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Proof of Measure of Concentration
Lemma 1 ((Shalev-Shwartz and Ben-David 2014)). Let F
be the class of linear predictors with the L2 norm of the
weights bounded by W2. Assume that the L2 norm of the
instance is bounded by X2. Then for the ρ-Lipschitz loss `
such that max〈w,x〉∈[−W2X2,W2X2] |`(w, x, y)| < U , with
probability at least 1− δ over the choice of an i.i.d. sample
T of size m,

∀w ∈ {w : ‖w‖2 ≤W2} ,

|E`(w, x, y)− `(w, T )| ≤ 2ρW2X2√
m

+U

√
2 log(2/δ)

m
.

Lemma 2 (Lemma 3 in Main Body). Let z ∈ {z : ‖z‖2 ≤
1} and {wi}mi=1 be random vectors i.i.d. sampled from the
standard Gaussian distribution N (0, I). Fix x ∈ Rn and
suppose that m ≥ c0d log4

(
1
δ

)
ε−2 with a universal con-

stant c0, then with probability at least 1− δ,

|fx0(z)− Efx0(z)| ≤ ε (1)

uniformly holds for all z ∈ Rn.

Proof. The proof is basically based on Lemma 1. Note that

fx0
(z) =

1

m

m∑
i=1

yi(w
T
i z)2 =

1

m

m∑
i=1

((wT
i Ψx0)2+ηi)(w

T
i z)2.

(2)
By Lemma 1, we have that

Pr

[
sup
z
|Efx(z)− fx(z)| > 2ρW2X2√

m
+ s

]
≤ 2 exp

(
−ms

2

2U2

)
, (3)

where the supremum is taken over all z ∈ {z : ‖z‖2 ≤ 1}.
To identify the parameters ρ, W2, X2, and U above,

we exploit the property of standard Gaussian distribution.
Specifically, we see that W2 = 1. By Lemma 4, we have
‖wi‖2 ≤ O(

√
d log(1/δ)) , X2 with probability at
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least 1 − δ. Let `(wT z) = yi(w
T z)2. Since by Lemma

3 and the fact that ηi is a global constant,
∣∣`′(wT z)

∣∣ ≤
2yi|wT z| ≤ O(log3/2(1/δ)) for any wT z with high prob-
ability. So `(wT z) is O(log3/2(1/δ))-Lipschitz, i.e., ρ =

O(log3/2(1/δ)). Furthermore, |`(aT z)| ≤ O(log2(1/δ)) ,
U . Plugging in all those parameters, we can see that when
m ≥ c0d log4

(
1
δ

)
ε−2, the R.H.S. of (3) is no larger than δ,

as desired.

Property of Standard Gaussian Distribution
Lemma 3. Let X be the random variable drawn from stan-
dard Gaussian distribution N (0, 1). Then for every t > 0,

Pr[|X| > t] ≤ exp(−t2/2). (4)

Lemma 4. Let P be the isotropic Gaussian distribution in

Rd. Then Prw∼P [‖w‖2 ≥ α] ≤
(
eα2

d

)d/2
e−α

2/2.

Proof. We have

Pr[‖w‖2 ≥ α] = Pr[es‖w‖
2
2 ≥ esα

2

]

≤ Ees‖w‖22
esα2

= e−sα
2

(1− 2s)−d/2,

(5)

where the last equality is from the moment generating func-
tion of Chi-Square distribution. Setting s = α2−d

2α2 , we obtain
the desired result.

Result on Standard Compressed Sensing
Theorem 5 ((Foucart and Rauhut 2013), Robust Recovery).
Let x ∈ Rn be a t-sparse vector. Suppose that A ∈ Rm×n
is a randomly drawn standard Gaussian matrix. Assume that
the noisy measurements b = Ax + e are taken with ‖e‖2 ≤√
η/m. If

m2

m+ 1
≥ 2t

(√
log(en/t) +

√
log(δ−1)/t+ τ/

√
t
)2
,

(6)
then with probability at least 1− δ, every minimizer x̃ to

x̃ := min
x
‖x‖1, s.t. ‖z̃−Ψx‖2 ≤

√
η/m. (7)



satisfies

‖x̃− x‖2 ≤ 2

√
η

τ
√
m
. (8)

Property of Bernoulli Model
Lemma 6. Let n be the number of Bernoulli trials and sup-
pose that Ω ∼ Ber(d/n). Then with probability at least 1−δ,
|Ω| = Θ(d), provided that d ≥ 4 log(1/δ).

Proof. Take a perturbation ε such that d/n = d0/n+ ε. By
the scalar Chernoff bound which states that

Pr(|Ω| ≤ d0) ≤ e−ε
2n2/2d0 , (9)

if taking d0 = d/2, ε = d/2n and d ≥ 4 log(1/δ), we have

Pr(|Ω| ≤ d/2) ≤ e−d/4 ≤ δ. (10)

On the other hand, by the scalar Chernoff bound again
which states that

Pr(|Ω| ≥ d0) ≤ e−ε
2n2/3d, (11)

if taking d0 = 2d, ε = −d/n and d ≥ 4 log(1/δ), we obtain

Pr(|Ω| ≥ 2d) ≤ e−d/3 ≤ δ. (12)

Finally, according to (10) and (12), we conclude that
d/2 < |Ω| < 2d with probability at least 1− δ.

References
Foucart, S., and Rauhut, H. 2013. A Mathematical Introduc-
tion to Compressive Sensing, volume 1. Springer.
Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press.


