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I. PROOFS

For convenience, we will use x̃s to denote xs0 in all proofs. To proof convergence, we need to bound the variance. In serial
SVRG [1], [2], the variance is bounded through Eq. (4) in the paper. In ASVRG, Eq. (4) changes to Eq. (8) in the paper. We
then use Lemma 1 to build the relation between xsj(k) and xsk. From Lemma 1, we obtain

E
(
‖vsk‖2

)
≤ E

(
‖∇f(xsj(k))‖

2
)
+ L2E

(
‖xsj(k) − x̃s‖2

)
≤ ρ2

[
E
(
‖∇f(xsk)‖2

)
+ L2E

(
‖xsk − x̃s‖2

)]
, (1)

where ρ2 is a constant depending on the step size γ and the delay parameter τ . Comparing Eq. (1) with Eq. (4) in the paper,
we can find that the upper bound of the variance in ASVRG is exactly ρ2 times of the upper bounded in SVRG. So by setting
a special γ, we obtain a tight convergence property through the technique of SVRG [2].

Proof of Eq. (4) in the paper. For compleness, we first include the proof of Eq. (4) in the paper. It is taken from [1],
[2].

Eik
(
‖vsk‖2

)
= Eik

(
‖∇fik(xsk)−∇fik(x̃s) + gs −∇f(xsk) +∇f(xsk)‖2

)
= Eik

(
‖∇fik(xsk)−∇fik(x̃s) + gs −∇f(xsk)‖2

)
+ Eik

(
‖∇f(xsk)‖2

)
+2Eik (〈∇fik(xsk)−∇fik(x̃s) + gs −∇f(xsk),∇f(xsk)〉)

= Eik
(
‖∇fik(xsk)−∇fik(x̃s) + gs −∇f(xsk)‖2

)
+ Eik

(
‖∇f(xsk)‖2

)
= Eik

(
‖∇fik(xsk)−∇fik(x̃s)− Eik (∇fik(xsk)−∇fik(x̃s)) ‖2

)
+Eik

(
‖∇f(xsk)‖2

)
≤ Eik‖

(
∇fik(xsk)−∇fik(x̃s)‖2

)
+ Eik

(
‖∇f(xsk)‖2

)
≤ L2‖xsk − x̃s‖2 + ‖∇f(xsk)‖2, (2)

where we use the fact that Eik (∇fik(x))) = ∇f(x) in the third and the fourth equalities, and the first inequality in Eq. (2)
follows from the fact that E(

∥∥ξ − E (ξ) ‖2
)
≤ E

(
‖ξ‖2

)
.

Proof of Lemma 1
We first analyse ‖∇f(xsk)‖2 and ‖xsk − x̃s‖2, respectively. For ‖∇f(xsk)‖2, we have

E
(
‖∇f(xsk)‖2 − ‖∇f(xsk+1)‖2

)
≤ 2E

(
‖∇f(xsk)‖‖∇f(xsk)−∇f(xsk+1)‖

)
≤ 2LE

(
‖∇f(xsk)‖‖xsk − xsk+1‖

)
≤ LγE

(
1

C1
‖∇f(xsk)‖2 + C1‖vsj(k)‖

2

)
(C1 > 0) , (3)
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where we use the fact that ‖a‖2 − ‖b‖2 ≤ 2‖a‖‖a − b‖ [3] in the first inequality and the Cauchy-Schwarz inequality in the
third inequality. In the same way, we have

E
(
‖xsk − x̃s‖2 − ‖xsk+1 − x̃s‖2

)
≤ 2E

(
‖xsk − x̃s‖‖xsk − xsk+1‖

)
≤ γE

(
1

C2
‖xsk − x̃s‖2 + C2‖vsj(k)‖

2

)
(C2 > 0) , (4)

Similarly, we have

E
(
‖∇f(xsj(k+1))‖

2 − ‖∇f(xsk+1)‖2
)

≤ 2E
(
‖∇f(xsj(k+1))‖‖∇f(x

s
k+1)−∇f(xsj(k+1))‖

)
≤ Lγ

C3
E
(
‖∇f(xsj(k+1))‖

2
)
+
LC3

γ
E
(
‖xsk+1 − xsj(k+1)‖

2
)
(C3 > 0) , (5)

and

E
(
‖xsj(k+1) − x̃s‖2 − ‖xsk+1 − x̃s‖2

)
≤ 2E

(
‖xsj(k+1) − x̃s‖‖xsj(k+1) − xsk+1‖

)
≤ γ

C4
E
(
‖xsj(k+1) − x̃s‖2

)
+
C4

γ
E
(
‖xsj(k+1) − xsk+1‖2

)
(C4 > 0) . (6)

For convenience, set Bk = E
(
‖∇f(xsk)‖2 + L2‖xsk − x̃s‖

)
, which has omitted the superscript s. Then from Eq. (2), we have

E
(
‖vsk‖2

)
≤ Bk. (7)

Similarly, we set Bj(k) = E
(
‖∇f(xsj(k))‖

2 + L2‖xsj(k) − x̃s‖
)

. In the same way, we have

E
(
‖vsj(k)‖

2
)
≤ Bj(k). (8)

Multiplying Eq. (4) by L2 and then adding Eq. (3), we have

Bk −Bk+1 ≤ E
(
Lγ
‖∇f(xsk)‖2

C1
+ LγC1‖vsj(k)‖

2

)
+E

(
L2γ

C2
‖xsk − x̃s‖2 + L2γC2‖vsj(k)‖

2

)
. (9)

Set C2 = C1/L, we have

Bk −Bk+1 ≤ Lγ

C1
Bk + 2LγC1E

(
‖vsj(k)‖

2
)

≤ Lγ

C1
Bk + 2LγC1Bj(k), (10)

where we use Eq. (7) in the first inequality and Eq. (8) in the second inequality.
Now we use induction to prove that

Bk−1 ≤ ρ1Bk, (11)

and

Bj(k) ≤ ρ2Bk. (12)

Suppose k = 1. Since Bj(0) = B0. we set C1 to be 1√
2

. Then from Eq. (10), we have

B0 −B1 ≤ 2
√
2LγB0. (13)

Simplifying Eq. (13), we have

B0 ≤
1

1− 2
√
2Lγ

B1. (14)

Recalling the assumption on γ,

Lγ ≤ ρ1 − 1

2
√
2ρ1
√
ρ2
≤ ρ1 − 1

2
√
2ρ1

=
1

2
√
2
(1− 1

ρ1
) <

1

2
√
2
, (15)
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so

B0 ≤
1

1− 2
√
2Lγ

B1 ≤ ρ1B1. (16)

On the other hand, multiplying Eq. (6) by L2 and then adding Eq. (5), we have

Bj(k+1) −Bk+1≤
Lγ

C3
E
(
‖∇f(xsj(k+1))‖

2
)
+
LC3

γ
E
(
xsk+1 − xsj(k+1)‖

2
)

+
L2γ

C4
E
(
‖xsj(k+1) − x̃s‖2

)
+
C4L

2

γ
E
(
‖xsk+1 − xsj(k+1)‖

2
)
. (17)

Setting C4 = C3/L, we have

Bj(k+1) −Bk+1 ≤ Lγ

C3
Bj(k+1) + 2

LC3

γ
E
(
‖xsk+1 − xsj(k+1)‖

2
)
. (18)

When k = 1,

E
(
‖xs1 − xsj(1)‖

2
)

≤ γ2E
(
‖I0(0)(vs0)‖2

)
≤ γ2E

(
‖vs0‖2

)
≤ γ2ρ1B1, (19)

where I0(0) is the function that indicates whether the elements of vs0 have been written into xs1 and we use Eq.(7) in the third
inequality. Substituting Eq.(19) into Eq.(18), we have

Bj(1) −B1 ≤
Lγ

C3
Bj(1) + 2γLC3ρ1B1. (20)

Setting C3 to be 1√
2ρ1

,

Bj(1) −B1 ≤
√

2ρ1LγBj(1) +
√
2ρ1LγB1. (21)

Then

Bj(1) ≤
1 +
√
2ρ1Lγ

1−
√
2ρ1Lγ

B1. (22)

Recalling the assumption on γ, we have

Lγ ≤ ρ2 − 1

2
√
2ρ1ρ

3
2
2
ρ
τ
2
1 −1√
ρ1−1

≤ ρ2 − 1

2
√
2ρ1ρ2

. (23)

So we have

2
√
2ρ1Lγ ≤ 1− 1

ρ2
< 1. (24)

Then

Bj(1)

≤ 1 +
√
2ρ1Lγ

1−
√
2ρ1Lγ

B1

≤ 1

1− 2
√
2ρ1Lγ

B1

≤ ρ2B1, (25)

where we use the fact that 1+x
1−x ≤

1
1−2x when 2x < 1 in the second inequality.

When Bk satisfies Eq. (11) and Eq. (12), we consider Bk+1. From Eq. (10),

Bk −Bk+1 ≤ Lγ

C1
Bk + 2LC1γBj(k)

≤ Lγ

C1
Bk + 2LC1γρ2Bk. (26)

Setting C1 = 1√
2ρ2

, we have

Bk −Bk+1 ≤ 2
√
2ρ2LγBk. (27)
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Then

Bk ≤
1

1− 2
√
2ρ2Lγ

Bk+1. (28)

From the assumption on γ, we have Bk ≤ ρ1Bk+1. Now we prove Bj(k+1) ≤ ρ2Bk+1. We first analyse ‖xsk+1 − xsj(k+1)‖.

E
(
‖xsk+1 − xsj(k+1)‖

2
)

= γ2E

(
‖

k∑
l=k−τ+1

Ik(l)

(
vsj(l)

)
‖2
)

≤ γ2E

 d∑
p=1

(
k∑

l=k−τ+1

|vsj(l)(p)|

)2
 .

≤ γ2E

(
d∑
p=1

(
τ−1∑
i=0

τ−1∑
z=0

|vsj(k−i)(p)| × |v
s
j(k−z)(p)|

))
, (29)

where vsk(p) is the p-th coordinate of vector vsk. The first inequality uses the inequality that (a1 + a2 + · · · + aτ )
2 ≤

(|a1|+ |a2|+ · · ·+ |aτ |)2 on each dimension. For any i = 0, 1, . . . , τ − 1 and z = 0, 1, . . . , τ − 1, we have

E

(
d∑
p=1

(
2|vsj(k−i)(p)| × |v

s
j(k−z)(p)|

))

≤ E

(
d∑
p=1

(
ρ
(z−i)/2
1 |vsj(k−i)(p)|

2 + ρ
(i−z)/2
1 |vsj(k−z)(p)|

2
))

(30)

≤ E
(
ρ
(z−i)/2
1 ‖vsj(k−i)‖

2 + ρ
(i−z)/2
1 ‖vsj(k−z)‖

2
)

≤ ρ
(z−i)/2
1 Bj(k−i) + ρ

(i−z)/2
1 Bj(k−z)

≤ ρ2ρ
(z−i)/2
1 ρi1Bk + ρ2ρ

(i−z)/2
1 ρz1Bk

≤ 2ρ2ρ
(i+z)/2
1 Bk,

where we use Cauchy-Schwarz in the first inequality and Eq. (8) in the third inequality. So

E
(
‖xsk+1 − xsj(k+1)‖

2
)

≤ γ2E

(
d∑
p=1

(
τ−1∑
i=0

τ−1∑
z=0

|vsj(k−i)(p)| × |v
s
j(k−z)(p)|

))

≤ γ2ρ2

τ−1∑
i=0

τ−1∑
z=0

ρ
(i+z)/2
1 Bk

≤ γ2ρ2

(
k−τ+1∑
i=0

ρ
i/2
1

)2

Bk

≤ γ2ρ2
(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk. (31)

Substituting Eq. (31) into Eq. (18), we have

Bj(k+1) −Bk+1

≤ Lγ

C3
Bj(k+1) + 2LC3γρ2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk

≤ Lγ

C3
Bj(k+1) + 2LC3γρ2ρ1

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk+1. (32)

Setting C3 = 1
√
2ρ1ρ2

ρ
τ/2
1 −1
√
ρ1−1

, we have

Bj(k+1) −Bk+1 ≤ Lγ
√

2ρ1ρ2
ρ
τ/2
1 − 1
√
ρ1 − 1

(Bj(k+1) +Bk+1). (33)
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Considering the assumption on γ, like Eq. (23), we have

2Lγ
√

2ρ1ρ2
ρ
τ/2
1 − 1
√
ρ1 − 1

≤ 1− 1

ρ2
< 1, (34)

then like Eq. (25), we have

Bj(k+1)

≤
1 + Lγ

√
2ρ1ρ2

ρ
τ/2
1 −1√
ρ1−1

1− Lγ
√
2ρ1ρ2

ρ
τ/2
1 −1√
ρ1−1

Bk+1

≤ 1

1− 2Lγ
√
2ρ1ρ2

ρ
τ/2
1 −1√
ρ1−1

Bk+1

≤ ρ2Bk+1. (35)

Proof of Theorem 1
The convergence property of ASVRG is inspired by [2]. We first check the conditions in Lemma 1. Since τ ≤ nα/2, and

γ = µ/(Lnα) (0 < µ ≤ 1
8e(e−1) ), we have τ ≤ nα/2 ≤ nα. Setting ρτ/21 = e and ρ2 = 2, we have

ρ1 − 1

2
√
2ρ1ρ

1/2
2

=
e2/τ − 1

4ρ
1
2×2
1

≥ e2/τ − 1

4e2

≥ 1

2e2τ
≥ 1

2e2nα
≥ µ

nα

= Lγ, (36)

where we use the fact that ex − 1 ≥ x (x ≥ 0) in the third inequality. In the same way, we have

ρ2 − 1

2
√
2ρ1ρ

3
2
2
ρ
τ/2
1 −1√
ρ1−1

(37)

≥
√
ρ1 − 1

8(ρ
τ/2
1 − 1)ρ

1/2
1

≥ e1/τ − 1

8(e− 1)e

≥ 1

8(e− 1)eτ

≥ 1

8(e− 1)enα

≥ Lγ.

Thus Eq. (11) and Eq. (12) hold.
Now we are to bound E

(
f(xsk+1)

)
and E

(
‖xsk+1 − x̃s‖2

)
. Since f have L-Lipschitz continuous gradients, we have

E
(
f(xsk+1)

)
≤ E

(
f(xsk) +

〈
∇f(xsk),xsk+1 − xsk

〉
+
L

2
‖xsk+1 − xsk‖2

)
= E

(
f(xsk)− γ

〈
∇f(xsk),vsj(k)

〉
+
Lγ2

2
‖vsj(k)‖

2

)
= E

(
f(xsk)− γ

〈
∇f(xsk),∇f(xsj(k))

〉
+
Lγ2

2
‖vsj(k)‖

2

)
= E

(
f(xsk)−

γ

2
‖∇f(xsk)‖2 −

γ

2
‖∇f(xsj(k))‖

2 +
Lγ2

2
‖vsj(k)‖

2

)
+
γ

2
E
(
‖∇f(xsk)−∇f(xsj(k))‖

2
)
, (38)
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where we use Ei(k)
(
vsj(k)

)
= ∇f(xsj(k)) in the second equality, and in the last equality we apply the equality that 〈a, b〉 =

‖a‖2
2 + ‖b‖

2

2 −
‖a−b‖2

2 [4]. From Eq.(31), we have

E
(
‖∇f(xsk)−∇f(xsj(k))‖

2
)

≤ L2γ2ρ2
(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk−1

≤ L2γ2ρ1ρ2
(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk. (39)

For ‖xsk+1 − x̃s‖2, we have

E
(
‖xsk+1 − x̃s‖2

)
= E

(
‖xsk+1 − xsk + xsk − x̃s‖2

)
= E

(
‖xsk+1 − xsk‖2

)
+ E

(
‖xsk − x̃s‖2

)
+2E

(〈
xsk+1 − xsk,x

s
k − x̃s

〉)
= E

(
γ2‖vsj(k)‖

2
)
+ E

(
‖xsk − x̃s‖2

)
−2E

(〈
γvsj(k),x

s
k − x̃s

〉)
= E

(
γ2‖vsj(k)‖

2
)
+ E

(
‖xsk − x̃s‖2

)
−2E

(〈
γ∇f(xsj(k)),x

s
k − x̃s

〉)
≤ E

(
γ2‖vsj(k)‖

2
)
+ E

(
‖xsk − x̃s‖2

)
+γE

(
1

C5
‖∇f(xsj(k))‖

2 + C5‖xsk − x̃s‖2
)

= γ2E
(
‖vsj(k)‖

2
)
+

γ

C5
E
(
‖∇f(xsj(k))‖

2
)

+(1 + C5γ)E
(
‖xsk − x̃s‖2

)
(C5 > 0), (40)

where we use Eik
(
vsj(k)

)
= ∇f(xsj(k)) in the third equality. Set Rsk = E

(
f(xsk) +Dk‖xsk − x̃s‖2

)
. Multiplying Eq.(40) by

Dk+1, then adding Eq.(38), we have

Rsk+1 ≤ E
(
f(xsk)−

γ

2
‖∇f(xsk)‖2 −

γ

2
‖∇f(xsj(k))‖

2 +
Lγ2

2
‖vsj(k)‖

2

)
+
L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

Bk

+Dk+1

(
γ2E

(
‖vsj(k)‖

2
)
+

γ

C5
E
(
‖∇f(xsj(k))‖

2
)
+ (1 + C5γ)E

(
‖xsk − x̃s‖2

))
≤ E (f(xsk)) +Dk+1(1 + C5γ)E

(
‖xsk − x̃s‖2

)
+E

(
Lγ2ρ2

2
+
L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

+ ρ2Dk+1γ
2

)
Bk

−E
(γ
2
‖∇f(xsk)‖2

)
− E

(
(
γ

2
− Dk+1γ

C5
)‖∇f(xsj(k))‖

2

)
, (41)

where we use Eq.(39) in the first inequality and applies ‖vsj(k)‖
2 ≤ Bj(k) ≤ ρ2Bk in the second inequality. Substituting

Bk = E
(
‖∇f(xsk)‖2 + L2‖xsk − x̃s‖

)
into Eq. (41), we have

Rsk+1 ≤ E (f(xsk))

−

(
γ

2
− Lγ2ρ2

2
− L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

− ρ2Dk+1γ
2

)
E
(
‖∇f(xsk)‖2

)
−E

(
(
γ

2
− Dk+1γ

C5
)‖∇f(xsj(k))‖

2

)
+Dk+1

(
1 + C5γ + L2γ2ρ2

)
E
(
‖xsk − x̃s‖2

)
+

(
L3γ2ρ2

2
+
L4γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

)
E
(
‖xsk − x̃s‖2

)
. (42)
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Setting Dm = 0 and

Dk = Dk+1

(
1 + C5γ + L2γ2ρ2

)
+
L3γ2ρ2

2
+
L4γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

, (43)

we have

Rsk+1 −Rsk ≤ −

(
γ

2
− Lγ2ρ2

2
− L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

− ρ2Dk+1γ
2

)
E
(
‖∇f(xsk)‖2

)
−

(
γ

2
− Dk+1γ

C5

)
E
(
‖∇f(xsj(k))‖

2
)
. (44)

Since Dk is monotone decreasing, we have

Rsk+1 −Rsk ≤ −

(
γ

2
− Lγ2ρ2

2
− L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

− ρ2D0γ
2

)
E
(
‖∇f(xsk)‖2

)
− (

γ

2
− D0γ

C5
)E
(
‖∇f(xsj(k))‖

2
)
. (45)

Now we bound D0. From Eq. (43), we have D0 = lm
(1+θ)m−1

θ , where θ = L2γ2ρ2 + C5γ and

lm =
L3γ2ρ2

2
+
L4

2
γ3ρ1ρ2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

≤ L3γ2 + ρ1(e− 1)2L4γ3
1

(e1/τ − 1)2

≤ L3γ2 + e2(e− 1)2L4γ3
1

(e1/τ − 1)2

≤ L3γ2 + e2(e− 1)2L4γ3τ2

= L3γ2 + (e2(e− 1)2Lγτ2)L3γ2

= L3γ2 + (e2(e− 1)2L
µ

Lnα
nα)L3γ2

≤ L3γ2 + (e2(e− 1)2µ)L3γ2

≤ 2L3γ2, (46)

where we use ρ1 ≤ (ρ
τ/2
1 )2 ≤ e2 in the second inequality. Set C5 = L/(µnα/2). Then for θ, we have

θ = ρ2L
2γ2 + C5γ =

2µ2

n2α
+

1

n3α/2
≤ 33

32n3α/2
. (47)

The above inequality holds since µ ≤ 1/8 and n ≥ 1. Then

D0 = lm
(1 + θ)m − 1

θ

≤ 2Lµ2

n2α
(1 + θ)m − 1

θ

=
2Lµ2

n2α
(1 + θ)m − 1
2µ2

n2α + 1
n3α/2

=
2µ2L ((1 + θ)m − 1)

2µ2 + nα/2

≤
2µ2L

((
1 + 33

32n3α/2

)(1/ 1

n3α/2

)
− 1

)
2µ2 + nα/2

≤ 2n−α/2µ2L(e
33
32 − 1). (48)
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Now we are to bound γ
2 −

Lγ2ρ2
2 − L2γ3ρ1ρ2

2
(ρ
τ/2
1 −1)2

(
√
ρ1−1)2 − ρ2D0γ

2 and γ
2 −

D0γ
C5

in Eq. (45), respectively.

γ

2
− Lγ2ρ2

2
− L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

− ρ2D0γ
2

≥ γ

2
− Lγ2 − Lγ2 − 2D0γ

2

=

(
1

2
− 2Lγ − 2D0γ

)
γ

≥
(
1

2
− 2µ− 4(e

33
32 − 1)µ3

)
γ

≥ ν

Lnα
, (49)

where ν = µ
3 and we have used Eq. (46) to bound L2γ3ρ1ρ2

2
(ρ
τ/2
1 −1)2

(
√
ρ1−1)2 in the first inequality. For γ

2 −
D0γ
C5

, we have

γ

2
− D0γ

C5

≥ γ

2
(1− 4n−α/2µ2L(e

33
32 − 1)

L/(µnα/2)
)

≥ γ

2
(1− 4µ3(e

33
32 − 1))

≥ 0. (50)

Substituting Eq. (49) and Eq. (50) into Eq. (45) , we have
ν

Lnα
E
(
‖∇f(xsk)‖2

)
≤ Rsk −Rsk+1 (51)

Summing k from 0 to m− 1, we have

ν

Lnα

m−1∑
k=0

E
(
‖∇f(xsk)‖2

)
≤ Rs0 −Rsm. (52)

Since Dm = 0, we have

Rsm = f(xsm) = f(xs+1
0 ). (53)

And for xs0 = x̃s, we have

Rs0 = f(xs0). (54)

So Eq. (52) can be rewritten as

ν

Lnα

m−1∑
k=0

E
(
‖∇f(xsk)‖2

)
≤ f(xs0)− f(xs+1

0 ). (55)

Then summing s from 0 to S − 1, we have

1

K

S−1∑
s=0

m−1∑
k=0

E
(
‖∇f(xsk)‖2

)
≤ nα(f(x0

0)− f(xS0 ))
Kν

≤ nα(f(x0
0)− f(x∗))
Kν

, (56)

where K = mS and f(x∗) is the minimal value of f(x).

Proof of Theorem 2
We still first check the conditions in Lemma 1. Recall γ = µ/Lnατβ with 0 < µ ≤ 1

8(e−1)e , 0 < α ≤ 1, and 0 < β ≤ 1,

and m = n
3α
2 τ

3β−1
2 . We still set ρτ/21 = e and ρ2 = 2. Since τ ≤ m, we have

τ ≤ n 3α
2 τ

3β−1
2 . (57)

Rearranging the terms in Eq. (57), we have

τ3 ≤ n3ατ3β . (58)

So
1

τ
≥ 1

nατβ
. (59)
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Further, we have

µ ≥ Lτγ. (60)

Now we analyse the condition of γ. Like Eq. (36) and Eq. (37), we have

ρ1 − 1

2
√
2ρ1ρ

1/2
2

≥ e2/τ − 1

4ρ
1
2×2
1

≥ e2/τ − 1

4e2

≥ 1

2e2τ
≥ 1

2e2µ
Lγ

≥ Lγ, (61)

and
ρ2 − 1

2
√
2ρ1ρ

3
2
2
ρ
τ/2
1 −1√
ρ1−1

≥
√
ρ1 − 1

8(ρ
τ/2
1 − 1)ρ

1/2
1

≥ e1/τ − 1

8(e− 1)e

≥ 1

8(e− 1)eτ

≥ Lγ

8(e− 1)eµ
= Lγ, (62)

Thus Eq. (11) and Eq. (12) hold. Since Eq. (43) and Eq. (45) hold, we bound D0, where D0 = lm
(1+θ)m−1

θ and θ =
L2ρ2γ

2 + C5γ. We set C5 = L

µn
α
2 τ

β−1
2

. Then we have

θ = 2L2γ2 + C5γ =
2µ2

n2ατ2β
+

1

n3α/2τ
3β−1

2

≤ 33

32n3α/2τ
3β−1

2

. (63)

For lm, we have

lm =
L3γ2ρ2

2
+
L4

2
γ3ρ1ρ2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

≤ L3γ2 + ρ1(e− 1)2L4γ3
1

(e1/τ − 1)2

≤ L3γ2 + e2(e− 1)2L4γ3
1

(e1/τ − 1)2

≤ L3γ2 + e2(e− 1)2L4γ3τ2

≤ L3γ2 + µe2(e− 1)2L3γ2τ

≤ L3γ2τ + L3γ2τ = 2L3γ2τ

=
2Lµ2τ

n2ατ2β
, (64)
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where we use Eq. (60) in the fourth inequality. So

D0 = lm
(1 + θ)m − 1

θ

≤ 2Lµ2τ

n2ατ2β
(1 + θ)m − 1

θ

=
2Lµ2τ

n2ατ2β
(1 + θ)m − 1

2µ2

n2ατ2β + 1

n3α/2τ
3β−1

2

=
2µ2Lτ ((1 + θ)m − 1)

2µ2 + nα/2τ
β+1
2

≤

2µ2τL

(1 + 33µ

32n3α/2τ
3β−1

2

)(1/ µ

n3α/2τ
3β−1

2

)
− 1


2µ2 + nα/2τ

β+1
2

≤ 2µ2L(e
33
32 − 1)

n
α
2 τ

β−1
2

. (65)

Then

γ

2
− Lγ2ρ2

2
− L2γ3ρ1ρ2

2

(ρ
τ/2
1 − 1)2

(
√
ρ1 − 1)2

− ρ2D0γ
2

≥ γ

2
− Lγ2 − L2γ3e2(e− 1)2τ2 − 2D0γ

2

≥
(
1

2
− Lγ − e2(e− 1)2µ2 − 2D0γ

)
γ

≥

(
1

2
− Lγτ − e2(e− 1)2µ2 − 4µ2L(e

33
32 − 1)

n
α
2 τ

β−1
2

γ

)
γ

≥

(
1

2
− Lγτ − e2(e− 1)2µ2 − 4µ2(e

33
32 − 1)Lτγ

n
α
2 τ

β
2

)
γ

≥
(
1

2
− µ− e2(e− 1)2µ2 − 4µ3(e

33
32 − 1)

)
γ

≥ 1

3
γ =

ν

Lnατβ
, (66)

where ν = µ
3 . The second and the fifth inequalities use Eq. (60). We substitute Eq. (65) into the third inequality. The fourth

inequality follows the fact that τ
1
2 ≤ τ . Besides,

γ

2
− D0γ

C5

≥ γ

2

(
1− 2

2µL(e
33
32 − 1)

n
α
2 τ

β−1
2

n
α
2 τ

β−1
2

L

)
≥ γ

2
(1− 4µ(e

33
32 − 1))

≥ 0. (67)

So like Eq. (51), we have
ν

Lnατβ
E
(
‖∇f(xsk)‖2

)
≤ Rsk −Rsk+1. (68)

Then like Eq. (56), we get

1

K

S−1∑
s=0

m−1∑
k=0

E
(
‖∇f(xsk)‖2

)
≤ nατβ(f(x0

0)− f(xS0 ))
Kν

≤ nατβ(f(x0
0)− f(x∗))
Kν

, (69)

where K = mS and f(x∗) is the minimal value of f(x).

Proof of Theorem 3
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Theorem 3 can be obtained by the Markov inequality directly. For condition 1, when K ≥ nα(f(x0)−f(x∗))
νεη , from the

Markov’s inequality, we have

P

(
1

K

S−1∑
s=0

m−1∑
k=0

‖∇F (xsk)‖2 ≥ ε

)

≤ ε−1
1

K

S−1∑
s=0

m−1∑
k=0

E
(
‖∇F (xsk)‖2

)
≤ η. (70)

Case 2 can be obtained similarly.

II. EXPERIMENTAL RESULTS OF ASVRG-ATOM

In this section, we demonstrate the speedup property of ASVRG-atom. The curves of objective loss against iterations and
running time on MNIST and CIFAR10 are drawn in Figures 1, 2, 3, and 4, respectively. We report their speedup in Tables I
and II, respectively. The results on one core SVRG, one core SGD and 12 cores SGD are directly taken from the experiment
of ASVRG-wild.

TABLE I
ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-ATOM ON MNIST.

thread-1 thread-4 thread-8 thread-12 thread-16 thread-20
iteration 1 4.13 7.53 11.92 15.76 19.01

time 1 3.41 5.99 8.28 9.76 11.6

TABLE II
ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-ATOM ON CIFAR10.

thread-1 thread-4 thread-8 thread-12 thread-16 thread-20
iteration 1 4.11 7.73 12.06 16.01 19.44

time 1 3.49 5.78 9.10 10.98 11.75
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12-core SGD

Fig. 1. The curves of loss against iteration on MNIST in the speedup experiment of ASVRG-atom. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

From the results, we conclude
1) The linear speedup is achievable in ASVRG-atom through iteration speedup. What influences the speed most is still the

hardware.
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Fig. 2. The curves of loss against time on MNIST in the speedup experiment of ASVRG-atom.
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Fig. 3. The curves of loss against iteration on CIFAR10 in the speedup experiment of ASVRG-atom. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

2) ASVRG-atom is slower than ASVRG-wild, which meets our common sense.
3) ASVRG-atom also has an obvious speedup when compared with serial SVRG, e.g., there are 11 times speedup when

there are 20 cores.

III. EXPERIMENTAL RESULTS ON A DEEPER NEURAL NETWORKS

In this section, we test ASVRG-wild on a deeper neural network. We train a neural network with 7 layers (784 × 100 ×
100 × 100 × 100 × 100 × 10). We choose the step size as 0.1 for all the algorithms. The curves of objective loss against
iterations and running time on MNIST are drawn in Figures 5 and 6. The speedup is reported in Tables III.

This experiment empirically demonstrates that the critical point obtained from ASVRG is not worse than serial SVRG when
the optimization function is highly non-convex.
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Fig. 4. The curves of loss against time on CIFAR10 in the speedup experiment of ASVRG-atom.
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Fig. 5. The curves of loss against iteration on MNIST of ASVRG-wild training a deep neural network. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

TABLE III
ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-WILD ON MNIST.

thread-1 thread-4 thread-8 thread-12 thread-16 thread-20
iteration 1 4.01 8.10 12.13 15.63 19.07

time 1 3.25 5.52 8.17 11.03 11.99
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Fig. 6. The curves of loss against time on MNIST of ASVRG-wild training a deep neural network.
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