respectively, and λ is the parameter to
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balance the two terms. Using the resulting matrix Z, an affinity
matrix |Z|+ |ZT | is built and used for spectral clustering. The
sparse subspace clustering (SSC) [14] uses the l1-norm ‖Z‖1
in favor of a sparse representation, with the expectation that
within-cluster affinities are sparse (but not zero) and between-
cluster affinities shrink to zero. However, this method is not
designed to accurately capture the global structure of data and
may not be robust to noise in data. The LRR [29] employs
the nuclear norm ‖Z‖∗ to guarantee a low-rank structure, and
the l2,1-norm is used in the error term to make it robust to
outliers.

Dictionary learning for sparse representation aims at
learning a dictionary D, such that each sample in the data set
can be represented as a sparse linear combination of the atoms
of D. The problem of dictionary learning is formulated as

min
D,zi (i=1,2,...,N)

N∑

i=1

‖xi − Dzi‖22
s.t. ‖zi‖0 = r (2)

where ‖·‖2 denotes the l2-norm, ‖zi‖0 is the l0-norm of
the coefficient vector zi , which is defined as the number of
nonzero elements, and r is a predefined sparsity integer for
each sample. The optimization is carried out using an iterative
algorithm that is formed by two alternative steps: 1) the SC by
fixing the dictionary D and 2) the dictionary update with a
fixed sparse representation.

With regard to SC for a given dictionary, the existing
algorithms are divided into three categories: optimization
methods, greedy methods, and thresholding-based methods.
Basis pursuit (BP) is a commonly used optimization method
that uses a convex optimization method to minimize the
l1-norm ‖zi‖1 subject to the constraint xi = Dzi , if the vector
zi is sparse enough and the matrix D has sufficiently low
coherence [12], [42]. The computational complexity of BP is
very high, thus it is not suitable for large-scale problems.
In comparison, the greedy algorithm matching pursuit (MP)
has a significantly smaller complexity than BP, especially
when the sparsity level is low [43]. A popular extension of
MP is orthogonal MP (OMP) [33], [34], which iteratively
refines a sparse representation by successively identifying one
component at a time that yields the greatest improvement
in quality until an expected sparsity level is achieved or
the approximation error is below the given threshold. The
thresholding-based methods contain algorithms that do not
require an estimation of the sparsity. In such algorithms, the
hard thresholding operator gives way to a soft thresholding
operator with a positive threshold, such as the iterative hard
thresholding algorithm [5] and the hard thresholding
pursuit [18]. Another important method for SC is the message-
passing algorithm studied in [11].

The main differences in dictionary update algorithms are in
the ways they update the dictionary. The Sparsenet [35] and
the method of optimal directions (MODs) [15] perform the
dictionary update with fixed values of coefficients. Sparsenet
updates each atom of dictionary iteratively with a projected
fixed step gradient descent. MOD updates the whole dictio-
nary in one step by finding a closed-form solution of an

unconstrained least-square problem. Different from the above
two algorithms, K-singular value decomposition (SVD) [1]
updates each dictionary atom and the values of its nonzero
sparse coefficient simultaneously. The atom update problem
then becomes a PCA problem. The K-SVD algorithm is
flexible and can work with any pursuit methods.

III. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

Before formulating the subspace-clustering problem, we
first introduce some tensor fundamentals and notations. Please
refer to [22] for more detailed definitions and notations.

Definition 1 (Tensor Matricization): Matricization is the
operation of rearranging the entries of a tensor so that it can
be represented as a matrix. Let X ∈ R

I1×···×IN be a tensor of
order-N , the mode-n matricization of X reorders the mode-n
vectors into columns of the resulting matrix, denoted by
X(n) ∈ R

In×(In+1 In+2 ...IN I1 I2...In−1).
Definition 2 (Kronecker Product [22]): The Kronecker pro-

duct of matrices A ∈ R
I×J and B ∈ R

P×L , denoted by A⊗B,
is a matrix of size (I P) × (J L) defined by

A⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI 1B aI 2B · · · aI J B

⎤
⎥⎥⎥⎦. (3)

Definition 3 (n-Mode Product): The n-mode product of a
tensor X ∈ R

I1×...×IN by a matrix U ∈ R
J×In , denoted by

X ×n U, is a tensor with entries

(X ×n U)i1,...,in−1, j,in+1,...,iN =
In∑

in=1

xi1i2 ...iN u j in . (4)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in terms
of tensor matricization as well

Y = X ×n U⇔ Y(n) = UX(n). (5)

Definition 4 (Tucker Decomposition): Given an order-N
tensor X , its Tucker decomposition is an approximated tensor
defined by

X̂ ≡ �G;U1, . . . , UN � = G ×1 U1 ×2 . . .×N UN

=
R1∑

r1=1

R2∑

r2=1

. . .

RN∑

rN=1

gr1r2...rN u1
r1
◦ u2

r2
. . . ◦ uN

rN
(6)

where G ∈ R
R1×R2×... RN is called a core tensor, Un =

[un
1, un

2 , . . . , un
Rn
] ∈ R

In×Rn (1 ≤ n ≤ N) are the factor
matrices, and the symbol ◦ represents the vector outer product.

For ease of presentation, key symbols used in this paper are
shown in Table I.

B. Tensorial Data Sets

Given an order-N tensor X ∈ R
I1×I2×···×IN , we consider a

data set of all the IN -dimensional vectors/features along X ’s
N-mode (also called N-mode fibers). The size of the data set
is (I1× I2×· · ·× IN−1). Assume that these samples are drawn
from a union of K independent subspaces {Sk}Kk=1 of unknown
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TABLE I

NOTATIONS USED IN THIS PAPER

dimensions, i.e.,
∑K

k=1 Sk =⊕K
k=1 Sk , where

⊕
is the direct

sum. Our purpose is to cluster all the IN -dimensional vectors
from the tensor X into K subspaces by incorporating their
relevant spatial and feature information in the tensor.

IV. SUBSPACE CLUSTERING VIA TENSOR LOW-RANK

REPRESENTATION AND SPARSE CODING

A. Tensor Low-Rank Representation on Spatial Modes

The new approach LRR [29] is very successful in subspace
clustering for even highly corrupted data, outliers, or missing
entries. Inspired by the idea used in LRR, we consider a
model of LRR for an input tensor X similar to problem (1).
Specifically, we decompose the input tensor X into a Tucker
decomposition, in which the core tensor G is the input tensor
itself along with a factor matrix Un at each mode n ≤ N . That
is, the proposed data representation model is

X = �X ;U1, U2, . . . , UN �+ E . (7)

Here, we are particularly interested in the case, where
UN = IIN (the identity matrix of order IN ). If we define
Z = UN−1 ⊗ UN−2 ⊗ · · · ⊗ U1, then based on the above
multiple linear model, we may interpret the entries of Z as
the similarities between the pairs of all the vectors along the
N-mode of the data tensor X . These similarities are calculated
based on the similarities along all the N − 1 spatial modes
through the factor matrices Un (n = 1, . . . , N − 1), each of
which measures the similarity at the nth spatial mode.

As in LRR, model (7) uses the data to represent itself;
therefore, we can expect low-rank factor matrices Un . It is well
known that it is very hard to solve an optimization problem
with matrix rank constraints. A common practice is to relax the
rank constraint by replacing it with the nuclear norm [32] as
suggested by the matrix completion methods [8], [21]. Thus,
we finally formulate our model as follows:

min
U1,...,UN−1

N−1∑

n=1

‖Un‖∗ + λ

2
‖E‖2F

s.t. X = �X ;U1, . . . , UN−1, IIN �+ E (8)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, defined as
the sum of singular values of the matrix, ‖ · ‖F denotes the
Frobenius norm of a tensor, i.e., the square root of the sum
of the squares of all its entries, and λ > 0 is a parameter to

balance the two terms, which can be tuned empirically. That
is, TLRR seeks optimal low-rank solutions Un(1 ≤ n < N)
of the structured data X using itself as a dictionary [50].

Remark 1: There is a clear link between the LRR and
the TLRR in (8). If we consider the mode-N matricization
in (8), we will see that it can be converted into an LRR
model with Z = UN−1 ⊗ UN−2 ⊗ · · · ⊗ U1. However, in the
standard LRR, such an explicit Kronecker structure in Z has
been ignored, so the number of unknown parameters in Z is
(I1 × I2 × · · · IN−1)

2. Such a huge number cause difficulty
in the LRR algorithm when doing SVD. However, TLRR
exploits the Kronecker structure with the number of unknown
parameters reduced to I 2

1 + I 2
2 + · · · + I 2

N−1. Our experiments
demonstrate that the TLRR is much faster than the LRR.

B. Dictionary Learning for Sparse Representation
on Feature Mode

Dictionary learning for sparse representation has been
proved to be very effective in machine learning, neuro-
science, signal processing, and statistics [13], [25], [37].
Similar ideas have been proposed for subspace clustering.
SSC algorithm [14] is an inspiring approach that uses data
itself as a given dictionary, sparsely representing each sample
as a linear combination of the rest of the data. However, such
representation is computationally expensive for large-scale
data. In addition, it is well known that such SC techniques
strongly rely on the internal coherence of the dictionary, and
their performance may drop grossly as the number of clusters
grows. In contrast, our sparse modeling framework exploits
a sparse representation in the design of an optimization pro-
cedure dedicated to the problem of dictionary learning, with
comparable memory consumption and a lower computational
cost than SSC.

Based on the model in (8), we consider a dictionary
learning model for sparse representation along the N-mode
(feature mode) of X . To be specific, we approximate the
mode-N matricization of tensor X(N) with a dictionary
to be learned D ∈ R

IN×m and a sparse representation
A ∈ R

m×(I1×I2×···×IN−1 ) on feature spaces over all the
samples, so that the feature vectors of each sample can be
represented by a few atoms of D (i.e., ||ai ||0 < r for
1 ≤ i ≤ I1 × I2 × . . . × IN−1). Thus, our SC model in the
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Fig. 2. Mode-N matricization of X decomposition for TLRR model and
our algorithm. (a) Tensor LRR model. (b) Our model.

feature direction has a similar formulation to problem (2)

min
D,A
‖X(N) − DA‖22

s.t. ‖A‖0 = R (9)

where R = r× (I1× I2×· · ·× IN−1) is the maximum number
of nonzero elements in the matrix A. By solving problem (9),
we can obtain an optimal dictionary on the feature space of the
input tensor, and sparse factors for each sample with respect
to the learned dictionary.

C. Tensor Spatial Low-Rank Representation
and Feature Sparse Coding

By integrating the advantages of LRR and SC, we propose
a spectral-based subspace clustering method, which simul-
taneously considers sample feature information and spatial
structures. More specifically, we first define a transformation
of inverse matricization �(I1,...,IN−1 ,IN ), which converts a
matrix M ∈ R

IN×(I1 I2 ···IN−1) back into an order-N tensor
M ∈ R

I1×I2 ...×IN−1×IN , i.e., �I1,...,IN−1,IN (M) =M [2].
Now, we replace the fixed data tensor core in (8) with a

tensor reconverted from a matrix DA by applying the inverse
matricization operator �, i.e., the model is

X = ��(I1,I2,...,IN−1 ,IN )(DA);U1, . . . , UN−1, IIN �+ E (10)

where D ∈ R
IN×m is the feature mode dictionary to be

learned, and A ∈ R
m×(I1 I2···IN−1) is the sparse representation

coefficient matrix. Finally, our proposed learning model can
be formulated as follows:

min
U1,...,UN−1,D,A

N−1∑

n=1

‖Un‖∗ + λ

2
‖ E ‖2F

s.t. X = ��(I1,I2,...,IN−1,IN )(DA);U1, . . . , UN−1, IIN �+ E
‖A‖0 = R (11)

where R is a given sparsity. Thus, our model (11) aims to find
the lowest rank representations along all the spatial modes,
and learn a dictionary with its sparse representation over the
samples on the feature mode at the same time.

Unlike the TLRR model in [50] merely considers mul-
tiple space information, our model takes both spatial and
feature information into consideration. The advantage of
our model over the TLRR model is shown in Fig. 2.
Taking the mode-N matricization of X as an example,
the TLRR model uses X(N) as a dictionary, the coefficient

matrix Z = [U(N−1)⊗· · ·⊗U1]T . However, our model learns
a dictionary D on the feature space, which makes

X(N) = DA[U(N−1) ⊗ · · · ⊗ U1]T
as shown in Fig. 2(b). Accordingly, the dictionary representa-
tion of data X(N) is given by the structured coefficient matrix
Z = A[U(N−1) ⊗ · · · ⊗ U1]T. Thus, both spatial information
encoded in Un’s and the feature relations encoded in A make
a contribution to the final dictionary representation.

Remark 2: Problem (11) is ill-posed due to the scal-
ing between variables D, A, and U. To make a well-posed
problem, we also require extra constraints; for example, the
columns of D are the unit vectors and the largest entry of A
to be 1.

Remark 3: Using the Frobenius norm for the error, we are
dealing with Gaussian noises in the tensor data. If based on
some domain knowledge, we know some noise patterns along
a particular mode, for example, in multispectral imaging data,
noises in some spectral bands are significant, we may adapt the
so-called robust noise models, such as l2,1-norm [10] instead.

Remark 4: As pointed out in Remark 1, TLRR improves
the computational cost of the original LRR by introducing
the Kronecker structure into the expression matrix.
Although the new model looks more complicated than the
traditional dictionary model, the computational complexity
would not blow up due to the Kronecker structure. The cost
added over the traditional dictionary learning is the overhead
in handling low-rank constraints over spatial modes. This
is the price we have to pay for incorporating the spatial
information of the data.

D. Solving the Optimization Problem

Optimizing (11) can be carried out using an iterative
approach that solves the following two subproblems.

1) Solve TLRR Problem: Fix D and A to update Un , where
1 ≤ n < N by

min
U1,...,UN−1

N−1∑

n=1

‖Un‖∗ +λ

2
‖E‖2F

s.t. X = ��(DA);U1, . . . , UN−1, IIN �+ E . (12)

2) Solve Dictionary Learning for SC Problem: Fix Un(1 ≤
n < N) to update D and A by

min
D,A

λ

2
‖X − ��(DA);U1, . . . , UN−1, IIN �‖2F

s.t. ||A||0 = R. (13)

We will employ the block coordinate descent (BCD) [4] to
solve the optimization problem (12) by fixing all the other
mode variables to solve one variable at a time alternatively.
For instance, TLRR fixes U1, . . . , Un−1, Un+1, . . . , UN−1 to
minimize (12) with respect to the variable Un(n = 1, 2, . . . ,
N−1), which is equivalent to solve the following optimization
subproblem:

min
Un
‖Un‖∗ +λ

2
‖E‖2

s.t. X = ��(DA);U1, . . . , UN−1, IIN �+ E . (14)
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Algorithm 1 Solving Problem (12) by BCD
Input: data tensor X , dictionary D and A and the parameter λ
Output: factor matrices Un (n = 1, 2, . . . , N − 1)
1: randomly initialize Un ∈ R

In×Rn for n = 1, . . . , N − 1
2: for n = 1, . . . , N − 1 do
3: X(n)← the mode-n matricization of the tensor X
4: �(DA)(n)← the mode-n matricization the tensor �(DA)
5: end for
6: while reach maximum iterations or converge to stop do
7: for n = 1, . . . , N − 1 do
8: B(n) ← �(DA)(n)(I⊗UN−1 ⊗ · · ·Un+1 ⊗Un−1 ⊗ · · ·

⊗U1)
T

9: Un ← solve the subproblem (15)
10: end for
11: end while

Using tensorial matricization, problem (14) can be rewritten
in terms of matrices as follows:

min
Un
‖Un‖∗ + λ

2
‖E(n)‖2F

s.t. X(n) = UnB(n) + E(n) (15)

where B(n) = �(DA)(n)(I ⊗ UN−1 ⊗ · · ·Un+1 ⊗
Un−1 ⊗ · · · ⊗ U1)

T .
Based on (15), each matrix Un(1 ≤ n < N) is opti-

mized alternatively, while the other matrices are held fixed.
All the matrices update iteratively until the change in fit drops
below a threshold or when the number of iterations reaches a
maximum, whichever comes first. The general process of the
BCD is shown in Algorithm 1.

We use the linearized alternating direction
method (LADM) [30] to solve the constrained optimization
problem (15).

First of all, the augmented Lagrange function of (15) can
be written as

L(E(n), Un, Yn) = ‖Un‖∗ +λ

2
‖E(n)‖2F

+ tr
[
YT

n (X(n) − UnB(n) − E(n))
]

+ μn

2
‖X(n) − UnB(n) − E(n) ‖2F (16)

where Yn is the Lagrange multiplier and μn > 0 is a penalty
parameter.

Then, the variables are updated by minimizing the aug-
mented Lagrangian function L alternately, i.e., minimizing
one variable at a time, while the other variables are fixed.
The Lagrange multiplier is updated according to the feasibility
error. More specifically, the iterations of LADM go as follows.

1) Fix all others to update E(n) by

min
E(n)

∥∥∥∥E(n) −
(

X(n) − UnB(n) + Yn

μn

)∥∥∥∥
2

F
+ λ

μn
‖E(n)‖2F

(17)

which is equivalent to a least-square problem. The
solution is given by

En = λ

λ+ μn

(
X(n) − UnB(n) + Yn

μn

)
. (18)

Algorithm 2 Solving Problem (15) by LADM
Input: matrices X(n) and B(n), parameter λ
Output: : factor matrices Un

1: initialize: Un = 0, E(n) = 0, Yn = 0, μn = 10−6, maxu =
1010, ρ = 1.1, ε = 10−8 and ηn = ‖B(n)‖2.

2: while ‖ X(n) − UnB(n) − E(n) ‖∞≥ ε do
3: E(n) ← the solution (18) to the subproblem (17);
4: Un ← the iterative solution by (21) by for example five

iterations;
5: Yn ← Yn + μn(X(n) − UnB(n) − E(n))
6: μn ← min(ρμn, maxu)
7: end while

2) Fix all others to update Un by

min
Un
‖Un‖∗ − tr

(
YT

n UnB(n)

)

+μn

2
‖(X(n) − E(n))− UnB(n)‖2F . (19)

3) Fix all others to update Yn by

Yn ← Yn + μn(X(n) − UnB(n) − E(n)). (20)

However, there is no closed-form solution to problem (19)
because of the coefficient B(n) in the third term. We propose
to use the linearized approximation with an added proximal
term to approximate the objective in (19), as described in [27].
Suppose that Uk

(n) is the current approximated solution to (19)
and the sum of the last two terms is denoted by L, then the
first-order Taylor expansion at Uk

(n) plus a proximal term is
given by

L ≈ μn

〈(
Uk

nB(n) + En − X(n) − Yn

μn

)
BT

(n), Un − Uk
n

〉

+ μnηn

2

∥∥Un − Uk
n

∥∥2
F + consts.

Thus, solving (19) can be converted to iteratively solve the
following problem:

min
Un
‖Un‖∗ + μnηn

2

∥∥Un − Uk
n + Pn

∥∥2
F

where Pn = (1/ηn)(Uk
nB(n) + En − X(n) − (Yn/μn))BT

(n).

The above problem can be solved by applying the SVD
thresholding operator to Mn = Uk

n − Pn . Take SVD for
Mn =Wn�nVT

n , then the new iteration is given by

Uk+1
n =Wnsoft(�n, ηnμn)VT

n (21)

where soft(�, σ) = max{0, (�)ii −1/σ } is the soft threshold-
ing operator for a diagonal matrix [7].

Now, we consider solving dictionary learning for
SC problem (13). Using tensorial matricization, problem (13)
can be equivalently written in terms of matrices as follows:

min
D,A

λ

2
‖E(N)‖2F

s.t. X(N) = DACT + E(N)

‖A‖0 = R (22)

where C = (UN−1 ⊗ · · · ⊗ U1). Problem (22) can be solved
by using a two-phase BCD approach. In the first phase, we



2126 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Algorithm 3 Solving Problem (13) by BCD
Input: matrices: X(N) and C
Output: dictionary D and sparse representation matrix A
1: initialize the dictionary D with a random strategy.
2: while reach maximum iterations do
3: sparse representation A ← solve the problem (22) with

fixed D;
4: dictionary D ← solve the problem (23) with K-SVD

strategy;
5: end while

optimize A by fixing D; in the second phase, we update D
by fixing A. The process repeats until some stop criterion is
satisfied.

When the dictionary D is given, the sparse representa-
tion A can be obtained by solving (22) with fixed D.

The resulting problem becomes a 2-D SC problem, which
can be solved by the 2-D-OMP [16].

Remark 5: The 2-D-OMP is in fact equivalent to 1-D-OMP,
with exactly the same results. However, the memory usage
of the 2-D-OMP is much lower than the 1-D-OMP. Note
that the 2-D-OMP only needs the memory usage of size
IN × m + (I1 × I2 · · · × I(N−1))

2. However, the 1-D-OMP
needs (I1 × I2 · · · × I(N))× (m × I1 × I2 · · · × I(N−1)).

Given the sparse coefficient matrix A, we define F = ACT ,
then the dictionary D can be updated by

min
D

λ

2
‖E(N)‖2F

s.t. X(N) = DF+ E(N). (23)

Actually, (23) is a least-square problem. As it is large scale,
a direct closed-form solution will cost too much overhead.
Here, we propose an iterative way alternatively on the columns
of D based on the spare structures in F. Let us consider
only one column d j in the dictionary and its corresponding
coefficients, the j th row in F, denoted by f j . Equation (23)
can be rewritten as

‖E(N)‖2F =
∥∥∥∥∥∥

X(N) −
m∑

j=1

d j f j

∥∥∥∥∥∥

2

F

=
∥∥∥∥∥∥
(X(N) −

∑

j �=l

d j f j )− dl f l

∥∥∥∥∥∥

2

F

= ∥∥El
(N) − dl f l

∥∥2
F . (24)

We have decomposed the multiplication DF into the sum
of m rank-1 matrices, where m is the number of atoms in D.
The matrix El

(N) represents the error for all the m examples
when the lth atom is removed. Indeed, we are using K-SVD
strategy [1] to update each atom dl and f l (1 ≤ l ≤ m) by
fixing all the other terms. However, the sparsity constraint is
enforced in such an update strategy.

The general process of dictionary learning for SC is shown
in Algorithm 3.

Algorithm 4 Subspace Clustering by TLRRSC
Input: structured data: tensor X , number of subspaces K
Output: : the cluster indicator vector l with terms of all

samples
1: while reach maximum iterations or converge to stop do
2: lowest-rank representation Un(n = 1, 2, . . . , N − 1) ←

solve the problem (12)
3: sparse representation A and the dictionary D ← solve

the problem (13)
4: end while
5: Zs ← UN−1 ⊗ UN−2 ⊗ · · · ⊗ U1
6: l← Normalized Cuts(|Zs | + |Zs T | + |AT A|)

E. Complete Subspace Clustering Algorithm

After iteratively solving two subproblems (12) and (13),
we finally obtain the low-rank and sparse representations
given by Ui (i = 1, 2, . . . , N − 1)) and A for the data X .
We create a similarity matrix on the spatial spaces Zs =
UN−1 ⊗UN−2 ⊗ · · · ⊗U1. The affinity matrix is then defined
by |Zs |+ |Zs T |+ |AT A|.1 Each element of the affinity matrix
is the joint similarity between a pair of mode-N vectorial
samples across all the N − 1 spatial modes/directions and
the N th feature mode. Finally, we employ the normalized
cuts clustering method [39] to divide the samples into their
respective subspaces. Algorithm 4 outlines the whole subspace
clustering method of TLRRSC.

F. Computational Complexity

The TLRRSC algorithm composes of two iterative updating
parameter steps followed by an normalized cut on an affinity
matrix. Assuming the iteration time is t , IN = N , low rank
value is r , and In = d , (1 ≤ n ≤ N − 1).

In the process of updating lowest rank representation
Un(n = 1, 2, . . . , N − 1), the complexity of computing DA is
O(N2d N−1), and the computational costs regarding updating
Bn , Un , and Yn to solve problem (15) are O(N2d N−1),
O(Nrd2), and O(N2d N−1), respectively. Accordingly, the
computational complexity of Un(n = 1, 2, . . . , N − 1) is
approximately O(N2d N−1)+ O(Nrd2).

In the dictionary learning process, the costs of updating
A and D are O(md N−1) and O(N(k2m + 2Nd N−1)),
respectively, where k is the sparsity value in the
K-SVD algorithm.

After obtaining the final optimal Un(n = 1, 2, . . . , N − 1),
A, and D, the time complexity of creating an affinity matrix
is O(d N−1). With the affinity matrix, the normalized cut can
be solved with a complexity of O(N log N + d2(N−1)).

With the above analysis, the total complexity of TLRRSC is

O(N2d N−1)+O(Nrd2)+O(md N−1)+O(N(k2m+2Nd N−1))

+ O(d N−1)+ O(N log N + d2(N−1)). (25)

As k, r � d , therefore, the approximate complexity is
O((N2 + m)d N−1) + O(N log N + d2(N−1)).

1To maintain scaling, we may use |(AT A)1/2|, but the experiments show

that the simple definition |Zs | + |Zs T | + |AT A| works well. Other possible
choices are |Z T Z | + |AT A| and (|Z | + |Z T |)� |AT A|.
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Fig. 3. Accuracy comparisons with respect to different orders of a tensor. (a) High-order tensorial data with 5-D feature spaces. (b) High-order tensorial
data with 10-D feature spaces. (c) High-order tensorial data with 20-D feature spaces.

V. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results
on some synthetic and real data sets with multidimensional
spatial structures. The intention of these experiments is to
demonstrate our new method TLRRSC’s superiority over the
state-of-the-art subspace clustering methods in prediction
accuracy, computation complexity, memory usage, and noise
robustness. To analyze the clustering performance, the
Hungarian algorithm [23] is applied to measure the accuracy
by comparing the predicted clustering results with the ground
truth.

A. Baseline Methods

Because our proposed method is closely related to
LRR and SSC, we choose LRR, TLRR, and SSC methods
as the baselines. Moreover, some previous subspace clustering
methods are also considered.

1) LRR: The LRR methods have been successfully applied
to subspace clustering for even highly corrupted data, outliers,
or missing entries. In this paper, we consider an LRR method
introduced in [29], which is based on minimizing

min
Z
‖Z‖∗ + λ

2
‖E‖2,1

s.t. X = XZ+ E. (26)

However, this method conducts subspace clustering on a
rearranged matrix, ignoring data spatial correlations. Thus,
the entries of affinity matrix |Z| + |ZT | denote the pairwise
similarity in the low-dimensional feature spaces.

2) TLRR: As an improvement over LRR, TLRR finds an
LRR for an input tensor by exploring factors along each
spatial dimension/mode, which aims to solve the problem (8).
An affinity matrix built for spectral clustering records the
pairwise similarity along all the spatial modes.

3) SSC: SSC has a similar formulation to LRR, except for
the employment of the l1-norm ‖Z‖1 in favor of a sparse rep-
resentation. For fair comparisons, we implement two versions
of SSC, i.e., SSC1 is a l1-norm version [q = 2 and b = 1
in (1)] and SSC2,1 is a l2,1-norm version [q = 2, 1 and b = 1
in (1)]. SSC denotes SSC1 if not specified in the following
experiments.

4) Some Other Methods: We also consider some previ-
ous subspace clustering methods for comparison, including
GPCA [45], local subspace analysis (LSA) [47], and
RANSAC [17].

In the following experiments, the parameter setting is as
follows: a balance parameter λ = 0.1, a penalty parameter
μn = 10−6, and the convergence threshold ε = 10−8.

B. Results on Synthetic Data Sets

In this section, we evaluate TLRRSC against the
state-of-the-art subspace clustering methods on synthetic
data sets. We use three synthetic data sets containing
three subspaces, each of which is formed by Nk samples
of d dimension feature, respectively, where d ∈ {5, 10, 20},
k ∈ {1, 2, 3}, N1 = 30, N2 = 24, and N3 = 10. The generation
process is as follows.

1) Select three cluster center points ci ∈ R
d for the above

subspaces, respectively, which are far from each other.
2) Generate a matrix Ck ∈ R

d×Nk , each column of which is
drawn from a Gaussian distribution N (·|ck,�

k), where
�k ∈ R

d×d is a diagonal matrix, such that the kth ele-
ment is 0.01 and others are 1s. This setting guarantees
that each cluster lies roughly in a d − 1 dimension
subspace.

3) Combine samples in each subspace to form an entire
data set X = ∪Ck .

1) Performance With High-Order Tensorial Data: To show
the TLRRSC’s advantage of handling high-order tensorial data
over other baseline methods, we create five other synthetic
data sets from the above data X by reshaping it into a higher
j -mode tensor (3 ≤ j ≤ 7). Since all other baseline methods
except TLRR conduct subspace clustering on an input matrix,
i.e., a two-mode tensor, we use X on all these baseline methods
for the purpose of fair comparisons. Fig. 3 shows the results on
all the baseline methods with different dimensions of feature
spaces.

As we can see, TLRRSC and TLRR perform much better
than other methods in the higher mode of tensor. This observa-
tion suggests that incorporating data structure information into
subspace clustering can boost clustering performance, while
the performance of other methods always stays still, because
these methods treat each sample independently, ignoring inher-
ent data spatial structure information. TLRRSC is always
superior to TLRR, which demonstrates that incorporating
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Fig. 4. Time and accuracy comparison on the synthetic data sets with 20-D feature spaces. (a) Run time comparisons with respect to different orders of
a tensor. (b) Accuracy comparisons with respect to different orders of a tensor. (c) Accuracy comparisons with respect to different potions of noisy samples.

feature similarity can further boost the clustering performance.
Another interesting observation is that the performance gap
between TLRR and TLRRSC is enlarged with the growth of
feature dimensions, which suggests that seeking the inherent
sparse representation in the high-dimensional feature space
does help improve the clustering performance by filtering
redundant information.

To compare the accuracy and running time among
LRR-based algorithms, we create a matrix X̃ ∈ R

200×640

containing three subspaces, each of which is formed by
containing three subspaces, each of which is formed by Nk

samples of 200-D features, where k ∈ {1, 2, 3}, N1 = 300,
N2 = 240, and N3 = 100. The generation process is similar
to the construction of X. Then, we create five other synthetic
data sets from the new data matrix X̃ by reshaping it into a
higher j -mode tensor (3 ≤ j ≤ 7). Fig. 4(a) and (b) compares
the accuracy and running time among LRR-based algorithms
on the data set with 200-D feature spaces. To investigate
the proposed algorithm’s performance with different sparsity
values S used in the dictionary learning along the feature
direction, we use three sparsity values S ∈ {10, 20, 40}.
We observe that as the order of tensor increases, the running
time of TLRR and TLRRSC is significantly reduced compared
with LRR (as shown in Fig. 4), and the clustering accuracy of
TLRR and TLRRSC is superior to its vectorized counterpart
LRR (as shown in Fig. 4). These observations suggest that the
structural information has an important impact on speeding
up the subspace clustering process and improving clustering
accuracy.

As TLRRSC needs extra time to solve the sparse representa-
tion along the feature mode, the time cost of TLRRSC is a little
more expensive than TLRR. Moreover, when the sparsity value
is 20, TLRRSC performs best compared with other sparsity
values, which suggests that our method can accurately cluster
data with a small sparsity value. To sum up, our new method
TLRRSC can achieve better performance with a comparable
time cost in the higher mode of tensor.

2) Performance With Different Portions of Noisy Samples:
Consider the cases where there exist noisy samples in the
data. We randomly choose 0%, 10%, . . ., 100% of the sam-
ples of the above Ck , respectively, and add Gaussian noises
N (·|ck, 0.3�k) to these samples. Then, a noisy data set X′
is generated by combining the corrupted Ck to one. The per-
formances on SSC2,1, SSC1, LRR, TLRR, and TLRRSC are

shown in Fig. 4. Obviously, LRR-based subspace clustering
methods, such as TLRRSC, TLRR, and LRR, maintain their
accuracies even though 70% of samples are corrupted by noise.
Moreover, three LRR-based methods significantly outperform
both SSC2,1 and SSC1, as shown in Fig. 4, which suggests that
LRR is good at handling noisy data, while SSC is not, because
it solves the columns of the representation matrix indepen-
dently. For low-rank-based methods, LRR method is inferior
to the structure-based TLRR and TLRRSC. This is mainly
because TLRR and TLRRSC integrate data spatial information
into subspace clustering, resulting in a good performance even
when 90% of data are corrupted. Another interesting result
is that TLRRSC is marginally superior to TLRR when the
noise rate is <50%, but its performance becomes inferior
to TLRR, as the noise rate continually increases to 100%. This
again proves that SC is sensitive to noise. Although TLRRSC
maintains a good performance by exploring the spatial corre-
lations among samples, sparse representation along the feature
spaces induces more noises as the noise portion increases.
Therefore, the clustering performance depresses with noisy
feature similarities integrated in the affinity matrix.

3) Performance With Dictionary Learning for Sparse
Coding: Like LRR and SSC, our model TLRRSC considers
sparsity regarding low-dimensional representation on the fea-
ture space. In contrast to LRR and SSC, using the input data
as a dictionary, TLRRSC learns a dictionary and its corre-
sponding sparse representation. In this section, we compare
the performances of different sparse strategies.

First of all, we create a matrix X̂ ∈ R
30×64 containing

three subspaces, each of which is formed by Nk samples of
30 dimensions, where k ∈ {1, 2, 3}, N1 = 30, N2 = 24, and
N3 = 10. The generation process is similar to the construction
of X, except each cluster center points ck ∈ R

30 and the last
20 diagonal elements in �k ∈ R

30×30 are 0.01 and others
are 1s. This setting guarantees that each cluster lies roughly
in a 10-D subspace. Fig. 5 shows the evaluated mean of each
band on the reconstructed data matrix denoted by the product
of a dictionary and its sparse representation. Obviously, the
evaluated mean of our model TLRRSC is the closest to the
true value, compared with LRR and SSC. This suggests that
the TLRRSC finds a better dictionary to fit the data, instead
of a fixed dictionary X̂ in the other two methods. Moreover,
Fig. 6 shows the sparse representations obtained for X̂. In our
algorithm, we learn a dictionary D30×200 in the feature space
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Fig. 5. Comparison between the true band mean and evaluated one on the
synthetic data.

Fig. 6. Sparse coefficients, their relative magnitudes, and memory usage of
TLRRSC, LRR, and SSC on the synthetic data.

with 200 atoms, while the other two models use given data as
a dictionary, the corresponding sparse representation under the
dictionary for baselines is shown in the black blocks of Fig. 6.
Each line in the white block statistics of the total number of
each atom used in the new sparse representation of the given
data set (i.e., the relative magnitude). For LRR algorithm,
each atom in the dictionary is activated with almost the same
relative magnitude, whereas in Fig. 6(b), far fewer atoms are
activated with a higher magnitudes. This is mainly because
LRR uses a holistic sparsity defined by low rank, where in
SSC, sparsity is represented individually. The original high-
dimensional data matrix X̂ needs 1290-B memory spaces,
while all sparsity involved methods reduce space costs to
some extent, as shown in Fig. 6. In Fig. 6(a), our sparse
representation only activates a few atoms with almost the same
high magnitude. We can clearly see that the number of lines
in the white part of Fig. 6(a) is fewer than that of Fig. 6(b).
Although the memory usage of our model TLRRSC is 26%
more than SSC, our sparse representation activates a far fewer
number of atoms [Fig. 6(a)] than for SSC [Fig. 6(b)].

4) Performance Comparisons With Other L RR + SC
Subspace Clustering Algorithm: We compare our algorithm’s
performance with another state-of-the-art algorithm LRSSC
in [28], which also takes the advantage of SC and LRR.
LRSSC minimizes a weighted sum of nuclear norm and vector
1-norm of the representation matrix simultaneously, so as to
preserve the properties of interclass separation and intraclass
connectivity at the same time. Therefore, it works well in the
matrices where data distribution is skewed and subspaces are
not independent. Unlike LRSSC explicitly satisfies LRR and
SC property simultaneously, our model updates the parameters
for LRR and SC alternatively, and our model focuses on
multidimensional data with a high-dimensional feature space.

Fig. 7. Subspace clustering algorithm performance comparisons. (a) LRSSC.
(a) TLRRS.

In the experiments, we randomly generate four disjoint
subspaces of dimension 10 from R

50, each sampled 20 data
points. The 50 unit length random samples are drawn from
each subspace and we concatenate into a R

50×80 data matrix.
The clustering results are shown in Fig. 7. As we can see,
our algorithm performs better than LRSSC, and this is maybe
because the alterative update LRR parameters and SC para-
meters in the iterations can help find better solution for each
setting.

C. Results on Real Data Sets

We evaluate our model on a clean data set called the Indian
Pines [24] and a corrupted data set called Pavia University
database [46].

The Indian Pines data set is gathered by airborne visible
infrared imaging spectrometer sensor over the Indian Pines test
site in north-western Indiana, and consists of 145×145 pixels
and 224 spectral reflectance bands in the wavelength range
0.4–2.5 μm. The whole data set is formed by 16 different
classes having an available ground truth. In our experiments,
24 bands covering the region of water absorption are dis-
carded. The task is to group pixels into clusters according
to their spectral reflectance band information.

The Pavia University database is acquired by the reflec-
tive optics system imaging spectrometer sensor with a geo-
metric resolution of 1.3 m, during a flight campaign over
Pavia, northern Italy. Pavia University consists of 610 ×
340 pixels, each of which has 103 spectral bands cov-
ering 0.43–0.86 μm. The data set contains nine different
classes with available ground truths. We examine the noise
robustness of the proposed model by adding Gaussian white
noises with intensities ranging from 20 to 60 with a step
of 20 to the whole database.

1) Subspace Clustering Performance: In this section, we
show TLRRSC’s performance in subspace clustering with
the subspace number given. Table II shows the results of
all baseline methods on both data sets. Clearly, our method
TLRRSC outperforms the other six baselines on this data set.
The advantage of TLRRSC mainly comes from its ability to
incorporate 2-D data structure information and 200-D bands
information into the LRR and sparse representation.

Besides, the efficiency (in terms of running time) of
TLRRSC is comparable with TLRR, GPCA, and RANSAC
methods. TLRR costs more computational time, because its
optimization procedure needs more iterations than GPCA and
RANSAC to converge. The results regarding time cost on
TLRR and LRR are consistent with Remark 1, which shows
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Fig. 8. Subspace clustering results on Indian Pines, each color represents a
class. (a) Ground truth. (b) GPCA. (c) LSA. (d) RANSAC. (e) SSC. (f) LRR.
(g) TLRR. (h) TLRRSC.

that TLRR significantly reduces time cost by exploiting the
Kronecker structure along each space dimension. Although
GPCA and RANSAC are faster than LRR and TLRR, their
accuracy is much lower than those of LRR and TLRR.
Even though TLRRSC uses 22 more minutes than TLRR
for a dictionary-learning task in the feature space, its overall
performance is better than TLRR.

When data are corrupted, the performance of SSC is inferior
to all LRR-based methods, which shows that sparse represen-
tation is not good at handling corrupted data, such as LRR.
Although our model employs a sparse representation on the
feature space, our model TLRRSC still performs best among
all the methods on the corrupted data set. This is because
TLRRSC explores data spatial correlation information with
an LRR, which guarantees accurately clustering data into
different subgroups. Figs. 8 and 9 show the subspace clustering
results on both data sets. In Figs. 8 and 9, each cluster
is represented by a particular color. Obviously, we can see

Fig. 9. Subspace clustering results on Pavia University (noise
intensity = 60), each color represents a class. (a) Ground truth. (b) GPCA.
(c) LSA. (d) RANSAC. (e) SSC. (f) LRR. (g) TLRR. (h) TLRRSC.

many blue points scattered in Figs. 8 and 9, which originally
belonging to other classes that are wrongly classified into the
blue class. Similarly, there are a few other colors scattered
in the green class in Fig. 8 and the orange class in Fig. 9.
Accordingly, it is easy to see that the clustering results on
TLRRSC are closest to the ground truths.

2) Choosing the Parameter λ: The parameter λ > 0 is
used to balance the effects of the two parts in problem (11).
Generally speaking, the choice of this parameter depends
on the prior knowledge of the error level of data. When
the errors are slight, a relatively larger λ should be used,
while when the errors are heavy, we should set a smaller
value. Fig. 10 (blue curve) is the evaluation results on the
Indian Pines data set. While λ ranges from 0.04 to 0.2, the
clustering accuracy slightly varies from 80.34% to 81.98%.
This phenomenon is mainly because TLRRSC employs LRR
representation to explore data structure information. It has
been proved that LRR works well on clean data (the Indian
Pines is a clean data set), and there is an invariance in LRR
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TABLE II

SUBSPACE CLUSTERING RESULTS ON THE REAL DATA SETS

Fig. 10. Influences of the parameter λ of TLRRSC. These results are collected
from the Indian Pines data set and the Pavia University data set.

that implies that it can be partially stable while λ varies (for the
proof of this property, see [29, Th. 4.3]). Notice that TLRRSC
is more sensitive to λ on the Pavia University data set than
on the Indian Pines data set. This is because the samples
in the Indian Pines data set are clean, whereas the Pavia
University data set contains some corrupted information. The
more heavily data are corrupted, and the performance of our
new method is more influenced by the λ value.

3) Memory Usage With Respect to Different Sparsity
Strategies: In TLRRSC, we learn a sparse representation on
the feature mode (i.e., the third mode) through a dictionary-
learning task. In this section, we compare the memory usage
among TLRRSC, SSC, and LRR on the mode-3 matricization
of the Indian Pine database and the Pavia University database.
For an order-3 tensor X ∈ R

I1×I2×I3 , the memory complexity
of our models TLRRSC and SSC is O(r × (I1× I2)) at most,
where r is the maximum sparsity for each instance, while
LRR requires O(m × (I1 × I2)), where m is the rank of the
sparse representation. Usually (m � r). As shown in the first
row of Table III, SSC has the least memory cost, and TLRRSC
takes the second place. The reason behind this phenomenon
is that our dictionary-learning model based on both spatial
information and feature relation involves more structured
sparse representation than feature-based SSC model. However,

TABLE III

MEMORY USAGE COMPARISON ON REAL DATA SETS

TLRRSC has an advantage over SSC in accuracy and running
time, as shown in Table II. Accordingly, our model maintains
good performance with a comparable memory cost. The
second row in Table III shows the memory cost of TLRRSC,
LRR, and SSC on Pavia University. The memory usage of
SSC is the lowest, which is consistent with the result on
Indian Pines. However, the performance of SSC depresses
on the corrupted data set, as shown in Table II, while LRR
is very effective in handling noise. Moreover, our model’s
memory usage is comparable. Therefore, we assert that
TLRRSC is a noise robust method with low memory usage.

VI. CONCLUSION

In this paper, we propose TLRR and SC for subspace
clustering in this paper. Unlike the existing subspace clustering
methods work on an unfolded matrix, TLRRSC builds a model
on data original structure form (i.e., tensor) and explores data
similarities along all spatial dimensions and feature dimen-
sions. On the synthetic higher mode tensorial data sets, we
show that our model considering the data structure maintains
a good performance. Moreover, the experimental results with
different noise rates show that our model maintains a good
performance on highly corrupted data. On the real-world data
set, our method shows promising results, with low computation
gains and memory usage. Moreover, our model is robust to
noises, and capable of recovering corrupted data.
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