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I. PROOFS

For convenience, we will use X° to denote x§ in all proofs. To proof convergence, we need to bound the variance. In serial
SVRG [1], [2], the variance is bounded through Eq. (4) in the paper. In ASVRG, Eq. (4) changes to Eq. (8) in the paper. We
then use Lemma 1 to build the relation between x§( 5 and x;. From Lemma 1, we obtain

E(IVil12) < E (IV7(50)I12) + 2B (x50 = %°1%) < p2 [E (IV£6e3)12) + L2E (i — %°]2)] ()

where ps is a constant depending on the step size + and the delay parameter 7. Comparing Eq. (1) with Eq. (4) in the paper,
we can find that the upper bound of the variance in ASVRG is exactly po times of the upper bounded in SVRG. So by setting
a special v, we obtain a tight convergence property through the technique of SVRG [2].

Proof of Eq. (4) in the paper. For compleness, we first include the proof of Eq. (4) in the paper. It is taken from [1],
[2].

E;, (Hka )
= z(IIVka(X2) Vi (X% +g° — VF(x) + V)2
= Ei, (IVfi.(x3) = Vi (&%) + 8" = VFxDI?) + Ei, (IVFx2)])
+2E;, ((V fi, (x}) — Vi, (X°) + &° — Vf(x}), Vf(x )
Ei, (IVfi,(x3) = Vi, (X°) + 8" = Vx)%) + B, (IVF0)I%)
= E,;, (HVka(XZ) Vfi, (x ) E;, (Vfu(xk) vflk i))” )
+Eq, (IIV£(x3)11°)

< Eall (Vi (x7) = Vi (&)I?) + Eo, (IVFG)I)
< LPxq = x|+ VAR, 2)
where we use the fact that E;, (Vf;, (x))) = Vf(x) in the third and the fourth equalities, and the first inequality in Eq. (2)

follows from the fact that E(||¢ — E (€) [|?) < E (||€]]?).

Proof of Lemma 1
We first analyse |V f(x})||* and ||x] — x*

E (V£ = IV f(xii0)?)

2. we have

2, respectively. For ||V f(x})

< B (IVFODIITIE) - ) )
< 2LE (VS k- x4 )
< D (G IV + Cilvig ) (€1 >0), ®

* Corresponding author.



where we use the fact that ||a|? — ||b]|?> < 2||a|||a — b|| [3] in the first inequality and the Cauchy-Schwarz inequality in the
third inequality. In the same way, we have

E (Jxf — %12~ Ixi — %)
S ()
1 S S
< o8 (gl - R+ Calvi ) (Ca>0), @
2

Similarly, we have

E (IIV £ ) 12 = IV 5 ()11

< 2B (IV/ (e )MV S (K1) = TF O ) )
L’7 s LC‘3 s 3
< aE (va(xj(kﬂ))”Q) + TE (HXk+1 - Xj(k+1)||2> (Cs >0), &)
and
E (11 gy — %12 = lxi 0 — %°)2)
< 2 (1K) = K%y = Xl
v s 55012 04 s s 2
< B (e =% 1) + 1 (o)~ xhll)  (Ci>0). (©)
For convenience, set B, = E (||V f(x})||? + L?||x;, — x°||), which has omitted the superscript s. Then from Eq. (2), we have

E (|[vill?) < Bx. (7)

Similarly, we set Bj;) = E (”Vf(xj(k))HQ + L2||Xj(k) — isH) In the same way, we have

E (Iv5)?) < Bjw. (®)

Multiplying Eq. (4) by L? and then adding Eq. (3), we have

vV f(x$ 2
Bi-Bun < E(LILERE L g, )
1
Lzly S >S S
+E (21t~ %P + D Callvigo ). ®
Set Cy = Cy/L, we have
Ly s
By Byt < G Bi+200iE (Hv‘j(k)HQ)
L
< %Bk +2LC1 By s, (10)
where we use Eq. (7) in the first inequality and Eq. (8) in the second inequality.
Now we use induction to prove that
Bi—1 < p1 By, (1)
and

Bjky < p2Bg. (12)

Suppose k = 1. Since Bj) = By. we set C; to be % Then from Eq. (10), we have

By — By < 2V2LyBy. (13)

Simplifying Eq. (13), we have

1
By < ———Bj. 14
T 1-2v2Ly (1
Recalling the assumption on ,
P1 — 1 P1 — 1 1 1 1

2V2p1/p2 ~ 2V2p1 2V2 p1l 2V2

5)
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1
B < — By < p1B;. 16
0_1—2\@L’y 1< piby (16)
On the other hand, multiplying Eq. (6) by L? and then adding Eq. (5), we have
S LCg S S
Bjkh41) — Bry1< ?]E (va(x‘j(kﬂ))”Q) + 7]1‘3 (X}c+1 - Xj(k+1)||2)
L2’Y S S C4 S S
76 B (I = %)+ E (ks =56 ). (17)
Setting Cy = C3/L, we have
Ly LCs s s
Bjtkrn) = Brer = G Bin + 271"3 (”ch+1 - Xj(k+1)||2> ~ (18)
When k£ =1,
E (IIxi - x50 1?)
< 7’E (o) (v§)I1%)
< YE(Ivel?)
< ;B (19)

where (o) is the function that indicates whether the elements of v§ have been written into xj and we use Eq.(7) in the third
inequality. Substituting Eq.(19) into Eq.(18), we have

L
By~ Bi < & Bjy + 21LCspr By, (20)
: 1
Setting C's to be T
Bjy — B1 < /2p1LyBjay + /2p1 LBy (21)
Then
14+2p1L
By < — Y10 (22)
1—+/2p1Ly
Recalling the assumption on ~, we have
p2—1 p2—1
Ly < - < . (23)
3 p21 24/2
2/ 2p1p2 F a P1p2
So we have
1
2¢/2p1 Ly <1—— < 1. (24)
P2
Then
Bjq)
1+ \/2p1LfyB
1—2pily
1
———— B
1—2y2p1 Ly
< p2By, (25)
where we use the fact that 1” < 1_—% when 22 < 1 in the second inequality.
When By, satisfies Eq. (1 1) and Eq. (12), we consider By;. From Eq. (10),
L
By — Br41 < gBk + 2LC1yBjj(x)
< C” By + 2LCyp2 By, (26)
1

Setting C1 = \/7 we have

Bk — Bk+1 S 2\/ QpQL"/Bk. (27)



Then

B, < ——B 28
W, Ealar (28)

From the assumption on ~, we have By < p1 By 1. Now we prove Bj(;11) < p2Bry1. We first analyse [x7,, — X;(HI)H.
2
E (%31 = %I

= 7E (II zk: Ly (v ga)II)

lI=k—71+1

d k 2
Z( Z |Vg(z)(]0)|>
=1 \I=k—7
d T—1T1
< (z(zzw,“ i) ) )

p=1 \i=0 2=0

IN

where v§(p) is the p-th coordinate of vector v§. The first inequality uses the inequality that (a1 + az + --- + a;)? <

(la1| + |az| + - - - + |a-|)* on each dimension. For any i = 0,1,...,7 — 1 and 2 =0,1,...,7 — 1, we have
d
E (Z (21v3 0 )] |v;-<k_z><p>)>
p=1
d
z—1)/2_ s 1—z)/2|_ s

< E (Z (P25 @) + o |vj<k_z)<p>|2)) (30)
p=1
z—1)/2 1—z)/2 s

< E (oI I+ 0PI 1)

z—1)/2 2

< o8 Bj(- z)+P( p Bj(k—2)

S P2 pgz i)/2 ’LB +p p(7 z)/2 ZB

S 2p p(Z+Z)/2Bk7

where we use Cauchy-Schwarz in the first inequality and Eq. (8) in the third inequality. So

E (1541 = X000 1)

(Z (Z Z |Vg(k z) |V§(k_z)(17)|>>
p=1 \i=0 2=0

T—17-1

RIS

i=0 z=0
k141 2
< Z pl/2> Bk

B. 31)

IN

AN

IA

< 4Ppe
Substituting Eq. (31) into Eq. (18), we have

Bjk+1) — Bk+1

Ly pl/? - 1)2
< CgBj(kH)Jr?LCsVPzEl ﬁ_1323k
Ly (pi* —17?
< —/B: 2LC 73 32
s g Bty + 3YP201 (/7 — 1) k1 (32)
Setting C5 = %ﬁ we have
VZ2pipr A— \/— T

/2
-1
Bjk+1) — Bet1 < Lyy/ 2/0192%(Bj(k+1) + Bj+1). (33)



Considering the assumption on -, like Eq. (23), we have

7'/2
1
2L’y\/2p1p2 = g <1, (34)
then like Eq. (25), we have
Bjk+1)
/2
14 L'yw/2p1p2ljlﬁ 11
< k+1
T/z
1- Lw2p1p2
1
S 7-/2 BkJrl
1 —2Lyvy 2P1P2
< p2Biy1. (35)

Proof of Theorem 1
The convergence property of ASVRG is inspired by [2]. We first check the conditions in Lemma 1. Since 7 < n
vy=p/(In*) 0<pu< m), we have 7 < n®/? < n®. Setting pI/z = e and ps = 2, we have

/2 and

pr—1
2\[plpl/Q

2/7’ -1 62/7' -1

>

4p2><2 - 4e2
1.1 S
2e2T T 2e2p® T no
Ly, (36)

where we use the fact that e* — 1 > = (z > 0) in the third inequality. In the same way, we have
p2—1
-1
2v/2p1 1022 f:}* i
NI T

8(p1/% — 1)py/?

1/7’ -1
8(e—1)e
1
8(e — 1er
1
8(e —1)en®
L.

(37)

v

Y

Y

Y

v

Thus Eq. (11) and Eq. (12) hold.
Now we are to bound E (f(x},,)) and E (|[x;_, —x*||?). Since f have L-Lipschitz continuous gradients, we have

IN

B(f0)) < B (k) + (VA0 k01 - xE) + 5 Ik k1P
= B () =2 (V160 i) + v )
— B () =2 (9160 97500 + 2 v )
— & (f0) - LITIGDI - JI 505012 + V3o ?)
+2E (IVF6ch) = V) 2) (38)



where we use E; ) (v;?(k)) =Vf (x‘;(k)) in the second equality, and in the last equality we apply the equality that (a,b) =

llal® + lo)® _ Ja—bl® [4]. From Eq.(31), we have
2 2 2 . B0,

E (IV£(x3) = V£ (<500)12)
T/2 1)2
1

(p
(Vp1 — 1)

_ 1)2
71)31@- 39)

< L*Ppy By—1

we have

For [|x5_, — X°[|%,

E (|Ixfer — %} + %1, — %°]1%)
= E(lxiy —xi%) +E (Ix; —%°]2)

+2F (<XZ+1 — XL, X}, — i8>)
= E(+Ivjwl?) +E (Ixi —x°I1)
= E (Vi l?) +E (Ix; - %)
—2E (<7Vf<xj‘(k))7xfc - 5<9>>
E (v v I2) +E (Ixi — %)

1 ~s

+98 ( IV )P + ol — %1
= VE(IVwl?) + & (IV/600) 1)
+(1+ C59E (I —%°|)  (Cs > 0), (40)

E (|34 — %°[)

IA

where we use E;j, (vjs,(k)> = Vf(xj(k)) in the third equality. Set R; = E (f(x}) + D|lx; — x*[|?). Multiplying Eq.(40) by
Dy 1, then adding Eq.(38), we have

S S Py S ’Y S L72 S
ta < B (100 - VAP - IV + - Ivien )

L>pips (p]* = 1)?

2 (yp—1?
+mﬂ(fE@ﬁww)+”E(Vﬂ@wmﬂ+u+owmwﬁ—fwﬁ
E (£(x})) + Disa (1 + Cs7)E (| — %)

+

By,

IN

Lpe | ¥ pps (01 ~ 1)
HE( 22+ 21 2(\/1[)7_1)2+P2Dk+1'72 B,
D
& (JIVs0IP) - (G - 2 DIV sl ) )

where we use Eq.(39) in the first inequality and applies ||vj'°f(k)||2 < Bj) < p2By in the second inequality. Substituting
Br =E (|Vf(x})||> + L?|x;, — x°||) into Eq. (41), we have

Ry < E(f(x})
[ e LPpipe (0 - 1)
2 2 2> (Voo 1)
D
—E(( L) 19 x5 I

L (e L*4p1ps (1 —
2 2 (\//)1 -

- psz+172> E (IV.f(x)II?)

>+Dm1@+0m+L%%ﬂ (= — %°[1?)
1
1

;) E (|x; —x°|1%) . 42)



Setting D,,, = 0 and

Dy, = D1 (1 + Csy + L*v%p) +

we have

y
toa—Ry < —(2-
k+1 f— (2

_ (7 ~ Drqy

2

Since Dy, is monotone decreasing, we hav

2

S S ’y
Ry — Ry < —<—

Ly?py _

L?y2p,

L' pips (p/* = 1)2

+

2 2

L2y p1ps (py

T/2 _12

Cs

(S

2

Ly?ps _

2

T/2
L*v*pips (p]

(vpr = 1)

)E(Iv 6l

_(1_9g

2

Now we bound Dg. From Eq. (43), we have Dy = [,,

lm

where we use p; <

0 = p2L?y* + Csy =

IN

IN

IN

IAIA

JE

2 2

(vpr—1)°

(19 £ >|\2).

L3y%py  L*
2 + 2

Ly + pi(e —1)°L*°

L3y2 + e%(e —
L3y2 + e%(e —
L3 + (e*(e —
L372+(e2(e
L372+(€2(6
2L3 2’

22

The above inequality holds since p < 1/8 and n > 1. Then

Dy

IA

IN

IN

1+6)m—

1+9)

-

(pI/ %)2 < ¢2 in the second inequality. Set Cj

e T

l,o D T2
6
2Lp% (1+60)™ —

, where 6 = L?42py 4+ C5y and

T/2
(p7/? — 1)?

pP1p2
(
1

)L43 1

1)L
1)? LW )L3 2

1) Lno‘
)2 )LS 2

1 33

V- 1)?
(et/™—1

(I/Tf

(Vpr —1)%

- pszHvz) E (IVf(xi)I*)

—~ p2D072> E(IV£x)l?)

)2
)2

a)L?)’}/Q

= L/(un®/?). Then for 0, we have

nda/2 S 32n3a/2°

n20¢

0
2Lu? (1 —|— 0™ —

n2a

2L ((1+ 6)™

nza + n3(‘z/2

-1

2/“”2 + na/Q

s ) (/)

2u2L ((1 +

32n3a/2

)

2M2+na/2
2n_“/2u2L(eg% —-1).

(43)

(44)

(45)

(46)

(47)

(43)



2
Ly’ps _ L*¥pips (p1/°=1)°

Now we are to bound 7 — =32 — 5 =D — p2Dyy? and 7 - Dc?; in Eq. (45), respectively.
T/2
v Lv?pa L9Ppapa (p]7 - 1) Dy
2 2 2 (Jm-12 P
> 1 —Ly? - Iy~ 2D0y?
1
= (2 — 2Ly — 2D07> gl
1 33 3
2 |52 =A™ —1Du” )y
v
> e’ (49)
_u L3 p1py (0] =1) . ; ; 7 _ Doy
= . —1)2 . E
where v = £ and we have used Eq. (46) to bound 5 (Jpi—p7 N the first inequality. For J — <2, we have
v Doy
2 Cs
> 1(1 B An~/2)2(e3 — 1))
2 L/(un*7?)
> S(1—4pi(eH - 1))
> 0. (50)
Substituting Eq. (49) and Eq. (50) into Eq. (45) , we have
v S S S
LnaE (IVFxDIP) < Ry — Ry (51
Summing & from 0 to m — 1, we have
m—1
v S S S
T Y E(IVADIP) < RS~ By, (52)
k=0
Since D,,, = 0, we have
Ry, = f(x5,) = f(xg™), (53)
And for x§ = x°, we have
R§ = f(x5)- (54
So Eq. (52) can be rewritten as
m—1
v S S S
= SE(IVIGDI) < £ix5) - fxi): (55)
k=0
Then summing s from 0 to .S — 1, we have
S—1m-—1
1 s n(f(x0) — f(x5)) _ n*(f(x)) — f(x))
72 2 E(IVF)|?) < om0 < TR, (56)

s=0 k=0

where K = mS and f(x*) is the minimal value of f(x).

Proof of Theorem 2
We still first check the conditions in Lemma 1. Recall v = p/Ln®r? with 0 < p < ﬁ 0<a<l,and 0 < 8 <1,

e—1l)e’

and m = n’5 7. We still set pI/2 = e and p2 = 2. Since 7 < m, we have
F<nFrir (57)
Rearranging the terms in Eq. (5§7), we have
73 < plerh, (58)
" s (59)
T~ norh



Further, we have
p= Lty (60)
Now we analyse the condition of «y. Like Eq. (36) and Eq. (37), we have
p1—1

2\/§p1pé/2
62/7’ -1 62/7 -1
>

Y

Y

Y

Ly, (61)

and

Y
3
I
—

Y

Y

8(e—1)er
Ly
8(e —1)eu
- I (62)

Thus Eq. (11) and Eq. (12) hold. Since Eq. (43) and Eq. (45) hold, we bound Dy, where Dy = lm% and 6 =
L?pay? + Csy. We set Cs = #. Then we have

>

u,n2‘rT
202 1 33
0 =2L%y? + Csvy = < . 63
vt Csy n2er2p * nda/2: %50 T g9p3a/2, %5 63)
For ,,,, we have
T/2
I = L372p2+£473p1p27(p1/ L
" 2 32 (VA= 1)
1
3.2 12743
< Ly +pi(e—1)"Ly @ 1)
1
3.2 20 1\274.3
< Ly +e*(e—1)°L*y @ 12
S L372+€2(671)2L47372
< L372+u62(e—1)2L372T
< L3y 7+ L3y =203
2Lu?
= A (64)

nQaTQB ’



where we use Eq. (60) in the fourth inequality. So

m
P CE
0
< 2LpPT (L+60)™ —1
—  n2ar28 0
2Lu%r (14+0)™ -1
B n2or28 n22&uf2/3 + L 351

nda/2: 3
2eLr (14 0)" 1)
2u2 + no/27 %5

(UW)
2M27L (1+ 33u3 1) n3a/2,:772 -1

32n3e/21 ﬁ2

<
B 2u2 + no/27 5
2L — 1
< IS 2D (65
n2Tt 2z
Then
T/2
v LPpe LPups (o777 = 1) Do
2 2 2 (Jp—12 P70
> % — Ly? — L*y*e*(e — 1)%*7% — 2Doy?
1
> (2 — Ly —é*(e—1)°u® — 2D07) v
1 Ap2L(es —1
> (2 — Lyt — e*(e — 1)%p* — %7 v
na2Tt 2
1 4p2 — 1)L
2 nsrs
1 :
> (Gone oo adeE - 1),
1 v
> Y= —- 66
Z 3V = TharB (66)

where v = £. The second and the fifth inequalities use Eq. (60). We substitute Eq. (65) into the third inequality. The fourth

inequality follows the fact that T3 < 7. Besides,

7 Doy
2 5
v ouL(e¥ —1)nsr°z
> —|1-2 "
2 nsr7 L
> 20 —4p(e¥ —1)
> 0. (67)
So like Eq. (51), we have
v S S S
—SE(IVFe)I?) < BY - B, (68)
Then like Eq. (56), we get
S—1m—1
1 oy o TS () — f(x5)) _ nor (f(x0) — f(x7))
— 7 < <
% Zjo ;0 E(|V/e)I?) < oy < oy ! (69)

where K = mS and f(x*) is the minimal value of f(x).

Proof of Theorem 3



@ XO _ x*
Theorem 3 can be obtained by the Markov inequality directly. For condition 1, when K > W(T)nﬂ)) from the
Markov’s inequality, we have
1 S—1m—1
Pl D D IVFER® > e
5=0 k=0
1 S—1m-—1
< T Y E(IVEEDIP)
s=0 k=0
< (70)

Case 2 can be obtained similarly.

II. EXPERIMENTAL RESULTS OF ASVRG-ATOM

In this section, we demonstrate the speedup property of ASVRG-atom. The curves of objective loss against iterations and
running time on MNIST and CIFAR10 are drawn in Figures 1, 2, 3, and 4, respectively. We report their speedup in Tables I
and II, respectively. The results on one core SVRG, one core SGD and 12 cores SGD are directly taken from the experiment
of ASVRG-wild.

TABLE I
ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-ATOM ON MNIST.

thread-1 | thread-4 | thread-8 | thread-12 | thread-16 | thread-20
iteration 1 4.13 7.53 11.92 15.76 19.01
time 1 3.41 5.99 8.28 9.76 11.6
TABLE 11

ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-ATOM ON CIFAR10.

thread-1 thread-4 thread-8 | thread-12 thread-16 thread-20
iteration 1 4.11 7.73 12.06 16.01 19.44
time 1 3.49 5.78 9.10 10.98 11.75
3
2.56 - 1
—1-core SVRG
- —4-core SVRG |
S 8-core SVRG |
2 o —12-core SVRG -
(7))
9 ~16-core SVRG
gw 20-core SVRG|
< -~ 1-core SGD
CU 0.16 -
s ---12-core SGD
0.08 %: ;:i:\w—v:::q: PN
- %g
004 Il Il Il Il Il
10 20 30 40 50 60
iteration/n

Fig. 1. The curves of loss against iteration on MNIST in the speedup experiment of ASVRG-atom. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

From the results, we conclude

1) The linear speedup is achievable in ASVRG-atom through iteration speedup. What influences the speed most is still the
hardware.



——1-core SVRG

~—4-core SVRG ||
@ 8-core SVRG ]
= ——12-core SVRG|]
- ~ 16-core SVRG |
£ 20-core SVRG
g 016 |

time(s)
Fig. 2. The curves of loss against time on MNIST in the speedup experiment of ASVRG-atom.

o ——1-core SVRG |

o ~—4-core SVRG |-
=3 8-core SVRG |
2" ——12-core SVRG |
a ~16-core SVRG
o 20-core SVRG |
< - 1-core SGD ||
g ---12-core SGD |

0.4

iteration/n

Fig. 3. The curves of loss against iteration on CIFARI1O0 in the speedup experiment of ASVRG-atom. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

2) ASVRG-atom is slower than ASVRG-wild, which meets our common sense.
3) ASVRG-atom also has an obvious speedup when compared with serial SVRG, e.g., there are 11 times speedup when
there are 20 cores.

III. EXPERIMENTAL RESULTS ON A DEEPER NEURAL NETWORKS

In this section, we test ASVRG-wild on a deeper neural network. We train a neural network with 7 layers (784 x 100 x
100 x 100 x 100 x 100 x 10). We choose the step size as 0.1 for all the algorithms. The curves of objective loss against
iterations and running time on MNIST are drawn in Figures 5 and 6. The speedup is reported in Tables III.

This experiment empirically demonstrates that the critical point obtained from ASVRG is not worse than serial SVRG when
the optimization function is highly non-convex.
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Fig. 4. The curves of loss against time on CIFARI10 in the speedup experiment of ASVRG-atom.

al ——1-core SVRG |
| —4-core SVRG ||
T 8-core SVRG
8 —12-core SVRG
gm ~16-core SVRG ||
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= ---12-core SGD
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Fig. 5. The curves of loss against iteration on MNIST of ASVRG-wild training a deep neural network. The horization axis is the number of effective pass
through the data, which has included the cost of calculating full gradients for SVRG.

TABLE III
ITERATION AND RUNNING TIME SPEEDUP OF ASVRG-WILD ON MNIST.

thread-1 | thread-4 | thread-8 | thread-12 | thread-16 | thread-20
iteration 1 4.01 8.10 12.13 15.63 19.07
time 1 3.25 5.52 8.17 11.03 11.99
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Fig. 6. The curves of loss against time on MNIST of ASVRG-wild training a deep neural network.
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