Fast Compressive Phase Retrieval under Bounded Noise

Hongyang Zhang^{*1} Shan You^{*2,3} Zhouchen Lin^{†2,3} Chao Xu^{2,3}

¹Machine Learning Department, Carnegie Mellon University, U.S.A.

²Key Lab. of Machine Perception (MOE), School of EECS, Peking University, P. R. China

³ Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, P. R. China hongyanz@cs.cmu.edu, youshan@pku.edu.cn, zlin@pku.edu.cn, xuchao@cis.pku.edu.cn

Proof of Measure of Concentration

Lemma 1 ((Shalev-Shwartz and Ben-David 2014)). Let \mathcal{F} be the class of linear predictors with the L_2 norm of the weights bounded by W_2 . Assume that the L_2 norm of the instance is bounded by X_2 . Then for the ρ -Lipschitz loss ℓ such that $\max_{\langle w,x\rangle\in[-W_2X_2,W_2X_2]} |\ell(w,x,y)| < U$, with probability at least $1 - \delta$ over the choice of an i.i.d. sample T of size m,

$$\forall w \in \{w : \|w\|_2 \le W_2\},\$$
$$|\mathbb{E}\ell(w, x, y) - \ell(w, T)| \le \frac{2\rho W_2 X_2}{\sqrt{m}} + U\sqrt{\frac{2\log(2/\delta)}{m}}$$

Lemma 2 (Lemma 3 in Main Body). Let $\mathbf{z} \in {\mathbf{z} : ||\mathbf{z}||_2 \le 1}$ and ${\mathbf{w}_i}_{i=1}^m$ be random vectors i.i.d. sampled from the standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. Fix $\mathbf{x} \in \mathbb{R}^n$ and suppose that $m \ge c_0 d \log^4 \left(\frac{1}{\delta}\right) \epsilon^{-2}$ with a universal constant c_0 , then with probability at least $1 - \delta$,

$$|f_{\mathbf{x}_0}(\mathbf{z}) - \mathbb{E}f_{\mathbf{x}_0}(\mathbf{z})| \le \epsilon \tag{1}$$

uniformly holds for all $\mathbf{z} \in \mathbb{R}^n$.

Proof. The proof is basically based on Lemma 1. Note that

$$f_{\mathbf{x}_0}(\mathbf{z}) = \frac{1}{m} \sum_{i=1}^m y_i (\mathbf{w}_i^T \mathbf{z})^2 = \frac{1}{m} \sum_{i=1}^m ((\mathbf{w}_i^T \mathbf{\Psi} \mathbf{x}_0)^2 + \eta_i) (\mathbf{w}_i^T \mathbf{z})^2$$
(2)

By Lemma 1, we have that

$$\Pr\left[\sup_{\mathbf{z}} |\mathbb{E}f_{\mathbf{x}}(\mathbf{z}) - f_{\mathbf{x}}(\mathbf{z})| > \frac{2\rho W_2 X_2}{\sqrt{m}} + s\right] \le 2\exp\left(-\frac{ms^2}{2U^2}\right), \quad (3)$$

where the supremum is taken over all $\mathbf{z} \in {\{\mathbf{z} : \|\mathbf{z}\|_2 \le 1\}}$.

To identify the parameters ρ , W_2 , X_2 , and U above, we exploit the property of standard Gaussian distribution. Specifically, we see that $W_2 = 1$. By Lemma 4, we have $\|\mathbf{w}_i\|_2 \leq O(\sqrt{d\log(1/\delta)}) \triangleq X_2$ with probability at

*Equal contributions.

least $1 - \delta$. Let $\ell(\mathbf{w}^T \mathbf{z}) = y_i(\mathbf{w}^T \mathbf{z})^2$. Since by Lemma 3 and the fact that η_i is a global constant, $|\ell'(\mathbf{w}^T \mathbf{z})| \leq 2y_i|\mathbf{w}^T\mathbf{z}| \leq O(\log^{3/2}(1/\delta))$ for any $\mathbf{w}^T\mathbf{z}$ with high probability. So $\ell(\mathbf{w}^T\mathbf{z})$ is $O(\log^{3/2}(1/\delta))$ -Lipschitz, i.e., $\rho = O(\log^{3/2}(1/\delta))$. Furthermore, $|\ell(\mathbf{a}^T\mathbf{z})| \leq O(\log^2(1/\delta)) \triangleq U$. Plugging in all those parameters, we can see that when $m \geq c_0 d\log^4\left(\frac{1}{\delta}\right) \epsilon^{-2}$, the R.H.S. of (3) is no larger than δ , as desired.

Property of Standard Gaussian Distribution

Lemma 3. Let X be the random variable drawn from standard Gaussian distribution $\mathcal{N}(0, 1)$. Then for every t > 0,

$$\Pr[|X| > t] \le \exp(-t^2/2).$$
(4)

Lemma 4. Let \mathcal{P} be the isotropic Gaussian distribution in \mathbb{R}^d . Then $\Pr_{\mathbf{w}\sim\mathcal{P}}[\|\mathbf{w}\|_2 \ge \alpha] \le \left(\frac{e\alpha^2}{d}\right)^{d/2} e^{-\alpha^2/2}$.

Proof. We have

$$\Pr[\|\mathbf{w}\|_{2} \ge \alpha] = \Pr[e^{s\|\mathbf{w}\|_{2}^{2}} \ge e^{s\alpha^{2}}]$$

$$\leq \frac{\mathbb{E}e^{s\|\mathbf{w}\|_{2}^{2}}}{e^{s\alpha^{2}}}$$

$$= e^{-s\alpha^{2}}(1-2s)^{-d/2},$$
(5)

where the last equality is from the moment generating function of Chi-Square distribution. Setting $s = \frac{\alpha^2 - d}{2\alpha^2}$, we obtain the desired result.

Result on Standard Compressed Sensing

Theorem 5 ((Foucart and Rauhut 2013), Robust Recovery). Let $\mathbf{x} \in \mathbb{R}^n$ be a t-sparse vector. Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a randomly drawn standard Gaussian matrix. Assume that the noisy measurements $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e}$ are taken with $\|\mathbf{e}\|_2 \leq \sqrt{\eta/m}$. If

$$\frac{m^2}{m+1} \ge 2t \left(\sqrt{\log(en/t)} + \sqrt{\log(\delta^{-1})/t} + \tau/\sqrt{t}\right)^2,\tag{6}$$

then with probability at least $1 - \delta$, every minimizer $\widetilde{\mathbf{x}}$ to

$$\widetilde{\mathbf{x}} := \min_{\mathbf{x}} \|\mathbf{x}\|_1, \ s.t. \ \|\widetilde{\mathbf{z}} - \mathbf{\Psi}\mathbf{x}\|_2 \le \sqrt{\eta/m}.$$
(7)

[†]Corresponding author.

Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

satisfies

$$\|\widetilde{\mathbf{x}} - \mathbf{x}\|_2 \le 2\frac{\sqrt{\eta}}{\tau\sqrt{m}}.\tag{8}$$

Property of Bernoulli Model

Lemma 6. Let n be the number of Bernoulli trials and suppose that $\Omega \sim Ber(d/n)$. Then with probability at least $1-\delta$, $|\Omega| = \Theta(d)$, provided that $d \ge 4 \log(1/\delta)$.

Proof. Take a perturbation ϵ such that $d/n = d_0/n + \epsilon$. By the scalar Chernoff bound which states that

$$\Pr(|\Omega| \le d_0) \le e^{-\epsilon^2 n^2/2d_0},\tag{9}$$

if taking $d_0 = d/2$, $\epsilon = d/2n$ and $d \ge 4\log(1/\delta)$, we have

$$\Pr(|\Omega| \le d/2) \le e^{-d/4} \le \delta. \tag{10}$$

On the other hand, by the scalar Chernoff bound again which states that

$$\Pr(|\Omega| \ge d_0) \le e^{-\epsilon^2 n^2/3d},\tag{11}$$

if taking $d_0 = 2d$, $\epsilon = -d/n$ and $d \ge 4\log(1/\delta)$, we obtain

$$\Pr(|\Omega| \ge 2d) \le e^{-d/3} \le \delta.$$
(12)

Finally, according to (10) and (12), we conclude that $d/2 < |\Omega| < 2d$ with probability at least $1 - \delta$.

References

Foucart, S., and Rauhut, H. 2013. A Mathematical Introduction to Compressive Sensing, volume 1. Springer.

Shalev-Shwartz, S., and Ben-David, S. 2014. *Understanding Machine Learning: From Theory to Algorithms*. Cambridge University Press.