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Abstract—Low-rank representation (LRR) has recently attracted a great deal of attention due to its pleasing efficacy in exploring

low-dimensional subspace structures embedded in data. For a given set of observed data corrupted with sparse errors, LRR aims at

learning a lowest-rank representation of all data jointly. LRR has broad applications in pattern recognition, computer vision and signal

processing. In the real world, data often reside on low-dimensional manifolds embedded in a high-dimensional ambient space.

However, the LRR method does not take into account the non-linear geometric structures within data, thus the locality and similarity

information among data may be missing in the learning process. To improve LRR in this regard, we propose a general Laplacian

regularized low-rank representation framework for data representation where a hypergraph Laplacian regularizer can be readily

introduced into, i.e., a Non-negative Sparse Hyper-Laplacian regularized LRR model (NSHLRR). By taking advantage of the graph

regularizer, our proposed method not only can represent the global low-dimensional structures, but also capture the intrinsic non-linear

geometric information in data. The extensive experimental results on image clustering, semi-supervised image classification and

dimensionality reduction tasks demonstrate the effectiveness of the proposed method.

Index Terms— Low-rank representation, graph, Hyper-Laplacian, manifold structure, Laplacian Matrix, regularization
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1 INTRODUCTION

LOW-RANK representation (LRR) [30], [33], as a promising
method to capture the underlying low-dimensional

structures of data, has attracted great interest in the pattern
analysis and signal processing communities. Specifically,
the problems involving the estimation of low-rank matrices
have drawn considerable attention in recent years. LRR has
been widely used in subspace segmentation [11], [49], image
destriping [35], image clustering [51], [56] and video back-
ground/foreground separation [1]. The low-rank regular-
izer in LRR has a deep link with the recent theoretical
advances on robust principal component analysis (RPCA)
[9], [10], which leads to new and powerful modeling options
for many applications.

Under the practical assumption that observed data all lie
near some low-dimensional subspaces, the data matrix
stacked from all the vectorized observations should be
approximately of low rank [44]. The conventional principal
component analysis (PCA) [24] is one of ways to recover the
best low-rank representation in terms of ‘2 errors. It is well
known that PCA, widely applied in computer vision and

other research areas, is fragile to outliers or sparse/
extreme errors introduced by occlusion and disguise [26].
Researchers have long been working on different kinds of
approaches aiming to robustify PCA and to recover a
low-dimensional subspace from corrupted data, such as
‘1 PCA [17] and robust PCA (RPCA) [10]. These robust
PCA schemes show that ‘1-type noise models can offer
better robustness than the conventional ‘2-type ones.
Although most of robust PCA approaches can achieve
resilience with respect to grossly corrupted observation
data, unfortunately none of them yields a polynomial
time algorithm under broad conditions [10]. Since these
methods are modified by adding extra regularization
terms, the problems usually become non-convex and cor-
responding optimization algorithms can easily get stuck
at local minima, resulting in performance degradation.

The LRR method [11], [30], [31], [33] focuses on low-rank
data representation, based on the hypothesis that data
approximately jointly span several low-dimensional sub-
spaces. The authors of [32] generalize LRR model to take
care of largely contaminated outliers by incorporating a
‘1=‘2 noise model and prove that under mild technical con-
ditions, the LRR model exactly recovers the subspace of
samples and detect the outliers as well. Thus LRR can accu-
rately recover the row space of the original data and detect
outliers under mild conditions [30]. In general, the resulting
problem, which minimizes a combination of the nuclear
norm and the ‘1-norm, is convex and can be solved in poly-
nomial time [10]. In order to handle the caseswhere the num-
ber of observed data is insufficient or data themselves are too
badly corrupted, Liu and Yan [33] further proposed a latent
low-rank representation approach. In the latent LRR, hidden
data can be regarded as the input data matrix after being
transposed. This idea has been recently used in designing a
classifier for image classification [4]. As for LRR, only the
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row space information is recovered and the column space
information of the input data matrix is not sufficiently
exploited for learning subspace structures. To address this
issue, Yin et al. [49] proposed a novel approach, termed dou-
ble LRR, which simultaneously learns the row space and col-
umn space information embedded in a given dataset.

If all the data in a high-dimensional space actually lie on
the union of several linear subspaces, LRR can easily pick up
the low-dimensional structures embedded in the data. How-
ever, in real world applications the assumption cannot be
ensured. For instance, it is well known that facial images are
sampled from a non-linear low-dimensional manifold which
is embedded in a high-dimensional ambient space [22].
Therefore, in this case, the LRR method may fail to discover
the intrinsic geometric and discriminating structures of
data [6], [35], [52], which is essential to actual applications.

To preserve local geometric structures embedded in a
high-dimensional space, numerous researchers have con-
sidered the manifold learning methods, such as the locally
linear embedding (LLE) [37], ISOMAP [40], locality preserv-
ing projection (LPP) [22], neighborhood preserving embed-
ding (NPE) [21] and Laplacian Eigenmap (LE) [2]. All these
algorithms are motivated by the idea of the so-called local
invariance [19], which aims to estimate geometric and topo-
logical properties of an unknown manifold from random
points (scattered data) lying around it.

In practice, it is reasonable to assume that if two data
points are close in the intrinsic manifold of the data distri-
bution, then the representations of these two points in a
new space are close to each other too [20]. In recent years,
this observation inspires Zheng et al. [52] to propose a
graph regularized sparse coding to learn a sparse represen-
tation that explicitly takes into account the local manifold
structures of data. Similarly, Gao et al. [18] also proposed
two Laplacian regularized sparse codings, termed as Lapla-
cian sparse coding (LSc) and Hypergraph Laplacian sparse
coding (HLSc) by incorporating a similarity preserving
term into the objective of sparse coding. In [6], Cai et al.
developed a graph based approach for non-negative matrix
factorization [25] of data representation in order to address
the failure in representing geometric structures in data. To
exploit the intrinsic geometry of the data distribution, He
et al. [20] proposed a Laplacian regularized Gaussian Mix-
ture Model (LapGMM) based on manifold structures for
data clustering. What is more, from the matrix factorization
perspective, a novel low-rank matrix factorization model
that incorporates manifold regularization into matrix factor-
ization is proposed in [51]. More recently, to comprehen-
sively consider the high spectral correlation between the
observed sub-images in different bands and the local mani-
fold structures of the hyperspectral data space, Lu et al. [35]
proposed a novel graph-regularized LRR (GLRR) destriping
approach by incorporating the LRR technique. Their formu-
lation shares the similar idea as that used in our proposed
model, but with the purpose of removing striping noise in
hyperspectral images. In contrast, we consider data cluster-
ing and classification, and further incorporate both the spar-
sity and non-negative constraints in our model.

Motivated by the above works, in this paper, we propose
a non-negative sparse hyper-Laplacian regularized low-
rank representation model, or NSHLRR for short, for image

representation. Note that here we use a hypergraph, instead
of a normal graph, to describe similarity structures among
data in order to introduce a general manifold regularization
to the LRR model. Although the manifolds that data points
reside near are non-linear, every data point can still be line-
arly represented by points in its neighborhood because any
manifold can be locally approximated by linear subspaces.
So we still can characterize the local geometry of data by the
linear coefficients that reconstruct each data point from its
neighbors, which are mostly on the same manifold unless
the to-be-represented data point is far away along the mani-
fold. Hence the optimal representation by our proposed
model is close to block-diagonal, which facilitates non-linear
manifold clustering.

In summary, our main contributions in this paper lie in
the following three aspects:

1) We extend the LRR model by introducing a regulari-
zation term based on the manifold structures of data,
and propose a novel and more general Laplacian
regularized LRR. More specifically, as the data mani-
folds are unknown a priori, the local geometric struc-
tures of data are modeled by a nearest neighbour
graph and then the graph structures are incorpo-
rated into an optimization problem targeting on
finding the lowest-rank representation matrix.

2) Instead of considering pairwise relations, we model
the data manifold structures by a hypergraph to
explore the high order relations among data points.
It is easy to see that the regularized LRR model
under a normal graph structure is actually a special
case of our proposed model. Our experimental
results show that the proposed model outperforms
the state-of-the-art methods in the semi-supervised
image classification and clustering tasks.

3) We constrain the representation coefficients to be
non-negative to facilitate learning local manifold
structures. Recently, many literatures [25], [56] have
shown that the non-negative constraint leads to a
parts-based representation for data, which can make
the model more physically interpretable. Since we
use locally linear subspaces to approximate the non-
linear manifold, it is better if the sample to be repre-
sented is at the center of the locally linear subspace
so that the approximation is valid. This is distinct
from the model proposed in [35].

The remainder of this paper is organized as follows. In
Section 2, we give a brief review on relatedworks. Section 3 is
dedicated to introducing the proposedNSHLRR. In Section 4,
we apply the linearized alternating direction method (ADM)
with adaptive penalty (LADMAP) [29] to solve the optimiza-
tion problem of NSHLRR. Section 5 presents experimental
results on image clustering and semi-supervised image clas-
sification tasks. The results on applying the proposed model
to hypergraph-based applications are provided in Sections 6
and 7. Finally, Section 8 concludes our paper.

2 RELATED WORKS

In recent years, the success of low-rank matrix and graph
representations has inspired researchers to extend these
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representations by jointly considering the two approaches.
Before we introduce our model, in this section, we review
the recent development of LRR [30], [31], [33] and graph
based analysis [2], [47], [52].

2.1 Low-Rank Matrix Recovery Formulation

The LRR model [30] is based on the assumption that data
are approximately sampled from a union of multiple low-
dimensional subspaces. Given a set of data samples, LRR
aims at finding the lowest-rank representation of all data
jointly. It has been demonstrated that LRR is very effective
in exploring low-dimensional subspace structures embed-
ded in data [30].

Consider the case that data Y are drawn from a union of

multiple subspaces given by
S k

i¼1Si, where S1, S2; . . . ;Sk

are low-dimensional subspaces. The LRR model for the
given data Y is defined as the following rank minimization
problem

min
Z;E

rankðZÞ þ � Ek k0 s.t. Y ¼ AZ þ E; (1)

where the columns of A are a set of known bases or dictio-
nary items, E denotes the error components, �k k0 is the ‘0
pseudo-norm, i.e., the number of nonzeros in a matrix or
vector, and � is a penalty parameter for balancing the low-
rank term and the reconstruction fidelity.

As it is difficult to solve the above optimization problem
(1) due to the discrete nature of the rank function and the ‘0
pseudo-norm, a convex relaxation of the above optimization
problem is proposed as

min
Z;E

kZk� þ � Ek k1 s.t. Y ¼ AZ þ E; (2)

where kZk� is the nuclear norm, defined as the sum of all sin-
gular values of Z, which is the convex envelope of the rank
function [9], and Ek k1 is the ‘1 norm, defined as the sum of
absolutes of all entries, which is the convex envelope of the
‘0 pseudo-norm. In fact, it has been proved in [30] that in the
noise free case the solution to (2) is also the solution to (1).

Given a low rank solution Z to (2) or (1), the clean repre-
sentation AZ for data Y is also of low rank. DenoteX ¼ AZ.
Instead of solving the optimization problem with respect to
the representation coefficient matrix Z, we may solve for
the clean data X directly. This links LRR with robust PCA
[10], whose optimization problem is

min
X;E

Xk k�þ� Ek k1 s.t. Y ¼ X þE: (3)

RPCA is broadly used in the computer vision community
[46], [50]. RPCA only aims to recover the low-rank clean
data from given noisy data. Compared to model (3), the
LRR model is able to reveal the implicit data membership.
To see this, let X ¼ ½x1; x2; . . . ; xn� be the matrix whose col-
umns are clean data samples drawn from independent sub-
spaces fSig. Given a dictionary A ¼ ½a1; a2; . . . ; am�, or
more generally a dictionary of atoms, linearly spanning
the whole data space, we can represent the data as
X ¼ AZ, where Z ¼ ½z1; z2; . . . ; zn� is the coefficient matrix
with each zi being the representation of xi. Under an
appropriately designed dictionary A, the optimal solution
Z� of LRR can actually reveal some underlying affinity

between data points, which can be exploited to uncover
the intrinsic structures of data. In [30], the dictionary A is
chosen as the given data Y . In this case, the coefficient
matrix element zij can be explained as the “similarity”
between data points yi and yj.

A number of methods have been proposed for solving
low-rank matrix problems, such as singular value thresh-
olding [8], accelerated proximal gradient (APG) [28], and
augmented Lagrange Multiplier Method (ALM) [27]. Lin
et al. [29] proposed a fast method, termed linearized alter-
nating direction method with adaptive penalty, which uses
less auxiliary variables and no matrix inversions, and hence
converges faster than the usual alternating direction method
[43]. Most recently, in order to handle the multi-block cases,
Lin et al. [34] further proposed a new algorithm, called
LADMPSAP.

2.2 Graph Based Manifold Analysis

Without loss of generality, suppose Y ¼ ½y1; y2; . . . ; yn� are
sampled from an underlying manifold M. Since a non-
linear manifold can be locally approximated by linear
subspaces, it is reasonable to assume that the relationship
between a data point and its neighbors is linear [3]. Thus,
the local geometry of these data points can be effectively
characterized by the linear coefficients that reconstruct

each data point from its neighbors. Given data Y 2 Rd�n,
we construct a k nearest neighbor (kNN) graph G with n
vertices, where each vertex denoting a data point. We
also define a symmetric weight matrix W 2 Rn�n, in
which Wij is the weight of the edge joining vertices i and
j. That is, a weighted undirected graph G ¼ ðV; E;WÞ is
constructed with the weight matrix W , where V ¼ fvigni¼1

is the vertex set with each node vi corresponding to a
data point yi, and E ¼ feijg is the edge set with each edge

eij associating nodes vi and vj with a weight Wij. The
value of Wij is set as follows:

Wij ¼ 1 if yi 2 NkðyjÞ or yj 2 NkðyiÞ;
0 otherwise,

�
(4)

whereNkðyiÞ denotes the set of k nearest neighbors of yi.
Graph embedding is based on the natural assumption

that if two data points yi and yj are close in the intrinsic
geometry of the data distribution, their embedding/map-
pings in a new space are also close to each other. This
assumption can be implemented in terms of similarity. So
graph embedding aims at describing each vertex of the
graph by a low-dimensional vector that preserves affinity
between the vertices, where the similarity is measured by
the edge weight. In mathematics, this relationship defined
by the manifold assumption is formulated as

min
fzkg

X
ij

zi � zj
�� ��2Wij; (5)

where zi and zj are the mappings of yi and yj under some
transformation, respectively. This rule plays a critical role
in developing various kinds of algorithms, including
dimensionality reduction [47], clustering [5] and semi-
supervised learning [56]. The degree matrix is defined as D,
which is a diagonal matrix, whose ith diagonal entry Dii
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corresponds to the summation of all the similarities related
to yi, i.e., Dii ¼

P
j Wij. Then the graph Laplacian matrix is

defined by [14]

L ¼ D�W:

It is easy to prove that the graph embedding (5) can be
rewritten as

min trðZLZT Þ:

In many applications, however, the relationship among
the data of interest is more complicated than pairwise,
which cannot be simply represented by a normal graph.
For a long time, the hypergraph relations have often been
transformed into a normal graph, which is easier to han-
dle [18], [36], [54]. If this complex relationship is simpli-
fied into pairwise one, it is inevitable to lose some useful
information for targeted learning tasks. To effectively rep-
resent the complex relationship among given data, the
concept of hypergraph is employed in manifold
learning tasks [54], such as clustering, classification and
dimensionality reduction via embedding. In fact, a hyper-
graph is an extension of a normal graph, in which an
edge can “connect” more than two vertices.

For the convenience of subsequent presentation, we here
introduce some basic notations on hypergraphs. Given a
hypergraph G ¼ ðV; EÞ, V denotes the vertex set and E repre-
sents the hyperedge set, in which each e 2 E is a subset of
vertices. The weight corresponding to a hyperedge e is
denoted by WðeÞ, which is usually a non-negative number.
The degree of a vertex v is defined as dðvÞ ¼ P

e2E
W ðeÞhðv; eÞ, where hðv; eÞ is the entry of the incidence
matrixH of G. The value of the entry hðv; eÞ is set as follows:

hðv; eÞ ¼ 1; if v 2 e;
0; otherwise:

�

Denote the degree of a hyperedge e by dðeÞ ¼ P
v2V hðv; eÞ

and the diagonal degree matrix DE consists of diagonal
entries dðeÞ. Similarly, denoteDV the diagonal matrix whose
diagonal entries correspond to the degree of each vertex.
Then the unnormalized hyper-Laplacian matrix [54] can be
defined as

Lh ¼ DV �HWED�1
E HT ; (6)

where WE is the diagonal matrix whose diagonal entries are
the edge weightsWðeÞ.

3 LAPLACIAN REGULARIZED LOW-RANK

REPRESENTATION

In this section, a novel LRR model with Laplacian regulari-
zation is proposed, in which we consider the local manifold
structures of given data. Note that, under the new model,
the coefficients Z not only capture the global structures of
the whole data, but preserve the local geometric structures
among data points. Different from the graph regularized
sparse representation [18], [52], our proposed model can
effectively represent data by themselves without relying on
a large dictionary.

3.1 Non-Negative Sparse Hyper-Laplacian
Regularized LRR

If we use data Y itself as the dictionary A in (2), there are
two explanations to the coefficient matrix Z. Firstly, the ele-
ment zij of Z reflects the “similarity” between data pair yi
and yj, hence Z is sometimes called an affinity matrix. Sec-

ondly, we can explain each column zi of Z as a new repre-
sentation of the data point yi in terms of other samples in Y .

In other words, zi can be used as a representation for yi.

To introduce richer information over Z, people consider
imposing some helpful regularizations on the coefficient
matrix, such as sparsity [16], [45] and a non-negative con-
straint [25]. For example, given that the sparsity criterion
can better capture the local structure around each data
vector, a non-negative sparse LRR model can be formulated
as follows:

min
Z;E

Zk k�þ�kZk1 þ g Ek k1;
s.t. Y ¼ YZ þ E; Z � 0:

(7)

In fact, in order to deal with grossly corrupted data,
Zhuang et al. [56] proposed a non-negative low-rank and
sparse (NNLRS) graph for semi-supervised learning with
‘2;1-norm for the error term E.

Motivated by the graph based manifold learning [3], [14],
we here can incorporate the Laplacian regularization into
the objective function (7) so that similar data points have
similar representation coefficients. Specifically denote by W
the similarity measure for the dataset, for example as
defined in (4). As the columns of Z are new representations
of the data under certain dictionary, the distance between zi
and zj is actually one of dissimilarity measures for the origi-
nal data points yi and yj. Thus we can add a similarity

matching regularization term
P

i;j kzi � zjk2Wij to the

objective function (7).
However, to assume the pairwise relationship between

complicated data points is far from complete, especially on
high order relationship in gene data, web images and co-
authorship articles, etc. This relationship cannot be simply
represented by a normal graph since the information that
helps our grouping task would be lost. Therefore, we con-
sider a more general case, instead of pairs, by introducing a
hyper-Laplacian regularizer.

According to the hypergraph definition, we enforce the
LRR coefficients corresponding to data points within the
same hyperedge be similar to each other. Instead of using
the normal weight Wij, we weight the summation of pair-
wise distances among the given data points within each
hyperedge e byW ðeÞ=dðeÞ.

Then the NSHLRR is formulated as

min
Z;E

Zk k�þ�kZk1 þ b
X

ði;jÞ	e2E
zi � zj

�� ��2W ðeÞ
dðeÞ þ g Ek k1;

s.t. Y ¼ YZ þE; Z � 0:

(8)

The non-negative constraint on Z aims to guarantee that
each data point is in the middle of its neighbors, which is
more meaningful and can better embody the dependency
among the data points than otherwise.
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As can be seen, it is easy to transform the formulation of
hyper-Laplacian regularizer to the case of graph Laplacian
regularizer, when each hyperedge only contains two verti-
ces, i.e, dðeÞ ¼ 2. In fact, a hypergrah is a generalized model
of the normal graph, where the edges are arbitrary non-
empty subsets of the vertex set. If the subset of the vertex
set is degenerated to only two vertices, we have a special
case of (8), i.e., a Non-negative Sparse Laplacian regularized
LRR model, termed NSLLRR, defined as follow:

min
Z;E

Zk k� þ �kZk1 þ b
X
ij

zi � zj
�� ��2Wij þ g Ek k1;

s.t. Y ¼ YZ þ E; Z � 0:

(9)

Therefore, we are actually considering a generalized version
of the graph regularized LRR model. The advantage of this
generalized model is as follows. By introducing a hyper-
graph regularization term, we can effectively preserve high
order affinity among samples belonging to the same hyper-
edge so as to keep the manifold structures of data. In partic-
ular, it is more powerful to explore all-round relations
among more data points.

Finally, by some algebraic manipulations we have the
matrix form of hyper-Laplacian regularized LRR model

min
Z;E

Zk k� þ �kZk1 þ btrðZLhZT Þ þ g Ek k1;
s.t. Y ¼ YZ þE; Z � 0;

(10)

where Lh is the hyper-Laplacian matrix defined in (6) and �,
b and g are penalty parameters for balancing the regulariza-
tion terms.

From (10), it is easy to rewrite the above formulation (9) as

min
Z;E

Zk k� þ �kZk1 þ btrðZLZT Þ þ g Ek k1;
s.t. Y ¼ YZ þ E; Z � 0;

(11)

where L is the Laplacian matrix for the graph built on W
and other parameters are similar to those in the NSHLRR
model (10). In this model, we introduce the sum of distance
of pairwise LRR coefficients to the traditional LRR model,
where the distance is weighted by the similarity between
the given data points.

In our model (10), the term Y ¼ YZ ensures each sample
can be linearly represented by its neighbors, i.e., the repre-
sentation can still be written as Y ¼ YZ þ E by taking noise
effect into account. In fact, this term is not contradictory to
the assumption of a non-linear manifold. The data itself
could reside on a union of non-linear manifolds. However,
except near the intersections, the non-linear manifolds can
all be locally approximated by linear subspaces, centered at
every sample point. In addition, the Laplacian and the spar-
sity constraints encourage choosing nearby samples (which
most likely belong to the same cluster), rather than the far-
away samples (which may belong to other clusters), to rep-
resent the sample at the center of the locally linear
manifold. So the optimum Z will be close to block-diagonal.
Then the subsequent normalized cut (Ncut) can correct
some of the errors in Z, resulting in pleasing manifold clus-
tering results.

As for the non-negative constraint, i.e., Z � 0, our idea
originates from non-negative matrix factorization which
shows better results in clustering tasks. It has been noted in
many literatures [25], [56] that the non-negative constraint
actually leads to a parts-based representation for data which
can render the model more physically interpretable. In LRR,
the columns of the coefficient matrix Z can be regarded as
the representation of yi’s. Since we use locally linear mani-

fold to approximate the non-linear manifold, it is better that
the sample to be represented is at the center of the locally
linear manifold so that the approximation is valid. To this
end, we require Z to be non-negative. The advantage of this
constraint is also demonstrated by our subsequent experi-
mental results.

In light of the definition of hypergraph, the hyper-Lapla-
cian regularized LRR model is a more general one com-
pared to the Laplacian regularized LRR model. It is obvious
that the NSHLRR model (10) becomes the NSLLRR model
(11) when there exists a hyperedge for every vertex pair and
each hyperedge just includes two vertices. On the other
hand, the NSLLRR model (11) can also be changed into the
NSHLRR model (10) under some special definition of the
weight W [18]. To this end, we can unify the way to apply
some manifold constraint into the LRR framework for better
exploiting the geometric structures of data space.

In the above viewpoint, the graph-regularized LRR pro-
posed in [35] is actually a special case of our NSHLRR
model merely considering the pairwise relation between
data points. The similar idea can be seen in another recent
work [53]. However, the authors used the second explana-
tion of Z, i.e., zij, is the similarity between the data points yi
and yj. Hence the corresponding regularized term is

defined as
P jzijjkyi � yjk2. It can also be easily extended to

incorporate all-round relations.

3.2 Laplacian Regularized LRR for
Unsupervised Learning

According to the principle of LRR, Z is actually a new repre-
sentation of each data point using the dataset itself as the
dictionary. Specifically, Z reflects the affinity between the
data pair yi and yj, which can be used for data clustering

[33]. In recent years, many similarity-based clustering algo-
rithms have emerged, such as K-means and spectral cluster-
ing method [38], which do not require explicit assumptions
on the distribution of data. In this regard, our proposed
method should greatly benefit image clustering as it can
effectively learn similarity among samples by incorporating
data neighborhood information.

3.3 Laplacian Regularized LRR for
Semi-Supervised Learning

When we consider the case that a hyperedge just includes
two vertices, NSLLRR not only can perform well in unsu-
pervised learning, but also can be adopted for semi-super-
vised learning effectively. In the pattern recognition
community, semi-supervised learning has been attracting
considerable attention over the past decades [48], [56]
because labeled samples are hard or expensive to acquire
whereas unlabeled ones are easy and inexpensive. Recently,
graph-based learning methods have been widely used to
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develop high performance algorithms for semi-supervised
learning tasks [13], [40], [42], [56].

In general, most of graph-based semi-supervised learn-
ing algorithms use a common assumption on the well-pos-
edness of the constructed graph. However, this assumption
is not always true because some parameters need manual
settings when constructing graphs. Furthermore, the graph
construction process is critical for the performance of algo-
rithms. Given that our proposed model well preserves the
locality and the similarity of data, we expect that our pro-
posed method also has the potential to convey more dis-
criminative information than the traditional graph-based
methods do.

In this section, we present a novel semi-supervised learn-
ing framework incorporating the above proposed Laplacian
regularized LRR model. The task is to assign the unlabeled
samples with proper labels. A popular way is to compute
the similarities between samples first, and then propagate
the labels from the known samples to unknown ones, using
the principle that similar samples are likely to be in the
same class. Therefore, one of the critical steps is to compute
the affinity matrix of data at first. Then, the objective of
graph based semi-supervised learning can be formulated as
follows [47]:

min
ffkg

X
ij

Wl
ij fi � fj
�� ��2;

where Wl
ij is graph weight possibly related to label informa-

tion, fi and fj denote the probability distributions of yi and

yj being different classes, respectively.

Under semi-supervised learning framework, we denote a
label matrix B ¼ ½Bl;Bu� 2 RjV j�c where Bl represents the
label information for the labeled data, Bu is the information
for the unlabeled data and c denotes the number of the clas-
ses. If a sample yi is associated with label k 2 f1; . . . ; cg,
then Bik ¼ 1. Otherwise, Bik ¼ 0. Furthermore, we can

define a classification function F ¼ ½Fl;Fu� 2 RjV j�c. Fl and
Fu include the class probability vectors for the labeled and
unlabeled samples, respectively. Thus, mathematically the
objective of graph based semi-supervised learning is readily
transferred into

min
ffkg

X
ij

Wl
ij fi � fj
�� ��2 ¼ tr FTLwF

� �
; (12)

where Lw is the graph Laplacian matrix corresponding to a

weighted graphGl ¼ ðV;E;WlÞ. The graphGl is constructed
via using relationship among the labeled and unlabeled
data points, where edge weights encode the similarity
between samples. To achieve this target, our work focuses
on how to effectively learn the graph. Specifically, in this

paper, instead of explicitly designing weights Wl, we
directly choose Lw to be the Laplacian of the symmetrized

affinity matrix 1
2 jZj þ jZT j� �

, where Z is learned by the Lap-

lacian regularized LRR method. In other words, the graph
we are using is the one learned from the data.

In order to efficiently predict the labels of unlabeled
samples, we adopt a Gaussian field, rather than a random
field, over the label set as the basis for semi-supervised
classification. That is, we form a Gaussian field to assign a

probability distribution of fi. Then the minimum energy
function (12) is harmonic. Namely, it should simultaneously
satisfy LwF ¼ 0 on unlabeled data points, denoted by
ðLwF Þu ¼ 0, and Fl ¼ Bl on labeled ones. Please refer to [55]
for more details.

Based on the above analysis, we finally learn a Gaussian
Harmonic Function (GHF) [55], which combines Gaussian
field and harmonic function, to realize the label propaga-
tion, formulated as follows:

min
F2RjV j�c

tr FTLwF
� �

; s.t. ðLwF Þu ¼ 0; Fl ¼ Bl:

In our case, the matrix Lw is positively definite, hence the
above question is convex. The solution is given by

Fu ¼ �~�1
uu
~ulFl through separating Lw into blocks for

labeled and unlabeled nodes [55], such as

Lw ¼ ~ll ~lu

~ul ~uu

� �
:

Hence an error rate of graph based semi-supervised learn-
ing method can be computed using the propagated label
information. The above algorithm is actually a generaliza-
tion of the case of binary classes in [55] to the multiple clas-
ses. The theoretical foundation is based on the maximum
principle of harmonic function [15], and the solution is
unique and satisfies 0 < FuðjÞ < 1 for each unlabeled data
point yj.

4 LADMAP FOR SOLVING LAPLACIAN
REGULARIZED LRR

In recent years, a lot of algorithms have been proposed for
solving low-rank optimization problems [28], [29], [39], [41],
[44]. In particular, the alternating direction method (ADM)
has drawn considerable attention [43]. ADM updates
the variables alternately by minimizing the augmented
Lagrangian function in a Gauss-Seidel manner. We also
apply ADM to solve our optimization problems. Unfortu-
nately, directly applying ADM to solve (10) results in sub-
problems as follows

min
Z

Zk k� þ
�

2
C Zð Þ �Dk k2F ; (13)

where C is a linear mapping and �k kF is the matrix Frobe-

nius norm defined as Yk k2F¼
Pm

i¼1

Pn
j¼1 Yij

�� ��2. When C is the

identity mapping, (13) has a closed form solution [8]. How-
ever, when C is not the identity mapping, (13) can only be
solved iteratively. For example, Lu et al. [35] solved (13) by
the accelerated gradient method [23], making the overall
algorithm inefficient.

To remedy this issue in solving (10), we adopt the Linear-
ized ADM with Adaptive Penalty [29] instead. We first
introduce an auxiliary variable J in order to make the objec-
tive function of (10) separable. Thus the optimization prob-
lem can be rewritten as follows:

min
Z;J;E

Zk k� þ �kJk1 þ btrðZLhZT Þ þ g Ek k1;
s.t. Y ¼ YZ þ E; Z ¼ J; J � 0:

(14)
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The augmented Lagrangian function of problem (14) is

LðJ;E; Z; Y1; Y2Þ
¼ Zk k� þ �kJk1 þ btrðZLhZT Þ þ g Ek k1
þ hM1; Y � YZ � Ei þ hM2; Z � Ji
þ m

2
ð Y � YZ � Ek k2F þ Z � Jk k2F Þ;

(15)

where M1 and M2 are Lagrange multipliers and m > 0 is a
penalty parameter. The variables are updated alternately by
minimizing the augmented Lagrangian function, with other
variables fixed. If the augmented Lagrangian function is
difficult to minimize with respect to a variable, the
smooth component of it can be linearized. Hence this
algorithm bears the name Linearized Alternating Direction
Method [29]. Then the Lagrange multipliers are updated
using the feasibility errors. The iteration stops when the
convergence conditions are met. We provide details of solv-
ing (10) with LADMAP in the following.

4.1 Updating Z

Updating Z by minimizing LðJk; Ek; Z;M
k
1 ;M

k
2 Þ is equiva-

lent to minimizing the following objective function:

L1 ¼ Zk k� þ btrðZLhZT Þ þ m

2
Z � Jk þ 1

m
Mk

2

����
����
2

F

þ m

2
Y � YZ � Ek þ 1

m
Mk

1

����
����
2

F

;

(16)

which does not have a closed-form solution. By the spirit of
LADMAP [29], we denote the smooth component of L1 by

qðZ;Ek; Jk;M
k
1 ;M

k
2 Þ ¼ btrðZLhZT Þ þ m

2
Z � Jk þ 1

m
Mk

2

����
����
2

F

þ m

2
Y � YZ � Ek þ 1

m
Y k
1

����
����
2

F

:

Then according to LADMAP, minimizing L1 can be
replaced by solving the following problem:

min
Z

Zk k�þhrZqðZkÞ; Z � Zki þ h1
2

Z � Zkk k2F ; (17)

where qðZ;Ek; Jk;M
k
1 ;M

k
2 Þ is approximated by its lineariza-

tion hrZqðZkÞ; Z � Zki at Zk plus a proximal term h1
2 Z�k

Zkk2F and rZqðZkÞ is the gradient of q w.r.t. Z. As long as

h1 > 2bkLk2 þ mð1þ kY k22Þ, where k � k2 is the spectral
norm of a matrix, i.e., the largest singular value, the above
replacement is valid. Then (17) has a closed-form solution
given by

Z�
kþ1 ¼ Q

h1ð Þ�1 Zk �rZq Zkð Þ=h1ð Þ; (18)

whereQ" Að Þ ¼ US"ðSÞV T is the singular value thresholding

operator (SVT) [8], in which USV T is the singular value
decomposition (SVD) of A and S"ðxÞ ¼ sgnðxÞmaxðjxj� "; 0Þ
is the soft thresholding operator [8].

4.2 Updating J and E

We view ðJ; EÞ as a larger block of variables. We can

update ðJ; EÞ by minimizing LðJ; E; Zkþ1;M
k
1 ;M

k
2 Þ, which

naturally splits into to subproblems for J and E, respec-
tively, as J and E are independent of each other in this
minimization problem.

After some simple manipulation, the problem for updat-
ing E is

min
E

g Ek k1 þ
m

2
E � Y � YZ þ 1

m
Mk

1

	 
����
����
2

F

; (19)

which has the following closed-form solution [8]

Ekþ1 ¼ Sg
m

Y � YZkþ1 þ 1

m
Mk

1

	 

: (20)

Similarly, the problem for updating J is

min
J�0

�kJk1 þ
m

2
J � Z þ 1

m
M2

	 
����
����
2

F

; (21)

which has the following closed-form solution [8]:

Jkþ1 ¼ max S�
m

Zkþ1 þ 1

m
Mk

2

	 

; 0

� �
: (22)

For faster convergence, m can be adjusted using the adap-
tive updating strategy as suggested in [29] (see step 5) in
Algorithm 1). The detailed procedure of solving the pro-
posed hyper-Laplacian regularized problem is described in
Algorithm 1. Note that the Laplacian regularized LRR prob-
lem 11 can also be efficiently solved by Algorithm 1 simply

replacing Lh with L.

4.3 Convergence and Complexity Analysis

The algorithm described above converges to a globally
optimal solution of (10) as it is a direct application of
LADMAP.

When updating Z by singular value thresholding, see
(18), we may predict the rank r of Zkþ1 using the rank pre-
diction strategy described in [27], [41], which grows from a
small value and stablizes at the true rank when the iteration
goes on. Moreover, as in [29] we may use the Lanczos
method to compute the leading singular values and
singular vectors, which only requires multiplication of
~Zk ¼ Zk �rZqðZkÞ=h1, and its transpose, with vectors,
which can be efficiently computed by successive matrix-vec-

tor multiplication, rather than forming ~Zk explicitly and
then multiplying it with vectors. With such treatments, the

complexity of each iteration of Algorithm 1 is Oðrn2Þ, where
n is the number of samples.

5 GRAPH REGULARIZED LRR FOR IMAGE

CLUSTERING AND IMAGE CLASSIFICATION

Firstly, we consider the special case of our proposed model,
i.e., normal graph based LRR, in this section. That is, each
hyperedge for vertex pairs only includes two vertices and
our model particularly refers to NSLLRR in this section. In
order to investigate the performance of our approach, we
conducted comprehensive experiments on both unsuper-
vised learning (image clustering) and semi-supervised
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learning (image classification) tasks. All of the experiments
were done on a PC with an Intel i3 3.30 GHz CPU and 8 GB
memory, running Windows 7.

Algorithm 1. LADMAP for Solving Non-Negative Sparse
Laplacian Regularized LRR

Input: Y , �, b , g and the number of nearest neighbors.
Output Zkþ1; Ekþ1.
Initialization: ComputeLh, Z0 ¼ E0 ¼ J0 ¼ M0

1 ¼ M0
2 ¼ 0,

� ¼ 0:02, b ¼ 1:0, g ¼ 5:0, r0 ¼ 2:5, m0 ¼ 10�6, mmax ¼ 106;

"1 ¼ 10�6, "2 ¼ 10�2.
While not converged k ¼ 0; 1; . . .ð Þ do
1) update Z:

Zkþ1 ¼ Q
h1ð Þ�1 Zk �rZqðZkÞ=h1ð Þ;

where

rZqðZkÞ ¼ bðZkL
hT þ ZkL

hÞ þ mk Zk � Jk þMk
2

mk

	 


þ mkY
T YZk � Y þ Ek �Mk

1

mk

	 

;

h1 ¼ 2bkLhk2 þ mkð1þ kY k22Þ;

2) update E:

Ekþ1 ¼ S g
mk

Y � YZkþ1 þ 1

mk

Mk
1

	 

;

3) update J :

Jkþ1 ¼ max S �
mk

Zkþ1 þ 1

mk

Mk
2

	 

; 0

� �
;

4) update Lagrange multipliersM1 andM2:

Mkþ1
1 ¼ Mk

1 þ mk Y � YZkþ1 � Ekþ1ð Þ;
Mkþ1

2 ¼ Mk
2 þ mk Zkþ1 � Jkþ1ð Þ;

5) update m:

mkþ1 ¼ min mmax; rkmkð Þ;

where

rk ¼
if max h1 Zkþ1 � Zkk k;f

r0; mk Jkþ1 � Jkk k;mk Ekþ1 � Ekk kg 
 "2;
1; otherwise,

8<
:

6) check convergence: if
Y � YZkþ1 � Ekþ1k k= Yk k < "1 and
max h1 Zkþ1 � Zkk k;f mkkJkþ1 � Jkk;mkkEkþ1 � Ekkg < "2,
then stop.

End while

5.1 A Synthetic Example

Firstly, we test with a synthetic dataset. We consider a set
of data points constructed in two moons pattern, as
shown in Fig. 1a. There are two natural clusters, i.e., the

two half moons intersecting each other. By using the con-
ventional LRR method, we can achieve the result shown
in Fig. 1b where the algorithm failed to distinguish the
two half moons and the clustering accuracy is only 57
percent. By using our proposed Laplacian regularized
LRR, i.e., NSLLRR, we can better separate the mixed clus-
ters. As illustrated in Fig. 1c, the clustering accuracy is as
high as 96.5 percent. This clearly demonstrates that the
local structural information coded in the Laplacian regu-
larizer is helpful for non-linear manifold clustering. In
particular, this pleasing result is beneficial from the
block-diagonal structure of the affinity matrix. As shown
in Fig. 2, we can see the affinity matrix obtained by
NSLLRR has a relative distinct block-diagonal structure
which is helpful for data clustering. Note that the affinity
matrices in Fig. 2 are both permuted according to the
order of two true clusters.

Fig. 1. Clustering on a toy dataset. (a) A synthetic dataset with two inter-
secting half moons. (b) Clustering result given by LRR, whose accuracy
is 57 percent. (c) Clustering result given by NSLLRR, whose accuracy is
96.5 percent.
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5.2 Unsupervised Learning: Image Clustering

Data clustering is to group samples into different groups. To
quantitatively evaluate the clustering performance, we
adopt two metrics, accuracy (AC) and normalized mutual
information (NMI) [7], in our experiments. Given a data
point xi, let F and F̂ be the ground truth label and the label
produced by a clustering approach, respectively, then the
AC measure is defined by

AC ¼
Pn

i¼1 d F̂ ðiÞ;MatchðF̂ ;FÞðiÞ
� 


n
;

where n is the number of samples in total, function dða;bÞ is
set to 1 if and only if a ¼ b, and Matchð�Þ is the best match-

ing function that permutes F̂ to match F , which is usually
fulfilled by the Kuhn-Munkres algorithm [12].

The NMI measure between two index sets K and K0 is
defined as

NMIðK;K0Þ ¼ MIðK;K0Þ
max H Kð Þ;H K0ð Þð Þ ;

where HðKÞ and HðK0Þ denote the entropy1 of K and K0,
respectively, and

MI K;K0ð Þ ¼
X
y2K

X
x2K0

p x; yð Þlog 2

p x; yð Þ
p xð Þp yð Þ

	 

;

where p yð Þ and p xð Þ denote the marginal probability distri-
bution functions of K andK0, respectively, and p x; yð Þ is the
joint probability distribution function of K and K0. Usually,
NMIðK;K0Þ ranges from 0 to 1, for which the value 1 means
that the two clusters are identical and the value 0 means
that two are independent. Different from AC, NMI is invari-
ant with the permutation of labels. Namely, it does not
require the matching between two clusters in advance.

To extensively assess the clustering performance of our
proposed approach, the following five methods for image
clustering are compared with:

1) K-means clustering algorithm (K-means);
2) Normalized cut [38];
3) Principle component analysis;
4) Traditional LRR [31];
5) Locally linear embedding [42].

K-means usually serves as a baseline of image cluster-
ing. PCA is a well known unsupervised dimensionality
reduction method, which is applied to discard the noisy
information corresponding to the small eigenvalues of the
data covariance matrix. The Ncut method is a spectral
clustering based algorithm which can be used to seek the
cluster indicator information for data. Both the traditional
LRR and NSLLRR algorithms can learn an affinity matrix
measuring the relationship among data points. However,
the clustering information, obtained by above methods
except K-means, cannot be directly used as the final clus-
tering results because they lack the clear cluster struc-
tures. Therefore, here K-means is adopted to assign final
labels on the learned low dimensional representation
space. The NSLLRR can be regarded as a non-linear man-
ifold clustering algorithm. So it would be informative to
compare it with some existing graph-based clustering
methods. Here, we compare it with a classical method,
locally linear embedding [42], to demonstrate the cluster-
ing effectiveness of our proposed method.

In this experiment, the real world CMU-PIE2 face image
database is utilized to compare the performance of related
approaches. CMU-PIE is a popular face database, which is
widely used in many kinds of learning tasks. It includes 68
subjects with 41,368 face images in total. In this dataset, the
size of each sample is 32� 32 pixels and images of each sub-
ject are captured under 13 different poses, 43 different illu-
mination conditions and four different expressions. We
only select part of images by fixing the pose and expression
so that, for each subject, we have 21 images under different
lighting conditions. For computational convenience, we first
apply PCA to reduce the data dimensionality to 64. The
clustering experiments are conducted with different cluster
numbers. That is, we use the first k classes in the dataset for
the corresponding data clustering experiments. The detailed
clustering results are reported in Table 1. The bold numbers
denote the best result at corresponding cluster numbers. We
can see that our proposed method outperforms other algo-
rithms, especially when the number of clusters is large,
which is more difficult. It also shows that K-means is gener-
ally worse than other methods. As can be seen, the results
by our proposed NSLLRR are consistently much better in
terms of the NMI values when compared with the LLE
method. However, it can be observed that there exists a fluc-
tuation in clustering accuracy and NMI from the proposed
method. The phenomenon could be due to applying K-
means, whose result may be different under different initial-
izations of cluster centers, to the learned low dimensional
representation during the clustering step. The similar phe-
nomenon occurs for the LLE method and LRR as well.

There are several regularization parameters affecting the
performance of NSLLRR. In the following, we study the
influence of parameters �, g and b on NMI by setting them
at different values. We vary a parameter while keeping
others fixed. The NMI results with different parameter set-
tings on the CMU-PIE dataset are given in Fig. 3. From the
results, we can conclude that our proposed Laplacian regu-
larized LRR outperforms other algorithms over a large

Fig. 2. Illustration of the affinity matrix produced by different methods. a)
LRR. b) NSLLRR.

1. The entropy HðKÞ is defined as HðKÞ ¼ P
y2K �pðyÞ � log 2ðpðyÞÞ

where pðyÞ is the probability that a sample belongs to a cluster. 2. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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range of parameter values. We can also note that the perfor-
mance of NSLLRR is insensitive to the choice of b. More-
over, the results on � and g show that both sparsity and
low-rankness are critical for data clustering. Thus, we set
� ¼ 0:2, g ¼ 5 and b ¼ 5 in our experiments.

5.3 Semi-Supervised Classification

In order to evaluate our proposed model on semi-super-
vised learning task, we select two publicly available
image datasets for our experiments, i.e., CMU-PIE and
USPS.3 CMU-PIE is a face database and USPS is a hand-
written digit database. CMU-PIE includes many face
images under different illumination conditions and with
different expressions, as described in the last section.
USPS is composed of 9,298 handwritten digit images of
size 16 � 16 pixels. Each image is represented by a 256-
dimensional vector. Some samples of these datasets are
shown in Fig. 4.

In order to show the efficacy of NSLLRR, the following
five methods for image classification are chosen for perfor-
mance comparison.

1) k-nearest-neighbor based classification method [40]:
We adopt the euclidean distance as the similaritymea-
sure and set the numbers of nearest neighbors to be 5.

2) LLE-graph based classification method [42]: We con-
struct an LLE-graph with the numbers of nearest
neighbors being 8.

3) ‘1-graph based classificationmethod [13]: Cheng et al.
proposed to construct a robust and datum-adaptive

graph by solving the sparsest representation of every
sample, using other samples as a dictionary. The coef-
ficientmatrix is then symmetrized.

4) LRR-graph based classification method: Following
[30], we construct the LRR-graph by solving the

TABLE 1
Clustering Results on the CMU-PIE Data Set ( # Is the Number of Clusters)

Cluster Accuracy NMI

Num. # K-means PCA Ncut LLE-graph LRR NSLLRR K-means PCA Ncut LLE-graph LRR NSLLRR

4 48.60 52.30 99.10 88.10 100 100 46.81 46.81 98.60 77.33 100 100
12 41.60 57.14 86.40 63.89 89.68 76.98 52.66 52.66 91.20 82.10 95.35 87.81
20 38.40 36.40 78.30 73.57 81.19 86.19 59.12 58.88 88.60 86.95 90.74 94.46
28 35.40 34.80 78.20 78.74 77.21 86.91 60.48 61.06 89.60 90.30 89.89 93.99
36 34.90 34.6 75.60 75.00 68.92 76.59 61.69 60.56 88.90 91.13 82.15 93.55
44 33.20 33.70 74.20 68.18 71.86 80.20 62.30 62.57 89.50 88.27 84.16 93.70
52 33.20 33.70 72.60 74.45 71.25 74.18 63.44 61.58 89.10 89.39 84.81 93.01
60 33.10 33.20 71.10 69.92 65.87 78.73 64.06 63.58 88.50 88.59 80.39 93.43
68 31.70 32.90 70.80 69.91 65.27 85.08 63.30 66.60 88.30 89.92 79.12 96.62

Fig. 3. Performance of NSLLRR on the CMU-PIE face database, with different parameter settings. a) � varies. b) g varies. c) b varies.

Fig. 4. Samples of test databases.3. http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
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lowest-rank coefficient matrix and then symmetriz-
ing it as ‘1-graph does. The parameters of LRR are
the same as those in [30].

5) Non-negative low-rank and sparse-graph based clas-
sification method: Following [56], we construct a
graph for which the weights are obtained by seeking
a non-negative low-rank and sparse matrix that rep-
resents each data points as a linear combination of
others. The coefficient matrix is also symmetrized.

Similar to the LRR-graph based method, our proposed
approach also seeks a low-rank coefficient matrix. We fur-
ther require that the coefficient matrix is sparse and nonneg-
ative. We call our approach as the NSLLRR-graph based
classification method in our experiments.

The purpose of semi-supervised learning task is to assign
labels to unlabeled data, according to the labeled data and
the overall data distribution. We make the percentage of
labeled samples range from 10 to 60 percent. Empirically,
we found that � ¼ 0:08, g ¼ 2 and b ¼ 5 are good choices
for these parameters. Therefore, we did not tune these
parameters in the experiments. The classification results on
CMU-PIE and USPS are reported in Tables 2 and 3, respec-
tively. The bold numbers in each table denote the best per-
formance under corresponding labeling percentages. From
these results, we can see that our proposed NSLLRR almost
consistently outperforms other methods, especially on the
CMU-PIE database. This suggests that our proposed
method is effective for semi-supervised learning. This also
shows that the manifold regularizer can enhance the robust-
ness of the LRR graph-based method.

6 HYPERGRAPH REGULARIZED LRR FOR

SEMI-SUPERVISED LEARNING

In the real world, there usually exists a co-occurrence rela-
tionship that involves more than two samples [36]. This can
be more effectively represented by a hypergraph. In this sec-
tion, we consider some categorical data whose samples have
one or more attributes, i.e., the Zoo dataset, which comes

from the UCI Machine Learning Depository.4 The Zoo data-
set covers 101 animals with 17 Boolean-valued attributes,
where the attributes contain hair, feathers, eggs, milk, legs,
tail, etc. Moreover, these animal data have been manually
grouped into seven classes beforehand. Note that we have
found that there are two repeated samples of “frog” in the
dataset. So we manually remove the repeated items in our
experiment. That is, the test dataset contains 100 samples in
our experiment. In order to evaluate our proposed hyper-
graph regularized LRR, we conduct a semi-supervised clas-
sification task on the Zoo dataset, where we define a
hypergraph with 36 hyper-edges.

As in [36], we construct a hypergraph by taking samples
as vertices and creating a hyperedge for each value of the
attributes of Zoo. For instance, attribute 2 (hair) is a boolean
variable. So two hyperedges are created for this attribute:
F020 and F021 (F denotes feature, 02 represents the second
attribute and 0 or 1 corresponds to the value of the attri-
bute). Then, each hyperedge includes the instances that
share the same attribute value. After this pre-processing, we
find that this data set contains 36 hyperedges.

In our experiment, the labels of some vertices in the
hypergraph are supposed to be known. For fair comparison,
the labeled vertices are randomly chosen to ensure that all
labels appear. That is, the labeled data should cover all clas-
ses in the entire dataset. The labeling percentage ranges
from 10 to 60 percent. For each labeling percentage, we
run 10 times for each algorithm with the labeled data sets
randomly chosen and then average the error rates. We
empirically set the parameters as � ¼ 0:01, g ¼ 0:1 and
b ¼ 0:001. To also assess the effectiveness of learning the
lowest rank representation, we compare our proposed
method, NSHLRR, with LRR-graph methods and normal
graph based NSLLRR. Moreover, we compare with kNN-
graph based method which is usually used as a baseline.
As before, we also select five nearest neighbors for each
data point.

TABLE 2
Classification Error Rates (Percent) on CMU-PIE, Based on Various Graphs under Different Percentages of Labeled Samples

Labeling percentage# kNN [40] LLE-graph ‘1 graph LRR-graph [30] NNLRS-graph [56] NSLLRR-graph

10 34.84 33.06 22.88 47.30 11.11 35.66
20 37.46 35.05 22.94 21.60 22.81 9.28
30 35.3 32.52 22.33 11.80 17.86 5.83
40 35.81 32.51 23.14 7.80 16.25 3.36
50 34.39 31.41 23.01 4.30 19.25 2.10
60 35.63 32.76 25.76 2.50 21.56 1.62

TABLE 3
Classification Error Rates (Percent) on USPS, Based on Various Graphs under Different Percentages of Labeled Samples

Labeling percentage# kNN [40] LLE-graph ‘1 graph LRR-graph [30] NNLRS-graph [56] NSLLRR-graph

10 11.97 17.10 43.27 67.00 11.57 10.55
20 12.31 22.92 41.27 48.30 9.30 5.90
30 5.88 21.26 38.31 33.60 4.95 4.80
40 7.87 19.21 34.86 25.80 7.44 4.01
50 17.19 18.41 29.42 15.50 11.27 3.20
60 11.04 14.80 23.36 10.00 6.09 2.05

4. http://archive.ics.uci.edu/ml/datasets/Zoo
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The classification results are reported in Table 4 and
Fig. 5 shows the plot of classification error rate versus the
percentage of labeled points on the Zoo dataset. As can be
seen, the hypergraph regularized NSHLRR method consis-
tently outperforms LRR and the kNN graph based method.
Among these methods, kNN graph based method produces
the worst classification performance. NSHLRR is signifi-
cantly better than all other methods except NSLLRR in the
cases of 30 and 40 percent labeling percentages. This result
shows that a hypergraph is more sensible to modeling data
with more complex relationship than a normal graph
approach does, since the complicated interactions among
data can be well represented by a hypergraph. The experi-
ment demonstrates that our proposed Laplacian regularized
LRR model can not only preserve the globally non-linear
structures, but also represent the locally linear structures,
by incorporating a hypergraph regularizer, and has the
capability of learning high order relationship (i.e., three-
way or higher) in the semi-supervised settings.

7 DIMENSIONALITY REDUCTION THROUGH

HYPERGRAPH EMBEDDING

In this section, we consider dimensionality reduction task via
hypergraph embedding that projects the vertices of G onto a
low dimensional euclidean space, where the vertices are best
characterized by the similarity relationship between the ver-
tex pairs in hypergraphs [36]. The general graph-spectral
approach for embedding is implemented by Laplician

Eigenmaps [2], [47], in which the tailing eigenvectors of the
Laplacianmatrix of G, except for the eigenvector correspond-
ing to eigenvalue 0, is often exploited for embedding.

To evaluate the effectiveness of our proposed method on
hypergraph embedding, we follow the Laplacian Eigen-
maps framework [2]. First we use both hypergraph-based
NSHLRR and normal-graph-based NSLLRR to learn the
similarity Z of high dimensional data, respectively. Then
we do graph embedding by Laplacian Eigenmaps by using
the Laplacian matrix derived from the learned Z. Thus, the
embedding of vertex v in a k-dimensional space is just a
row vector of the matrix that contains columns of the eigen-
vectors associated with the k smallest eigenvalues, except
for the eigenvector corresponding to eigenvalue 0, of the
Laplacian matrix of G [54].

In this experiment, we test both hypergraph-based
NSHLRR and normal-graph-based NSLLRR methods on
the Zoo dataset. First we visualize the dimensionality reduc-
tion results in Fig. 6 by looking at the embeddings along the
second and third smallest eigenvectors direction, i.e., in a
two-dimensional space. As can be seen from the figure,
visualization for both methods demonstrates obvious sepa-
ration among different classes, however classes 1, 5 and 7
under the normal-graph-based NSLLRR are scattered much
more largely than under the hypergraph-based NSHLRR.

TABLE 4
Classification Error Rates (Percent) on the Zoo Dataset,

Based on Various Methods under Different
Percentages of Labeled Samples

Labeling
percentage#

kNN-graph LRR-graph
[30]

normal
NSLLRR

hyper
NSHLRR

10 68.00 43.01 41.00 27.00
20 56.00 36.00 17.00 13.00
30 50.00 26.00 11.00 15.00
40 38.00 16.00 10.00 12.00
50 33.00 11.00 11.00 9.00
60 25.00 10.00 7.00 7.00

Fig. 5. Classification error rate versus the labeling percentage on the
Zoo dataset, based on LRR, normal-graph NSLLRR and NSHLRR.

Fig. 6. The embeddings of the Zoo dataset with eigenvectors corre-
sponding to the second and third smallest eigenvalues. (a) The cluster
accuracy is 74 percent. (b) The cluster accuracy is 91 percent.
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In order to quantitatively validate the above visual obser-
vation, we compute the cluster accuracy of two methods on
the Zoo dataset after graph embedding based on a post K-
mean process. The cluster accuracy of the hypergraph-
based NSHLRR is 91 percent while the normal-graph-based
NSLLRR only achieves 74 percent cluster accuracy.

Since some sample (e.g., tortoise) has a special attribu-
tion, the embedding with the hypergraph-based NSHLRR
fails to give better grouping. Nevertheless, both the visuali-
zation in Fig. 6 and the quantity result demonstrate overall
efficacy of the hypergraph-based NSHLRR.

8 CONCLUSION

In this paper, we propose a generalized Laplacian regular-
ized low-rank representation framework, in which we
explicitly consider the manifold structures of data space by
introducing a Laplacian regularization term. In particular, a
hypergraph Laplacian regularizer is introduced into the
conventional LRR objective function to form the hypergraph
Laplacian regularized LRR model. Our proposed method
not only can represent the global low-dimensional struc-
tures, but also capture the intrinsic non-linear geometric
information in data. The extensive experimental results on
image clustering, classification and embedding show the
efficacy of our proposed method. However, a theoretical
analysis the benefits of using nonlinearities and hyper-
edges will be further investigated as the future work and
the application of the proposed model to a broader range of
problems is to be explored.
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