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Abstract—Partial differential equations (PDEs) have been used to formulate image processing for several decades. Generally, a PDE

system consists of two components: the governing equation and the boundary condition. In most previous work, both of them are

generally designed by people using mathematical skills. However, in real world visual analysis tasks, such predefined and fixed-form

PDEs may not be able to describe the complex structure of the visual data. More importantly, it is hard to incorporate the labeling

information and the discriminative distribution priors into these PDEs. To address above issues, we propose a new PDE framework,

named learning to diffuse (LTD), to adaptively design the governing equation and the boundary condition of a diffusion PDE system for

various vision tasks on different types of visual data. To our best knowledge, the problems considered in this paper (i.e., saliency

detection and object tracking) have never been addressed by PDE models before. Experimental results on various challenging

benchmark databases show the superiority of LTD against existing state-of-the-art methods for all the tested visual analysis tasks.

Index Terms—Visual diffusion, PDE governed combinatorial optimization, submodularity, saliency detection, object tracking

Ç

1 INTRODUCTION

THE partial differential equation (PDE) is a system
involving unknown functions of multiple variables and

their partial derivatives. In the past several decades, this
mathematical tool has led to an entire new field in image
processing and shown its power for many applications,
such as image restoration, smoothing, inpainting, segmenta-
tion and multiscale representation. We refer to the mono-
graphs [2], [3] and the references therein for an overview of
these work. The success of PDE based methods on low-level
image processing is mainly because that the theoretical
analyses on these problems have already been accom-
plished in areas such as mathematics and physics. For
example, the scale space theory [4] proved that the multi-
scale representations of images are indeed solutions of the
heat equation with different time parameters.

In general, conventional PDEs design methodologies can
be roughly divided into two main categories: direct and var-
iational methods. For direct methods, such as anisotropic
diffusion [5] and curve evolutions [6], [7], [8], PDEs are
directly written down based on some mathematical

understandings on the physical natures (e.g., heat flow) or
the geometric properties (e.g., curvature) of the problems.
In contrast, variational methods, such as Tikhonov [3] and
total variation (TV) [9] functionals, first define an energy to
collect the desired properties of the problem and then
derive PDEs by the Euler-Lagrange equation or its associ-
ated flows. Though many efforts have been made in litera-
tures, it is still challenging to utilize above ways to design
PDEs for complex vision tasks. The main reasons can be
attributable to the following three factors.

First, good mathematical skills and deep domain knowl-
edge are required for designing PDEs. This is because for a
given vision problem, we have to choose appropriate PDE
formulation, predict the effect of each derivative term and
check whether the final PDEs can meet our goal. So one
may fail to acquire effective PDEs when there is no enough
intuition for the vision problem. Second, in existing PDEs,
the governing equations are predesigned and just some
parameters will be tuned. Furthermore, the boundary con-
ditions are only deduced by some simple intuitions (e.g.,
initial values [4] and well-posed guarantees [2]). Therefore,
it is hard to use these PDEs to propagate high-level prior
knowledge (extracted by human perception or from train-
ing data), which is the core for many complex visual analy-
sis tasks. Third, modeling supervised information and
discriminant structure is a big challenge to all existing PDEs
because the labels and geometries of training (or previously
processed) data cannot be incorporated into the generally
designed, fixed partial differential system.

Recently, Liu et al. [10], [11] combined fundamental dif-
ferential invariants up to second order as general PDEs
and determined the combination coefficients by training
image pairs for different low-level image processing prob-
lems. As a preliminary investigation, this work partially
addressed the first issue in above discussions, i.e., pro-
vided a straightforward way to design PDEs for image
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processing. However, due to the complex evolutional formu-
lation, this system suffers from huge computational cost and
the optimality of its solution cannot be guaranteed. More
importantly, the training mechanism in that work (i.e., only
penalizing differential operators for the governing equation)
makes it difficult to incorporate high level prior knowledge
from human’s perceptions and/or labeled training data into
the PDEs.

The motivation of our study is trying to provide a simple
way to incorporate prior knowledge (from human percep-
tion and/or training data) to design PDE system for real
world vision problems. More precisely, different from the
work in [10], [11], which combines 17 fundamental differen-
tial invariants to build coupled PDEs for low-level image
processing, we focus on providing a unified diffusion learn-
ing framework to address both the generative and discrimina-
tive vision problems (the examples are illustrated in Fig. 1).
The key idea in LTD is to assume that both the governing
equation and the boundary condition of PDEs should be
learned from the visual data. So we propose a PDE gov-
erned combinatorial optimization model to incorporate
both the generative and discriminative criteria for diffusion
learning. Then the stable temperature of our learned diffu-
sion can be used to extract the structure of the data set.Nota-
bly, at least two characteristics of LTD seem to challenge common
wisdoms in building vision PDEs: The boundary conditions of
PDEs are determined using data and the learned PDEs reveal not
only the generative distribution, but also the discriminative cate-
gory information. To summarize, the main contributions of
this work are threefold:

1) We provide an anisotropic diffusion system with
adaptive boundary conditions to formulate general
visual analysis tasks. We then develop LTD, a combi-
natorial optimization framework, to learn PDEs from
data for visual diffusions. We also prove the submo-
dularity of the system, which leads to a simple but
efficient numerical scheme for LTD.

2) We first introduce a loss function to extract the distri-
bution (generative structure) of the data set for

diffusion design. By further considering the informa-
tion gain based regularizer, LTD can also successfully
identify the category information (discriminative
structure) for the diffusion. Note that such supervised
structure has not been captured by any existing PDE
methods before.

3) Both the image based saliency detection and the
video based object tracking problems can be
addressed within LTD framework. To our best
knowledge, this work is the first to use PDEs to solve
saliency detection and object tracking.1 Extensive
experiments on different benchmark data sets and
comparisons with many state-of-the-art methods
show that both of these problems can be efficiently
addressed by LTD.

2 A BRIEF REVIEW OF IMAGE DIFFUSION

In physics, the diffusion equation is a powerful tool to
describe density dynamics of physical transport pro-
cesses. Koenderink [13] and Witkin [14] first built the con-
nection between diffusion equations and multiscale image
representations, which enable us to look at solving the
isotropic diffusion as a means of constructing a linear and
space-invariant transformation of the image. Then Perona
and Malik [5] proposed a slight modification to the diffu-
sion process by modeling the flux as a function of edge-
strength in the image, thereby giving us “anisotropy” for
image diffusion. The above two pioneer work drew great
interests on image diffusion methods and various diffu-
sion equations have been considered for image processing
problems in the past decades. For instance, as a specific
diffusion equation, Poisson equation arose in many image
processing tasks, especially gradient domain image

Fig. 1. The pipelines of LTD for (a) saliency detection and (b) object tracking, respectively. The pink regions illustrate the core components of LTD
framework. The blue regions show how to incorporate different kinds of prior knowledge into the diffusion learning process. In (a) the priors are col-
lected by human perception for saliency detection, while in (b) we learn priors from training data for object tracking. We also shows the ground truth
(GT for short) salient region and saliency maps computed by some state-of-the-art saliency detection methods on the bottom row of subfigure (a).

1. Please notice that the object tracking considered in this paper is
fundamentally different from the sequence segmentation task, which
has been addressed by variational PDEs [12]. This is because the former
aims to track the sate of the object for a video sequence while the latter
is only to segment the image frame by frame.
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analysis (e.g., tone mapping [15], seamless image editing
[16] and image matting [17]). This is because Poisson
equation can be used to modify image gradients to
approximate some given vector fields.

Besides designing PDEs from physical perspective, the
variational PDEs have also been commonly used for image
diffusion. For example, Mumford-Shah (MS) functional [18]
is designed for segmentation and TV functional can be used
for restoration. To cope with the non-convexity in MS
model, the work in [19] established a convex formulation
and proved conditions under which MS can achieve global
optimum using that convex formulation. As for TV, it was
initially motivated by the bounded variation space theory
[9] and has been extensively used in imaging sciences. By
considering TV energy within the compressive sensing
framework, very recent studies proved its guarantees for
signal recovery [20].

The above diffusions are performed on regularly distrib-
uted image pixels and the differential operators are locally
defined on a Cartesian grid of the image domain. So these
diffusions can only reflect local interactions on the image.
Recently, nonlocal derivatives have been proposed in the
context of image processing. The corresponding nonlocal
PDEs have shown their efficiency to better preserve fine
and repetitive image structure than local ones. For example,
Kindermann et al. [21] interpreted the nonlocal means filter
and the neighborhoods filter as nonlocal regularization
functionals. Guilboa and Osher [22] proposed a nonlocal
functional, based on weighted differences. These work can
be regarded as the nonlocal analogues of TV models for
image processing.

As stated above, diffusion PDEs have been widely used
for low-level image processing, such as denoising, segmen-
tation, inpainting and more. However, it is still a challeng-
ing task to formulate complex visual analysis problems
(e.g., saliency detection and object tracking) using existing
PDEs. This is mainly because that modern vision tasks are
often defined on more topologically complex domains. For
example, the visual data are modeled by collections of fea-
ture vectors on irregularly shaped domains (e.g., mani-
folds). More importantly, human perceptions and labeling
information often play very important roles in these vision
tasks. But unfortunately, we cannot incorporate such priors
into conventional PDEs.

3 PRELIMINARIES

3.1 Notations and Definitions

We use lowercase bold letters (e.g., p) to represent vector
points and capital calligraphic ones (e.g., V) to denote sets of
points. jVj is the cardinality of V. For any S � V, we denote
the complement of S as VnS. 1 is the all one vector. k � k
denotes the ‘2 norm. Let G ¼ ðV; EÞ be an undirected graph,
where E � V � V is a finite set of edges. We denote the neigh-
borhood set ofp onG asN p. Suppose f is a real value function

on V. For a given point p 2 V with neighborhood set N p, we

denote rf as the gradient of f and discretize it as
rf ¼ ½fðpÞ � fðq1Þ; . . . ; fðpÞ � fðqjN pjÞ�. Similarly, let v be a

vector field on V and denote vp 2 RjN pj as the vector at p.

Then we denote the divergence of v as divðvÞ and discretize it

at p as divðvpÞ ¼ 1
2

P
q2N p

ðvpðqÞ � vqðpÞÞ, where vpðqÞ is the
vector element corresponding to q 2 N p

2. Based on above

definitions, we can also discretize the Laplace-Beltrami opera-
tor on the graph, i.e.,Df ¼ divðrfÞ.

3.2 Problem Statement

In this section we outline the problems for which this work
is relevant. That is, we provide a physical viewpoint,
named visual diffusion (VD), to understand and model
visual data analysis tasks. Specifically, for a set of visual
elements V (extracted from images or videos), the goal of
VD is to propagate a specific real value function
fðpÞ : V ! R (i.e., temperature) from the most representa-
tive subset S � V (i.e., heat source) to all the other nodes to
extract the latent intrinsic structure of V. Indeed, the heat
source can be considered as the “basis” of the data set and
the temperatures of other nodes should be understood as
their relevances to the heat source.

Actually, many visual analysis tasks can be (re)formu-
lated as the problem of VD. For example, in image
domain, segmentation aims to divide an image into dif-
ferent disjoint regions such that image elements have
high similarity within each region and high contrast
between regions. More complex tasks, such as scene
understanding, saliency or object detection, would like
to further identify image regions with specific properties.
In VD framework, all these problems could be consid-
ered as a temperature propagation process. Specifically,
for each image element, we define a temperature func-
tion f on it to measure its specific property (e.g., local
similarity, semantic information, saliency confidence or
objectness). Then the problem reduces to that of simulta-
neously identifying the most representative image ele-
ments (i.e., heat source S) with respect to the specific
property and propagating the temperature to extract the
relevance between heat source and other image elements.
Finally, the intrinsic structure of the image can be
obtained using propagated temperature. Furthermore, by
incorporating temporal information into the propagation
(e.g., propagating temperatures through the sequence),
VD could also be suitable for video analysis, such as
temporal structure (e.g., event and action) detection,
motion segmentation and object tracking.

The fundamental challenge in VD is the “chicken-and-
egg” problem. That is, if the heat source S is already rec-
ognized, propagating the temperature f can be per-
formed by solving standard PDEs. While, if f has been
propagated to all the nodes in V, the representative sub-
set S then can be directly identified. So the heart of VD
is how to effectively handle the coupling between the
heat source S and the temperature f . Unfortunately, the
existing predefined PDEs with fixed governing equation
and boundary condition cannot simultaneously obtain S
and f , thus may fail to recover the structure of V. In this
work, we would like to develop an adaptive leaning
based PDE framework, named learning to diffuse (LTD),
to extend conventional diffusion equations for the VD
problem.

2. Similar discretization scheme is also used for nonlocal total
variation [22].
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It will be shown in the following that visual analysis
problems on both images (e.g., saliency detection) and vid-
eos (e.g., object tracking) can be formulated as specific cases
of VD and efficiently addressed by LTD.

4 LEARNING TO DIFFUSE

This section first develops a linear elliptic PDE system with
Dirichlet boundary condition to formulate VD and then
presents a combinatorial optimization framework to opti-
mize diffusions for visual analysis. The necessary numerical
and theoretical analysis for LTD will be addressed at the
end of this section.

4.1 An Anisotropic Diffusion System with Adaptive
Boundary Condition

For given V, our goal is to simultaneously identify the heat
source S and propagate the temperature f on V. In general,
this problem can be mathematically modeled as an evolu-
tionary PDE system with unknown f and S:

@fðp; tÞ
@t

¼ F ðf;rfÞ; fðgÞ ¼ 0; fðpÞ ¼ sp; p 2 S; (1)

where g is an environment point with zero temperature
(outside V) and sp is the temperature corresponding to the

node p. In general, the governing equation F in (1) can be
any smooth functions with respect to f and its derivative
rf . But in VD framework, our goal is to build a prior
guided diffusion system to address various visual analysis
tasks. Therefore, F is specified as follows. We first intro-
duce an anisotropic diffusion term divðKrfÞ, in which K
is an inhomogeneous metric tensor to control the diffusiv-
ity. To further incorporate high-level priors into our diffu-
sions, we define a fidelity term PVnSðf � uÞ, where u is a

map to guide the diffusion (can be learned by either
human perception or collected training data) and PVnS is

the projection on VnS3, i.e.,

PVnSðf � uÞðpÞ ¼ fðpÞ � uðpÞ; p 2 VnS;
0; p 2 S:

�
(2)

Overall, the governing equation is defined as:

F ðf;rfÞ ¼ divðKrfÞ þ �PVnSðf � uÞ; (3)

where � 	 0 is a parameter to control the trade-off between
the rate of diffusion and the fidelity to the guidance.

If only caring about the stable situation (i.e., no heat can
be further propagated) of this evolution, we omit time t and
simplify the PDE system as:

F ðf;rfÞ ¼ 0; fðgÞ ¼ 0; fðpÞ ¼ sp; p 2 S; (4)

which is a linear elliptic system with Dirichlet boundary.
In most conventional PDEs, to simplify the computa-

tional scheme, the boundary condition (i.e., heat source S) is
always predefined and fixed during the diffusion process.
But unfortunately, such strategy may significantly reduce

the flexibility of the diffusion system. To address this limita-
tion, in our system we will also consider f as a set function4

with respect to the heat source, i.e., fðSÞ : 2V ! R.

4.2 Learning Diffusion by PDE Governed
Combinatorial Optimization

Our diffusion learning actually consists of two goals: esti-
mating the stable temperature f and selecting the optimal
heat source S. Now we provide a unified optimization
model to jointly solve these two problems. For the tempera-
ture, it is obvious that f can be directly solved by (4) with
selected S. As for the heat source, our first observation is
that due to the significant redundancy in the data set, not
every node in V is equally informative. So we first generate
a compact and representative subset F � V and then choose
heat source from F .5 Then we present the following criteria
to optimize heat source for our diffusions.

Generative loss. Given F , we tend to select the heat source
from it with the highest stable temperature on V because
higher overall temperature indicates better representative
ability of the heat source. This criterion is formulated by
maximizing the temperature calculated by (4):

LðSÞ ¼
X
p2V

fðp;SÞ: (5)

In operations research, this objective function can be viewed
as the uncapacitated facility location loss [23], which is to
select a set of potential facilities (i.e., S) and assign custom-
ers (i.e., VnS) to them in a cost effective and efficient manner
(i.e., maximum the utility L).

Discriminative regularizer. The discriminative relationships
often play very important roles in visual analysis. However,
as all the components of existing PDEs are fixed, we cannot
do this for the conventional diffusion system. Fortunately, in
LTD, this issue can be efficiently addressed by introducing a
discriminative regularizer in the combinatorial formulation.
Actually, given nodes from different categories, the goal of
discriminative PDEs learning is to utilize training data to
help select heat source with homogeneous category label for
a particular diffusion. To do this, for the category c, we col-
lect a set of training data T c :¼ fhp; pcðpÞg, where hp is the

feature vector and pcðpÞ is the probability of p belonging to
this category, respectively. By training a regressor on T c and
applying it to F , we estimate a mapping pcðpÞ on F to mea-
sure the probability of candidate heat source belonging to
the given category. Thenwe define two entropies:

EðFnSÞ ¼ �
X

p2FnS
pcðpÞlog pcðpÞ;

EðFnSjSÞ ¼ �
X

p2FnS;q2S
pðp;qÞlog ptðqjpÞ;

8>><
>>:

(6)

where ptðqjpÞ is the transition probability (i.e., normalized
affinity) from p 2 FnS to q 2 S in the feature space and

3. Here we do not enforce constraints on S as the temperatures of
nodes in S are specified by the boundary condition for each diffusion.

4. In general, the solution to conventional PDEs with fixed boundary
condition is a continuous function with respect to space and/or time
variables. While the solution to (4) is inherently combinatorial with
respect to the heat source.

5. We will use different strategies to define F for particular vision
tasks.
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pðp;qÞ ¼ pcðpÞptðqjpÞ. Intuitively, the larger EðFnSÞ tends
to seek nodes with high probabilities pc for S (i.e., select
heat source belonging to category c). While the smaller
EðFnSjSÞ makes category c be easily differentiated from
others (i.e., enhance the discrimination between S and
FnS). So we define our discriminative regularizer as the fol-
lowing information gain:

RðSÞ ¼ EðFnSÞ �EðFnSjSÞ: (7)

Based on above analysis, we defineHðSÞ ¼ LðSÞ þ gRðSÞ
with parameter g 	 0 and formally formulate LTD as the
following PDE governed combinatorial optimization:

max
f;S2Mn

HðSÞ;

s:t:
divðKrfÞ þ �PVnSðf � uÞ ¼ 0;

fðgÞ ¼ 0; fðpÞ ¼ sp; p 2 S;

� (8)

where Mn ¼ fSjS � F � V; jSj 
 ng is a uniform mat-
roid [24] to enforce that the cardinality of S is no more than
a given number n 
 jFj. By solving (8), we can identify the
optimal heat source and calculate the stable temperature in a uni-
fied framework for the VD system.

Adaptive penalty. To provide an adaptive way to identify
the number of nodes in heat source and further suppress
the redundancy in F , we define a confidence function
wðpÞ 	 0 on F , in which larger wðpÞ implies that p has a
higher probability of belonging to FnS and should be sup-
pressed. Therefore, we maximize another cost function

ĤðSÞ ¼ HðSÞ �WðSÞ in (8), where WðSÞ ¼
P

p2S wðpÞ.
Please notice that subtracting the penalty term W ðSÞ can
also be understood as incorporating the cost of opening
facilities into the facility location problem.

4.3 Discretization and Optimization

Now we discuss how to discretize and optimize LTD
problem.

Discretization. For each p, let N p ¼ fq1; . . . ;qjN pj�1; gg be
its neighborhood set, where the first jN pj � 1 nodes are in

the domain V and the environment point g outside V is con-
nected to each node [25]. Then we can specifyK at p to mea-
sure the variance between p and its neighborhood N p, i.e.,

we define an inhomogeneous metric tensor Kp as:

Kp ¼ diag kðp;q1Þ; . . . ; kðp;qjN pj�1Þ; zg
� �

; (9)

where kðp;qÞ ¼ expð�bkhp � hqk2Þ is the Gaussian similar-
ity (with a strength parameter b) between the features of
nodes, hp is a feature vector at node p, and zg is a small con-

stant to measure the dissipation conductance at p. Then we
can approximately discretize the PDE formulation as:

fðpÞ ¼
1

dp þ �

X
q2N p

KpðqÞfðqÞ þ �uðpÞ

0
@

1
A;p 2 VnS;

sp; p 2 S;

8>><
>>:

(10)

where KpðqÞ is the diagonal element of Kp corresponding to
q and dp ¼

P
q2N p

KpðqÞ.

Optimization. It is easy to check that (10) is indeed a linear
system, thus can be easily solved. However, the optimiza-
tion of (8) without knowing any further properties can be
extremely difficult (e.g., trivially worst-case exponential
time or even inapproximable [26]). Fortunately, we can
prove the following theory to exploit some good properties
(i.e., monotonicity and submodularity6) for LTD.

Theorem 1. 7 Let f be the stable temperature, H and Ĥ be the
objectives to (8). Then by considering them as set functions
with respect to S, the following assertions hold:

1) fðSÞ is monotone and submodular.
2) HðSÞ is monotone and submodular.
3) ĤðSÞ is submodular and Ĥð;Þ ¼ 0.

The monotonicity and submodularity of H together with
the uniform matroid constraint in (8) imply that using a
greedy algorithm to solve (8) yields a ð1� 1=eÞ-approxima-
tion [30]. Due to the non-monotone nature, we cannot have

the same theoretical guarantee for Ĥ. But in practice, by

adding the stopping criterion ĤðS [ fpgÞ 
 ĤðSÞ, the maxi-

mization process for Ĥ can be automatically stopped and
then the optimal seed set is obtained accordingly. We have
experimentally found that a greedy algorithm with this

stopping criterion is efficient for maximizing Ĥ in all the
tested problems. The complete LTD optimization frame-
work is summarized in Algorithm 1.

Algorithm 1. The LTD Optimization Framework

Input: Given V and necessary parameters.
Output: Stable f� and optimal S�.
1: Calculate pc and pt for p 2 F , K and g for p 2 V.
2: Initialize heat source S  ;.
3: while jSj 
 n do
4: for p 2 VnS do
5: Solve (10) with S [ fpg for f .
6: Obtain the gain DHðpÞ ¼ HðS [ fpgÞ �HðSÞ,

or DĤðpÞ ¼ ĤðS [ fpgÞ � ĤðSÞ.
7: end for
8: p� ¼ argmaxp2VnS DHðpÞ or argmaxp2VnS DĤðpÞ.
9: if ĤðS [ fp�gÞ 
 ĤðSÞ (only for Ĥ) then
10: Break.
11: end if
12: S  S [ fp�g.
13: end while
14: Solve (10) with optimal S� to obtain stable f�.

5 LTD FOR VISUAL ANALYSIS

In this section, we consider two example applications of
LTD on images and sequences, respectively.

5.1 LTD on Images for Saliency Detection

We first apply LTD for saliency detection, which is a typical
visual analysis task on the image domain. Given visual

6. Submodularity is an important property for discrete set function
and has far-reaching applications in operations research, machine
learning and computer vision [23], [27], [28], [29].

7. Please see Appendix, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2016.2522415, for necessary definitions and proofs.
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scenes, saliency detection is to find the regions which are
most likely to capture human’s attention. We show that this
task can be formulated as a specific case of VD. That is, we
first define the saliency confidence as a temperature function
and assume that our attention is first attracted by some most
representative salient image elements (considered as heat
source). Then the saliency confidence will be propagated
from the heat source to all salient regions on the image. In
this view, we define V as the discrete image domain (i.e., a set
of points corresponding to all image elements) and consider
f as the saliency confidence function on V. Thus detecting
salient regions reduces to the problem of leaning a particular
diffusion system for f .

Fig. 1a shows the pipeline of LTD based saliency detector
on an example image. This visual comparison together with
more sufficient experimental results in Section 6.2 show that
by incorporating priors from human perception (e.g., color,
location and background) for diffusion learning, the PDE (4)
with properly specified governing equation and boundary
condition can successfully model the saliency diffusion, thus
achieves better saliency detection results than state-of-the-
art approaches. In the following, we discuss the details of
this process.

5.1.1 Determining the Governing Equation

For a given image, we generate superpixels8 to build the
image elements set V ¼ fp1; . . . ;pjVjg and define feature
vectors fhp;p 2 Vg as the means of the superpixels in the

CIE LAB color space. The image structure information is
extracted as follows. Suppose the image domain V consists
of two parts: the candidate foreground F c (salient regions,
may also contain some spurious image elements) and the
candidate background Bc (non-salient regions). We utilize a
shift convex hull strategy to approximately estimate these
two subsets from the input image. Specifically, we use Har-
ris operator [32] to roughly detect the corners and contour
points and estimate a convex hull C based on these
points [33]. Then F c can be obtained by collecting nodes
inside C. To further identify pure background nodes, we

define an expended hull C0 by adding adjacent nodes to C.
Then Bc is obtained by collecting all nodes outside C0. Please
see Fig. 2a for an example of C and C0.

We construct an undirected graph G ¼ ðV; EÞ to reveal the
connection relationships (i.e., N p for each p) in the image

domain, where E is a set of undirected edges corresponding
to the nodes set V. Specifically, we first connect each node
with its 2-ring neighbors to exploit the local spatial

relationship (Fig. 2b). Then all the nodes in Bc are connected
to each other to enforce the smoothness of background
(Fig. 2c). As there may exist spurious image elements, we
do not further connect nodes in F c. Finally, all the nodes are
connected to an environment node g.

Now we are ready to determine the governing equation
F . First, Kp can be calculated by (9) using the graph connec-

tion (i.e.,N p) and the features (i.e., hp). To incorporate high-

level priors into the governing equation, u is defined in the
following way. By assuming that the distribution of back-
ground is significantly different from that of foreground,
we perform a simplified diffusion with � ¼ 0 in (4) to com-
pute a temperature fb with respect to the background confi-
dence score, where the boundary is chosen as the union of
Bc (with temperature 1) and an environment node g (with
temperature 0). It is easy to check that the solution to this
background diffusion is a harmonic function, thus fbðpÞ
2 ½0; 1�:9 So the elements in fb can be viewed as probabilities
of nodes belonging to the background. In this view, we
have the probability of a node belonging to the foreground
as ufðpÞ ¼ 1� fbðpÞ. Then the guidance map u (Fig. 3) is
obtained by combining uf with two standard saliency pri-
ors, namely the color and center maps (denoted by uc and
ul, respectively) from [34], using multiplication [35]:

uðpÞ ¼ ufðpÞ � ucðpÞ � ulðpÞ: (11)

5.1.2 Selecting the Boundary Condition

Due to the following two reasons, we do not use all nodes in
F c as heat source. First, the convex hull may not adequately
suppress background nodes inF c (Fig. 4c). Second andmore
importantly, it is observed that the heat source with
extremely high local contrast to its neighbors (e.g., nodes
near object boundary and bright or dark nodes on the object)
may also lead to a bad saliency map (Fig. 4d). So it is neces-
sary to select the most representative foreground nodes in F c to
define the boundary conditions.

The goal of our diffusion system is to propagate the tem-
perature of heat source S to the whole image domain V. So
here we only maximize the loss L (i.e., the sum of scores f
with respect to all image elements in V) when the saliency
diffusion is stable, that is, we solve the discrete optimization
problem (8) with g ¼ 0. As the saliency confidence can be
considered as the relevances between nodes and the salient
heat source, the maximum criterion in (8) naturally tends to

Fig. 2. Illustration of the shift convex hull strategy in (a) and connection
relationship in (b)-(c). The red and yellow polygons in (a) denote C and
C0, respectively. The red and yellow regions in (b)-(c) represent F c and
Bc, respectively. Lines in (c) indicate that all nodes in Bc are connected. Fig. 3. Saliency diffusion with different guidance maps. (a) input image

and GT salient region. (b)-(e) center prior ul, color prior uc, background
diffusion prior uf, final guidance map u (top) and their corresponding
saliency maps (bottom), respectively.

8. Generally, any edge-preserving superpixel methods can be used
and SLIC algorithm [31] is adopted in this paper to generate image
elements.

9. Based on the maximum/minimum principles of harmonic
functions.
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choose heat source in relatively larger connected sub-
graphs (thus is more representative). Therefore, the nodes
in F c with high local contrast (i.e., less connections and
paths to other nodes) will be removed from S. One may
concern that incorporating background nodes will also
lead to a large L as they may connect to nodes outside F c.
Fortunately, our guidance map u can enforce very small
saliency scores (in most case near zero) in background
regions (u in Fig. 4b). So background nodes in F c still
result in a relatively small L value and cannot be included
in S (Fig. 4c). Here we also use u to define the scores of
saliency seeds, i.e., sp ¼ uðpÞ, for p 2 S.

In general, the performance of (8) depends on the maxi-
mum number of heat source (i.e., n). By specifying WðSÞ in
(8), we provide an adaptive way to identify n and further
suppress background nodes in F c. Specifically, we define

wðpÞ ¼ x1=ð�þ uðpÞ2Þ on F c, where � is a small positive con-
stant. Here the larger wðpÞ implies that p has a higher proba-
bility of belonging to the background and should be

suppressed. Then we maximize the loss function L̂ðSÞ ¼
LðSÞ �W ðSÞ in (8), whereW ðSÞ ¼

P
p2S wðpÞ.

5.2 LTD on Sequences for Object Tracking

Now we address object tracking using LTD. It is to illus-
trate that LTD can also be used for sequential visual
analysis. Object tracking is one of the most fundamental
components in video analysis. Given the initialized
object, the goal of tracking is to estimate the states of the
target in the subsequent frames. We consider this prob-
lem as the task of distinguishing the target object from
the surrounding background (i.e., binary classification)
in Particle filter framework [36]. Utilizing this viewpoint,
we can formulate object tracking as jointly performing
temporal and spatial VDs on the sequence. Specifically,
we define the observation likelihood as a temperature
and propagate it from previously processed (i.e., train-
ing) frames to the current frame to establish the object
probability (i.e., priors). We also estimate the candidate
heat source using the location of the tracked object in
last frame. Then the final object confidence can be calcu-
lated by a prior guided propagation on the current
frame. Fig. 1b illustrates the pipeline of the LTD based

tracker. It can be seen that besides the temperature based
generative loss L, we also incorporate prior knowledge
learned from training data into the optimization model
(8) (i.e., discriminative regularization R) to enforce dis-
criminative constraints for the diffusions.

Specifically, let Y1:t�1 ¼ fY1; . . . ;Yt�1g be the tracked
objects from the first to the ðt� 1Þth frame, Yt be a candidate
object at time t and xt be the state variable describing the
affine motion parameters of Yt, respectively. Then we can
process xt with the following probabilities:

pðxtjY1:tÞ / pðYtjxtÞ
Z

pðxtjxt�1Þpðxt�1jY1:t�1Þdxt�1; (12)

where Y1:t ¼ fY1:t�1;Ytg, pðxtjxt�1Þ denotes the state transi-
tion distribution and pðYtjxtÞ estimates the likelihood of
observing Yt at state xt. So the optimal state of the target at
time t is obtained by the maximum-a-posteriori (MAP) esti-
mation overm candidates:

xt ¼ argmax
xit

p
�
Yi

tjxit
�
p
�
xitjxt�1

�
; i ¼ 1; . . . ;m; (13)

where xit indicates the ith candidate state and Yi
t is the tar-

get image region predicated by xit. Here pðxitjxt�1Þ can be
simply formulated by random walks. So object tracking
reduces to the problem of calculating the observation likeli-

hood pðYi
tjxitÞ.

5.2.1 Discriminative Object Representation

To set up our tracking system, we first learn a discrimina-
tive object representation from a set of d initial frames.
For the target state xt at the tth training frame, we denote
its tracking window as AðxtÞ. In the following, we will
use jAðxtÞj to denote its area size. We also define an addi-

tional square window A0ðxtÞ at the location of the target

with larger area size, i.e., A0ðxtÞ ¼ dAðxtÞ, where d > 1 is
a magnifying parameter. In this paper, we always set

d ¼ 1:5 to guarantee that A0ðxtÞ can cover the entire target
in last frame and include sufficient background for better
discrimination. It is illustrated in Fig. 1b that the sur-
rounding window and the tracking window for the target
are denoted as yellow and red rectangles both with solid
lines, respectively. We oversegment the surrounding

region A0ðxtÞ to build a set of image elements Vt ¼
fp1; . . . ;pjVtjg. For each superpixel p 2 Vt, the correspond-

ing feature vector hp is defined as a normalized histogram

in RGB color space. Then we define an object representa-

tion for training image elements �V ¼ fV1; . . . ; Vdg as
follows:

pcðpÞ ¼ jAðpÞ \ AðxtÞj=jAðpÞj; 8p 2 �V; (14)

where AðpÞ denotes the area covered by superpixel p on
the frame and jAðpÞ \ AðxtÞj is thus the area size of p over-
lapping the target at the tth training frame. It can be
observed that pc has the property that the larger value
indicates the higher confidence to assign p to the target.
Then we define our training data for the target object as

T c ¼ fhp; pcðpÞjp 2 �Vg.

Fig. 4. Saliency diffusion with different heat source. (a) input image and
GT salient region. (b) F c (inside red polygon) and u. (c)-(e) diffusion
results using one candidate seed in F c: (c) background (L ¼ 10:6175),
(d) bad foreground (L ¼ 1:6818) and (e) good foreground (L ¼
31:7404). (f) optimal seeds (L ¼ 43:8589) and final saliency map. Here
we report L values using the original saliency maps but normalize
them for visual comparison.
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5.2.2 Object Tracking via Diffusion on the Video

When the tth test frame arrives, we also extract its surround-

ing regionA0ðxtÞ centered at the location of the tracked target

in the ðt� 1Þth frame (i.e., Aðxt�1Þ) and oversegment A0ðxtÞ
to define the image elements Vt. Then we perform a simple
linear support vector regression (SVR) [37] on T c and apply
it to Vt. Now we can define the candidate target at tth frame

(denoted as F t
c) using the regressed confidence map. That is,

we collect nodes in a small square region located at the center

of A0ðxtÞ (i.e., the candidate foreground in Fig. 1b) with pc
greater than zero as F t

c. We also define the candidate back-

ground Btc as nodes on the boundary ofA0ðxtÞ (i.e., the candi-
date background in Fig. 1b). To enforce the sequential
structure into the current frame, we also include the bound-

ary nodes of the surrounding regions fA0ðx1Þ; . . . ;A0ðxdÞg in
the training frames to Btc (i.e., the left of the blue region in

Fig. 1b). Different from LTD on the image domain (presented
in Section 5.1), which only needs to define a single graph,
here we construct two different graphs for the sequence.
First, to reveal sequential relationships, we define a graph Gs
by connecting k nearest neighbors of each node in RGB color

space for �V [ Vt. Meanwhile, to collect spatial information at
the current frame, we build a graph Gc for nodes in Vt.

Based on the regressed confidence map pc, we define the

temperature of heat source St � F t
c (i.e., sp ¼ pcðpÞ for

p 2 St). Also, the discriminant penalty RðStÞ is defined by pc
using (7). Thenwe performLTDon Gc to learn the foreground
(i.e., object) confidence f for Vt (i.e., the pink region in
Fig. 1b). To adaptively determine the number of heat source
in (8), we can also use pc to defineW by the same formulation
as that in Section 5.1.2.10

5.2.3 Observation Model

Intuitively, we may define the observation model for can-
didate Yi

t � Vt as pðYi
tjxitÞ ¼

P
p2Yit

fðpÞ. But unfortunately,
due to the following two reasons, such simple strategy
may not work well in practice. First, until now the diffu-
sion is only performed on the current frame, thus there is
no sequential information used in the observation model.
Moreover, the calculated f is in the range ½0; 1�. So the
MAP estimation will always tend to find the one with the
larger area as the target object, which is definitely not
the case in most frames. For example, it can be seen in
Fig. 5c that the state estimated by f (i.e., green rectangle)
improperly includes the top left player, which is not our
target object.

To address above issues, we further define a temperature
fb to measure the confidence of nodes belonging to the back-

ground and set fbðpÞ ¼ 1 for p 2 Btc. Then we can perform a

diffusion on Gs to propagate fb from Btc to the other nodes. In
this way, we achieve a background confidence map fb on Vt
(illustrated at the bottom right of the blue region in Fig. 1b).
It is also clear that simply calculating the confidence map by
fb (e.g., define uf ¼ 1� fb) still cannot correctly identify our
target (see the blue rectangle in Fig. 5d). So we try to combine
the foreground and background confidences for the final
observation model. One possible idea is to utilize the multi-
plication strategy (i.e., calculating the confidence by f � uf ),
which has been used for saliency detection. However, such
confidence without negative components will still make us
choose object with larger area size (see the yellow rectangle
in Fig. 5e). So we would like to define a confidence map, in
which the target region should have high positive value,
while the background regionmust have high negative value.
To achieve this goal, we define a signed confidence map by
f � fb, which is in the range ½�1; 1�. It can be seen in Fig. 5f
that such signed confidence can successfully identify the tar-
get from complex background, thus lead to the optimal
trackingwindow (i.e., the red rectangle).

For each candidate state xit, we normalize its tracking

window into canonical size (denoted asÂðxitÞ).
11 Let vðx; yÞ

be the value at location ðx; yÞ on ÂðxitÞ. Then we accumulate
v to obtain the confidence:

c
�
xit
�
¼ a

�
xit; xt�1

� X
ðx;yÞ2Â

�
xit

� vðx; yÞ; (15)

where aðxit; xt�1Þ ¼ jAðxitÞj=jAðxt�1Þj is an adaptive scale
weight. It is easy to check that this confidence value does
not take scale change into account. Finally, we normalize

cðxitÞ into ½0; 1� to compute the likelihood pðYi
tjxitÞ for all can-

didate targets fxit; i ¼ 1 . . . ;mg.

6 EXPERIMENTS

This section presents the evaluation of LTD for visual analy-
sis.We first perform a simple image segmentation task to ver-
ify and compare the mechanism of our LTD model against
conventional PDEs.We then apply LTD on image domain for
saliency detection. Based on LTD saliency detection results,
we further show that the performance of other vision tasks
(e.g., image retargeting) can also be improved. Finally, we
test LTD on videos for object tracking. Please notice that nei-
ther saliency detection nor object tracking has been
addressed by PDEs. In each task, we compare the perfor-
mance of LTD against many state-of-the-art methods on dif-
ferent benchmark data sets. In this paper, all experiments are
run on the same PC with an Intel Core i7-3770 3.4 GHz CPU
that has 4 cores and 16 GBmemory, running Windows 7 (64-
bit) andMatlab (Version 8.2).We also suggest readers to refer
to Appendix, available in the online supplemental material,
for the evaluation methodology and more comprehensive
experimental results. Please notice that this work is to

Fig. 5. Confidence maps calculated by different strategies. (a) A new
frame at time t and the surrounding window C0ðxtÞ. (b) Zoomed-in sur-
rounding window and different candidate tracking windows (rectangles
with dotted and solid lines). (c)-(f) are confidence maps defined by f, uf ,
f � uf and f � fb, respectively. The corresponding tracking windows are
also plotted on these maps.

10. Here note that we do not introduce guidance map for tracking.
11. The canonical size for the tth frame is defined as the size of the

tracked target in the ðt� 1Þth frame.
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develop a theoretical framework with insights for various
vision tasks, not to provide a system to achieve best perfor-
mance in each problem.

6.1 Image Segmentation (Model Verification)

We first design a simple image segmentation experiment to
verify the mechanism of LTD and demonstrate the superior-
ity of our framework over conventional PDEs for image anal-
ysis. For a given test image, we first show the results of two
conventional image diffusion based PDEs (i.e., level set [38]
and active contour [39]) on the bottom left of Fig. 6. It can be
seen that the evolution of level set is very sensitive to the tex-
tures in the background. Though active contour diffusion can
reduce the influence from background, parts of the fore-
ground are not correctly segmented.

For LTD, we first consider the unsupervised loss L. It is
shown in the pink region of Fig. 6 (denoted as “L”) that LTD
with L can segment both two cows from the background.
However, such strategy cannot absolutely remove the back-
ground.12 To verify the mechanism of the supervised LTD
formulation, we introduce the information gain based regu-
larizerR to the object function. Thenwe collect another image
(shares similar object informationwith the test one) andman-
ually label the foreground/background to generate our train-
ing image pairs (the rightmost column in Fig. 6). Here we
generate two different label masks for either the two cows or
a single cow and the corresponding discriminative regular-
izer (defined by (7)) are denoted as R2 and R1, respectively.
By incorporating supervised information to LTD (respec-
tively denoted as “LþR2” and “LþR1”), we can success-
fully segment the image following the priors learned from
training data. Finally, we introduce an adaptive penaltyW to
the object function. The third column in the blue region of
Fig. 6 illustrates that LTDwithW (denoted as “LþR1 þW”)

automatically chooses one node as heat source (we set the
maximum number of nodes in heat souse as 3 in this experi-
ment) and achieves the same segmentation results as that by
“LþR1”. In fact, this experiment verified that our LTD can
successfully incorporate discriminative label information
from training data for diffusion learning.

6.2 Saliency Detection (LTD on Images)

In this section, we consider saliency detection and perform
experiments on four benchmark image sets which are gener-
ated from three public databases, i.e., MSRA [40], ECSSD [41]
andBerkeley [42].Wefirst conduct experiments on thewidely
used subset of MSRA with 1,000 images, which is provided
by [43] (MRSA-1,000). Then the comparison is performed on
the whole MSRA database with 5,000 images (MSRA-5,000).
We also evaluate saliency detection performance on the
recently released ECSSD database with 1,000 images, which
includesmany semanticallymeaningful but structurally com-
plex images for evaluation. Finally, we test algorithms on the
300 challenging images in the Berkeley image set. Here the
number of superpixels is set to 200 for all the test images. We
compare our LTD method with 19 state-of-the-art saliency
detectors, such as BL [44], UFO [35], IT [45], AC [46], CA [47],
CB [48], FT [43], GB [49], GS [50], LC [51], LR [34], MZ [52],
RC [53], SER [54], SF [55], SR [56], SM [28], SVO [57], and
XIE [33]. For quantitative comparison, we report the preci-
sion, recall and F-measure values for the three image sets,
respectively. We also present ground truth (GT) salient
regions and the saliencymaps for comparedmethods.

Qualitative results. We first show example saliency
maps computed by some typical saliency detectors in
Fig. 7. As eye fixation prediction based methods (e.g., IT
and GB) can only identify center-surround differences
but miss most of the object information, here we do not
show their results. The simple low-rank assumption in
LR may be invalid when images contain complex struc-
tures. RC explores superpixels to highlight the object
more uniformly, but the complex background always
challenges such methods [47], [49], [53]. In SM, regions

Fig. 6. Comparisons between conventional PDEs (bottom left) and LTD on image segmentation. The results of LTD with unsupervised and super-
vised losses are presented on the pink and blue regions, respectively. We also use dotted rectangles with different colors to distinguish step results
of LTD: (a) heat source determined by different objective functions (red), (b) stable temperature of learned diffusion systems (yellow), and (c) final
segmentation results (green). The training images with different labels are also illustrated on the rightmost.

12. Please notice that actually the guidance map defined in Sec-
tion 5.1.2 can easily address this problem. However, as the goal of this
experiment is to verify our objective functions, here we do not intro-
duce such guidance map for LTD.
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inside a salient object which share a similar color with the
background will be regarded as part of the background.
As a result, they may share the same saliency value with
the background region. In contrast, our method can suc-
cessfully highlight the salient regions and preserve the
boundaries of objects, thus producing results that are
much closer to GT.

Quantitative results. The quantitative comparisons
between our method and other state-of-the-art approaches
are performed on MSRA-1,000, MSRA-5,000, ECSSD and
Berkeley, respectively. The average precision, recall, and
F-measure values are computed in the same way as in [28],
[33], [43], [53]. The precision-recall curves of all 19 methods

are presented in Fig. 8. The average precision, recall and F-
measure values using an adaptive threshold [43] are shown
in Fig. 9. The center-surround contrast based methods, such
as IT, GB and CA, can only detect parts of boundaries of
salient objects. Using superpixels, recent approaches, such
as CB and RC, are capable of detecting salient objects. But
they usually fail to suppress background regions and also
lead to lower precision-recall curves. In Fig. 8, we observe
that GS shares a similar precision with ours when the recall
is larger than 0.96. However, the geodesic distance to
boundary strategy in that method tends to recognize back-
ground parts as salient regions when their colors are signifi-
cantly different from the boundary. So in most cases, their

Fig. 8. The average precision-recall curves.

Fig. 7. Qualitative comparisons on images from MSRA (top), ECSSD (middle) and Berkeley (bottom) databases.

Fig. 9. The average precisions, recalls and F-measures using adaptive thresholding.
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precision is much lower than ours at the same recall level. It
can be seen that overall our LTD saliency detector performs
well on most of these challenging image sets and only the
recently proposed BL algorithm is comparable to LTD.

These results also verify that the proposed learning
strategy can successfully incorporate both bottom-up and
top-down information into saliency diffusion. We also
report the CPU time of several saliency detectors in
Table 1. We observed that the methods with C/C++
implementation (e.g., LC, RC and FT, denoted as “C”)
achieve a fast speed. Due to the simple formulations, the
speed of the eye fixation prediction methods (e.g., IT and
SR, denoted as “M”) are also fast even with the MATLAB
implementation. However, their performance are worse
than the object based saliency detectors. Overall, LTD is
the fastest detector among methods with MATLAB imple-
mentation, including C/C++ library (denoted as “M&C”).

6.3 Image Retargeting (Saliency Driven Application)

In this section, we evaluate LTD on saliency driven visual
analysis problems. To address this issue, we consider the
image retargeting task, which is to resize an image by
expanding or shrinking the non-informative regions. It is
easy to check that retargeting algorithm relies on the avail-
ability of saliency map which is used to specify relative
importance across image parts. We perform seam carving
retargeting technique [58] with saliency maps from CA, RC
and LTD on example images. It can be seen from Fig. 10
that our LTD helps produce better retargeting results than
CA and RC. This is because image retargeting requires that
the entire salient objects should be uniformly highlighted.
In Fig. 11, we observe that CA saliency maps only highlight
the object boundaries and RC saliency maps fail to distin-
guish the object and the background. In contrast, LTD can
provide more accurate and smooth saliency maps, thus is
more suitable for retargeting application.

6.4 Object Tracking (LTD on Sequences)

To test the performance of LTD on sequential data (e.g., vid-
eos), we consider the task of object tracking and evaluate
our LTD based tracker (proposed in Section 5.2) against
other 19 state-of-the-art tracking methods, i.e., DSST [59],
TLD [60], ASLA [61], CXT [62], VTD [63], CSK [64],
DFT [65], L1APG [66], MTT [67], OAB [68], LOT [69],
MIL [70], IVT [36], Frag [71], SPT [72], ORIA [73], CT [74],
VR-V [75] and SPOT [76], on the tracking benchmark [77]
with 50 challenging video sequences. Here the number of
superpixels is set to 250. For k nearest neighbor graph, we
set k ¼ 10. The number of particles is set to 600 for each
frame. The number of initial training frames is set to 4 and
the observation probabilities are updated every 25 frames.

Qualitative results. For better readability, we first dem-
onstrate qualitative results of LTD together with 11 track-
ers on six representative videos. In Figs. 12a, 12b, 12c, we
show the performance of different trackers in terms of
illumination variation, deformation, out-of-plane rotation
and background clutters even when the target objects
undergo severe occlusion. It can be seen that IVT and
L1APG drift away from the target when it undergoes
non-rigid shape deformation and large pose change.
MTT, ASLA and CXT also do not accurately locate the
target all the time. In contrast, our LTD tracker performs
well on all these sequences. This is mainly because that
LTD is able to exploit both the target and the background
appearance thus can alleviate influence from background
pixels. Moreover, as we define features in the color space
rather than modeling the holistic appearance of objects,
LTD is not sensitive to the shape changes, thus can gener-
ate the most accurate results. Figs. 12d, 12e, 12f show
representative results on 3 video sequences which high-
light other challenging factors (e.g., out-of-view, motion
blur, fast motion and scale variation). It can be seen that
our tracker also performs well in these cases.

TABLE 1
Average Running Time (Seconds per Image) for Different Methods on MSRA-1000 Database

Method LTD UFO CB XIE LR LC SR SM RC FT GB CA SER AC IT

Code M&C M&C M&C M M&C C M M&C C C M&C M&C M M M
Time (s) 0.38 7.69 0.63 95.91 12.42 0.012 0.02 5.21 0.027 0.011 0.61 33.85 1.88 58.35 0.18

Fig. 10. Image retargeting results of seam carving [58] with CA, RC and LTD.

Fig. 11. GTand saliency maps of CA, RC and LTD for input images in Fig. 10.
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We observe that SPOT achieves very good performance
on “Tiger2” sequence (in Fig. 12f) and the quantitative
results are even slightly better than LTD (see Table 2). But
unfortunately, it cannot achieve good results (even fail at
the beginning of some sequences) on other five test videos.
This is possibly because SPOT may not handle severe

occlusions in Figs. 12a, 12b, 12c or the small size of the object
in Figs. 12d, 12e.

Quantitative results. To assess quantitative performances
of these trackers, we first report the overlap rate (OR) and
center location error (CLE) in Table 2 for six example vid-
eos. To further show the overall performances on the whole
tracking benchmark, we follow evaluation protocols in [77]
to plot the success and precision of all the 19 trackers on 50
video sequences in Fig. 13. The average performance scores
are also reported in legends of Fig. 13. The average precision
value at threshold 20 pixels for each method is shown in the
legend of the precision plot. The legend of the success plot
contains the area-under-curve (AUC) score for each tracker.
It can be observed that our LTD achieves very favorable per-
formance and only the recently proposed DSST tracker per-
forms better than it on this challenging benchmark.

Finally, we compare the speed (i.e., frames per sec-
ond, FPS) of all particle filter based trackers (i.e., IVT,
ASLA, L1APG, MTT, SPT and our LTD) over 50 videos
in Table 3. It can be seen that IVT is much faster than
other particle filter based trackers as it only involves a
simple subspace updating process on each frame. Our
LTD is the second fastest among the compared trackers.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel PDE learning frame-
work, called learning to diffuse, for visual analysis. Within
the framework, we extract both the generative data distribu-
tion and the discriminative category information for diffu-
sion learning. We verify the proposed model by solving two
challenging visual analysis tasks (i.e., saliency detection and
object tracking). To our best knowledge, neither of these

Fig. 12. Sampled tracking results on 6 example videos.

TABLE 2
Average OR (Top, Higher is Better) and CLE (Bottom, Lower is Better) for 6 Example Videos

Sequence LTD SPT TLD ASLA OAB VTD MTT L1APG CXT Frag IVT SPOT

Basketball 0.74 0.68 0.02 0.38 0.03 0.73 0.19 0.23 0.02 0.62 0.11 0.01
8.11 18.09 213.86 82.63 204.84 5.62 106.80 137.53 214.57 13.02 107.11 169.86

Bolt 0.61 0.56 0.16 0.01 0.04 0.37 0.01 0.01 0.02 0.13 0.01 0.01
7.67 8.59 90.92 374.74 253.76 25.16 408.61 408.41 385.49 183.38 397.05 191.11

Jogging 0.70 0.61 0.66 0.14 0.42 0.13 0.13 0.15 0.13 0.48 0.14 0.20
7.72 8.92 13.56 169.86 36.78 122.19 157.12 145.85 139.7 37.54 138.22 72.23

Freeman4 0.51 0.08 0.22 0.13 0.11 0.16 0.22 0.34 0.17 0.14 0.15 0.01
7.59 70.95 39.18 70.24 133.38 61.68 23.55 22.12 65.64 72.27 43.04 108.70

Skiing 0.48 0.11 0.07 0.09 0.08 0.07 0.09 0.07 0.09 0.03 0.08 0.02
6.62 259.82 142.83 266.61 192.54 263.27 256.42 265.87 153.13 270.01 272.36 260.00

Tiger2 0.55 0.15 0.26 0.14 0.15 0.30 0.29 0.24 0.36 0.12 0.09 0.57
19.49 99.74 36.17 84.69 251.97 40.87 48.75 65.16 41.44 113.54 102.47 17.91

The best and the second best results are shown in bold and underline fonts, respectively.

Fig. 13. The success and precision plots over all 50 videos.
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problems has ever been addressed by PDE based methods
before. Comprehensive experimental comparisons with 19
saliency detectors on four saliency databases and 19 trackers
on 50 tracking benchmark videos demonstrate the efficiency
and effectiveness of LTD on both saliency detection and
object tracking.

Our LTD based strategies for particular vision tasks are
still rudimentary and several aspects can be improved in
the future. First, in saliency detection, the human percep-
tions (i.e., center and color priors) work well for most test
images. But the guidance may occasionally fail to control
the visual diffusion when these perceptions are in conflict
with the salient structure. For example, as the center prior
based guidance cannot highlight saliency around the image
boundary, LTD may detect incorrect salient regions (e.g.,
LTD-1 in Fig. 14). Though redesigned guidance for this
image can improve the performance of LTD (e.g., LTD-2 in
Fig. 14), we believe more efforts should be made for adap-
tive guidance learning in real world scenarios. Second, for
object tracking, LTD is currently performed in RGB color
space. The bottom row of Fig. 14 illustrated that the tracking
results on “Tiger2” sequence can be improved if we incor-
porate histogram-of-oriented-gradient (HOG) feature [78]
into LTD framework. Accordingly, the OR and CLE scores
are respectively improved from 0.55 and 19.49 to 0.60 and
16.35 on this sequence. It can be seen that LTD with HOG is
actually better than the HOG based SPOT tracker, whose
OR and CLE are 0.57 and 17.91, respectively. This experi-
ment suggests that the properly designed feature space
could give rise to better performance for some particular
data and tasks. Therefore, more investigations on feature
engineering are necessary when we utilize LTD for more
complex vision problems. Third, we observed that scaling
techniques (e.g., multi-scale boosting [44] and scale pyra-
mid [59]) achieved good performances in the experimental

comparisons. This suggests us to extend LTD for multi-scale
diffusions learning to further improve the performance.

ACKNOWLEDGMENTS

The authors thank all reviewers for their helpful comments.
R. Liu is supported by National Natural Science Foundation
of China (NSFC) (Nos. 61300086, 61432003), Fundamental
Research Funds for the Central Universities (No.
DUT15QY15) and the Hong Kong Scholar Program (No.
XJ2015008). G. Zhong is supported by China Scholarship
Council. J. Cao is supported by NSFC (No. 61363048). Z. Lin
is supported by National Basic Research Program of China
(973 Program) (No. 2015CB352502), NSFC (Nos. 61272341,
61231002), and Microsoft Research Asia Collaborative
Research Program. S. Shan is supported by NSFC (No.
61222211). A preliminary version of this work was pub-
lished in [1]. R. Liu is the corresponding author.

REFERENCES

[1] R. Liu, J. Cao, Z. Lin, and S. Shan, “Adaptive partial differential
equation learning for visual saliency detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2014, pp. 3866–3873.

[2] T. Chan and J. Shen, Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods. Philadelphia, PA, USA:
SIAM, 2005.

[3] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and
F. Lenzen, Variational Methods in Imaging. New York, NY, USA:
Springer, vol. 167, 2008.

[4] T. Lindeberg, Scale-Space Theory in Computer Vision. New York,
NY, USA: Springer, 1993.

[5] P. Perona and J. Malik, “Scale-space and edge detection using ani-
sotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, Jul. 1990.

[6] B. M. Ter Haar Romeny, Geometry-Driven Diffusion in Computer
Vision. Norwell, MA, USA: Kluwer, 1994.

[7] G. Sapiro, Geometric Partial Differential Equations and Image Analy-
sis. Cambridge, U.K.: Cambridge Univ. Press, 2006.

[8] F. Cao, Geometric Curve Evolution and Image Processing. New York,
NY, USA: Springer, 2003.

[9] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenomena,
vol. 60, no. 1, pp. 259–268, 1992.

[10] R. Liu, Z. Lin, W. Zhang, and Z. Su, “Learning PDEs for image res-
toration via optimal control,” in Proc. Eur. Conf. Comput. Vis., 2010,
pp. 115–128.

[11] R. Liu, Z. Lin, W. Zhang, K. Tang, and Z. Su, “Toward designing
intelligent PDEs for computer vision: An optimal control
approach,” Image Vis. Comput., vol. 31, no. 1, pp. 43–56, 2013.

[12] G. Aubert and P. Kornprobst, Mathematical Problems in Image Proc-
essing: Partial Differential Equations and the Calculus of Variations.
New York, NY, USA: Springer, vol. 147, 2006.

[13] J. J. Koenderink, “The structure of images,” Biol. Cybern., vol. 50,
no. 5, pp. 363–370, 1984.

[14] A. P. Witkin, “Scale-space filtering: A new approach to multi-scale
description,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
1984, pp. 150–153.

[15] R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high
dynamic range compression,” ACM Trans. Graph., vol. 21, no. 3,
pp. 249–256, 2002.

[16] P. P�erez, M. Gangnet, and A. Blake, “Poisson image editing,”
ACM Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[17] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,” ACM
Trans. Graph., vol. 23, no. 3, pp. 315–321, 2004.

[18] L. A. Vese and T. F. Chan, “A multiphase level set framework for
image segmentation using the Mumford and Shah model,” Int. J.
Comput. Vis., vol. 50, no. 3, pp. 271–293, 2002.

[19] E. S. Brown, T. F. Chan, and X. Bresson, “A convex relaxation
method for a class of vector-valued minimization problems with
applications to Mumford-Shah segmentation,” Univ. California,
Los Angeles, CA, USA, UCLA CAM Rep. 10–43, 2010.

TABLE 3
Average FPS for Particle Filter Based Trackers on

50 Videos in the Benchmark [77]

Method LTD IVT ASLA L1APG MTT SPT

Code M&C M&C M&C M&C M M&C
FPS 3.0 16.0 1.8 2.3 0.7 0.5

Fig. 14. Failed examples of LTD in saliency detection (top) and object
tracking (bottom) and possible improvements. We obtain LTD-1 using
the guidance defined by (11) and LTD-2 using a new guidance defined
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