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Abstract
Sparse representation is efficient to approximately recover signals by a linear composition
of a few bases from an over-complete dictionary. However, in the scenario of data com-
pression, its efficiency and popularity are hindered due to the extra overhead for encoding
the sparse coefficients. Therefore, how to establish an accurate rate model in sparse coding
and dictionary learning becomes meaningful, which has been not fully exploited in the con-
text of sparse representation. According to the Shannon entropy inequality, the variance
of data source can bound its entropy, thus can reflect the actual coding bits. Therefore, a
Globally Variance-Constrained Sparse Representation (GVCSR) model is proposed, where
a variance-constrained rate term is introduced to the conventional sparse representation. To
solve the non-convex optimization problem, we employ the Alternating Direction Method of
Multipliers (ADMM) for sparse coding and dictionary learning, both of which have shown
state-of-the-art rate-distortion performance in image representation.

1 Introduction

Transform codings, e.g. Discrete Cosine Transform (DCT), Discrete Wavelet Trans-
form (DWT), have shown great power in de-correlation and have been widely adopted
in image compression standards. The basis functions of both DCT and DWT are or-
thogonal and meanwhile fixed despite the characteristics of the input signals. Such
inflexibility may greatly restrict their representation efficiency. In the early 1990s,
Olshausen and Field firstly proposed the sparse coding with a learnt dictionary [1] to
represent an image, where the bases in sparse model are over-complete and nonorthog-
onal. It is widely believed that the sparsity property is efficient in dealing with rich,
varied and directional information contained in natural scenes [2]. Recent studies fur-
ther validated the idea that the sparse coding performs in a perceptually meaningful
way that mimics the Human Visual System (HVS) on natural images [3–5]. Based on
the sparse model, numerous tasks have been successfully achieved, including image
denoising [6], restoration [7], quality assessment [8], etc.

In the conventional sparse representation model, the objective function is to min-
imize the distortion given a constrained sparsity term as follows,

(D, {Ai}) = argmin
D,{Ai}

∑
i

‖Ti −DAi‖22, s.t. ‖Ai‖0 � L, ‖Dj‖22 � 1, ∀j ∈ {1, 2, . . . ,M}
(1)
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where D ∈ R
N×M is the redundant dictionary with M bases. Ti ∈ R

N×1 indicates
the training data, and Ai ∈ R

M×1 is the corresponding sparse representation vector,
whose �0 norm is constrained by a given sparse level L. Typical algorithms for dic-
tionary learning include the Method of Optimal Directions (MOD) [9], KSVD [10],
Online Dictionary Learning (ODL) [11] and Recursive Least Square (RLS) [12]. With
respect to the trained dictionary D, the sparse decomposition calculates appropriate
coefficients Ai for the input signal Si,

Ai = argmin
Ai

‖Si −DAi‖22, s.t. ‖Ai‖0 � L, (2)

which is a subproblem of (1). Several suboptimal solutions have been proposed to
solve this, including �1 convex relaxation [13] and the well-known Matching Pursuit
Family (MPF) algorithms [14].

Despite the fact that sparse coding can provide more efficient representation than
orthogonal transforms [15], its efficiency in compression tasks is however limited be-
cause encoding sparse coefficients would be rather costly. Although the more nonzero
coefficients are included from the dictionary, the more costly it usually is to code
them, the cost may not be proportional to the number of nonzero coefficients. The
Rate-Distortion Optimized Matching Pursuit (RDOMP) approaches [16,17] were pro-
posed to address this issue, where the coding rate was estimated based on the prob-
abilistic model of the coefficients. Despite their performance improvements on image
compression, the RDOMPs may also have some limitations. Firstly, such matching
pursuit based methods may suffer from the instability in obtaining the sparse coeffi-
cients [18]. Secondly, they operate and encode each sample separately, which ignores
the data structure information and lacks global constraint over all input samples.
This may lead to quite different representations of two similar samples and result
in performance decrease [19]. Finally, the RDOMP methods are nontrivial to be in-
corporated with the dictionary learning algorithm and such inconsistency may also
decrease the efficiency.

To overcome these problems, the Globally Variance-Constrained Sparse Represen-
tation (GVCSR) model is proposed in this work, where a variance-constraint term
is introduced into the objective function in sparse representation. By incorporat-
ing the rate model, minimization of the objective function turns out to be a joint
rate-distortion optimization problem, which can be efficiently solved by Alternating
Direction Method of Multipliers (ADMM) [20] in both sparse coding and dictionary
learning. In particular, here “globally” aims to emphasize the way for solving the
model, which significantly distinguishes from the separate manner in matching pur-
suit. Therefore, such optimization based method can effectively utilize the intrinsic
data structure and reduce the instability.

The rest of the paper is organized as follows. In Section 2, we present the GVCSR
model and the solution to solve it via ADMM. Section 3 evaluates the efficiency of
GVCSR. Finally, we conclude this paper in Section 4.
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2 Globally Variance-Constrained Sparse Representation

In this section, we firstly present the Globally Variance-Constrained Sparse Repre-
sentation (GVCSR) model. The effective solutions for sparse coding and dictionary
learning are then introduced.

2.1 Rate-Distortion Optimized Sparse Representation

For data compression, the objective function that takes the coding rate into consid-
eration is formulated as follows,

argmin
A,D

{
1

2
‖S −DA‖2F + λ · r (A)

}
,

s.t. ‖Ai‖0 � L, ∀i ∈ {1, · · · , K} , ‖Dj‖22 � 1, ∀j ∈ {1, 2, . . . ,M} ,
(3)

where S ∈ R
N×K is the stack of input vectors Si, A ∈ R

M×K is the stack of the
corresponding sparse coefficient vectors Ai, K denotes the number of the input sam-
ples. r(·) indicates a function that can represent the coding rate of the coefficients.
This formula can be well expressed by the rate-distortion optimization in common
image/video compressions [21], where λ controls the relative importance between the
rate and distortion. �0 norm of the coefficients is still critical in order to obtain a
sparse approximation. Subsequently, the problem turns to be how to accurately esti-
mate the coding rate and achieve such optimization in sparse coding and dictionary
learning.

Based on the Shannon’s information theory, the entropy of a data source indicates
the average number of bits required to represent it. However, it is difficult to estimate
the probability density function of coefficients and formulate the entropy minimization
problem. Fortunately, the entropy can be bounded by the variance of data according
to the Shannon entropy inequality [22],

H(A) � log
(√

2πeV (A)
)
, (4)

where H(A) and V (A) indicate the entropy and the variance of coefficients, respec-
tively. Note that the inequality is tight as the equality holds for Gaussian distribu-
tions. Another benefit is that the variance can be feasibly estimated by,

V (A) = tr
(
AZAT

)
, (5)

where

Z =

⎛
⎜⎝

K − 1 · · · −1
...

. . .
...

−1 · · · K − 1

⎞
⎟⎠ ∈ R

K×K . (6)

The diagonal elements in Z equal K − 1 and others equal to −1.
Due to the Shannon entropy inequality and the feasibility of variance estimation,

we propose to minimize the variance instead of entropy. The reason lies in that
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Figure 1: Relationship between the data variance and the corresponding coding bits.

minimizing variance encourages the coefficients to be close to each other, which can
be more friendly to compression. To further validate this, we randomly generate data
sources and encode them by Huffman coding. The relationship between the variances
of the input data and the corresponding coding bits is plotted in Fig. 1, from which
one can discern that the variance exhibits a nearly perfect linear relationship to the
actual bitrate.

Therefore, the objective function in (3) can be formulated as follows,

argmin
A,D

{
1

2
‖S −DA‖2F +

β

2
tr

(
AZAT

)}
,

s.t. ‖Ai‖0 � L, ∀i ∈ {1, · · · , K} , ‖Dj‖22 � 1, ∀j ∈ {1, 2, . . . ,M} ,
(7)

where β/2 is introduced for computational convenience. Generally speaking, the �0
norm constraint can be approximately solved by Lagrangian method,

argmin
A,D

{
1

2
‖S −DA‖2F + α‖A‖0 +

β

2
tr

(
AZAT

)}
, s.t. ‖Di‖22 � 1, ∀i ∈ {1, 2, . . . ,M} .

(8)
To solve the non-convex optimization problem effectively, a practical relaxation is

to split the problem into two separable parts and update A and D alternately, i.e.
the GVCSR based sparse coding and GVCSR based dictionary learning.

2.2 GVCSR based Sparse Coding

The GVCSR based sparse coding given the dictionary D is a subproblem of (8),
which can be formulated as follows,

A = argmin
A

{1

2
‖S −DA‖2F + α‖A‖0 +

β

2
tr

(
AZAT

)}
. (9)
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To solve this, the Alternating Direction Method of Multipliers (ADMM) [20] is em-
ployed in this work. Firstly, two auxiliary variables J and G are introduced,

argmin
A,J ,G

{
1

2
‖S −DJ‖2F + α‖A‖0 +

β

2
tr

(
GZGT

)}
, s.t. A = J ,A = G, (10)

Then the augmented Lagrangian function of (10) can be formulated by,

ζμ (A,J ,G,R) =
1

2
‖S −DJ‖2F + α‖A‖0 +

β

2
tr

(
GZGT

)
+ 〈A− J ,R0〉+ μ

2
‖A− J‖2F + 〈A−G,R1〉+ μ

2
‖A−G‖2F ,

(11)

where R � [R0;R1] is the Lagrange multiplier matrix.
The variables A, J and G can be alternately updated by minimizing the aug-

mented Lagrangian function ζ with other variables fixed. In this model, each variable
can be updated with a closed-form solution. Regarding A, it can be updated by,

A = argmin
A

{
α‖A‖0 + 〈A− J ,R0〉+ μ

2
‖A− J‖2F + 〈A−G,R1〉+ μ

2
‖A−G‖2F

}

= argmin
A

{
α‖A‖0 +

μ

2

∥∥∥∥A− J +
R0

μ

∥∥∥∥
2

F

+
μ

2

∥∥∥∥A−G+
R1

μ

∥∥∥∥
2

F

}

= H√
α/μ

{
1

2

(
J +G− R0 +R1

μ

)}
,

(12)
where

Hε(X) �

⎛
⎜⎝

hε(X11) · · · hε(X1n)
...

. . .
...

hε(Xm1) · · · hε(Xmn)

⎞
⎟⎠ . (13)

and

hε(x) �
{

x, if |x| > ε
0, if |x| � ε

(14)

is a hard threshold operator. With respect to J and G, we can update them by,

J = argmin
J

{
1

2
‖S −DJ‖2F + 〈A− J ,R0〉+ μ

2
‖A− J‖2F

}

= argmin
J

{
1

2
‖S −DJ‖2F +

μ

2

∥∥∥∥A− J +
R0

μ

∥∥∥∥
2

F

}

= VD

(
ΣT

DΣD + μI
)−1

V T
D

(
DTS + μA+R0

)
,

(15)

G = argmin
G

{
β

2
tr

(
GZGT

)
+ 〈A−G,R1〉+ μ

2
‖A−G‖2F

}

= argmin
G

{
β

2
tr

(
GZGT

)
+

μ

2

∥∥∥∥A−G+
R1

μ

∥∥∥∥
2

F

}

= β (μA+R1)VZ (ΣZ + μI)−1 V T
Z ,

(16)
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where UDΣDV T
D and UZΣZV

T
Z are the full Singular Value Decomposition (SVD) of

D and Z, respectively. Finally, the Lagrangian multiplier R0 and R1 are updated,

Rj+1
0 = Rj

0 + μj
(
Aj+1 − J j+1

)
, (17)

Rj+1
1 = Rj

1 + μj
(
Aj+1 −Gj+1

)
, (18)

where j indicates the iteration times.
In previous ADMM approach [20], the penalty parameter μ is fixed. To accelerate

the convergence, an updating strategy for the penalty parameter is proposed in [23],
which can be formulated as follows,

μj+1 = min
(
ρμj, μmax

)
, (19)

where μmax is an upper bound of the penalty term. ρ � 1 is a constant.
The optimization process of the GVCSR based sparse coding performs iteratively

and stops until convergence. In this manner, the globally variance-constrained sparse
coding can be achieved. The detailed procedure is presented in Algorithm 1.

Algorithm 1: GVCSR based sparse coding in (9).

1 Input: Data set S, initial dictionary D, parameters α > 0 and β > 0.
2 Output: Sparse representation coefficients A.
3 Initialization:
4 Set A0 = J0 = G0 = D†S, μ0 = 1e− 2, μmax = 1e8, ρ = 1.2,R0 = R1 = 0, ε =

1e− 5, and j = 0;
5 while not convergence do
6 Fix J j and Gj to update Aj+1 by (12);
7 Fix Aj+1 and Gj to update J j+1 by (15);
8 Fix Aj+1 and J j+1 to update Gj+1 by (16);

9 Update Lagrange multipliers: Rj+1
0 = Rj

0 + μj (Aj+1 − J j+1),

Rj+1
1 = Rj

1 + μj (Aj+1 −Gj+1);
10 Update penalty parameter μ: μj+1 = min (ρμj, μmax);
11 j ← j + 1;
12 Check convergence: if ‖Aj − J j‖/‖Aj‖ � ε and ‖Aj −Gj‖/‖Aj‖ � ε and

‖Aj −Aj−1‖/‖Aj‖ � ε, then stop;

13 end

2.3 GVCSR based Dictionary Learning

In order to make the dictionary learning consistent with the proposed sparse cod-
ing strategy, we further solve the dictionary updating problem based on the overall
GVCSR model in (8). The updating process of sparse coefficients A is performed
as described in Algorithm 1. After the convergence of A, the dictionary D can be
updated with the optimized A as follows,

D = argmin
D

{
1
2
‖S −DA‖2F

}
s.t. ‖Di‖22 � 1, ∀i ∈ {1, 2, . . . ,M} . (20)
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Figure 2: Variations of distortion, estimated rate and the overall objective function value
during the ADMM iterations, which are represented by blue dotted line, green dashed line
and red solid line, respectively. The horizontal axis denotes the iteration times.

This can be solved via performing SVD on the residuals [10]. Then, the parametersA,
J , G should be further updated according to the new dictionary, while the Lagrangian
multipliers R0 and R1 are reset to zero vectors.

3 Experimental Results

In this section, the performance of the proposed GVCSR model is validated by com-
paring with other sparse coding and dictionary learning algorithms in image represen-
tation. In these experiments, natural images from the public CSIQ dataset [24] are
utilized for evaluation. Each image is partitioned into 8×8 non-overlapped blocks for
training their dictionary. It is worth mentioning that the rate of sparse coefficients
is obtained by performing actual entropy coding during the following comparisons,
where the value and position of nonzero coefficients are encoded by run-level method.

Firstly, the changing tendencies of distortion, rate and the overall objective func-
tion during the ADMM iterations are shown in Fig. 2. All the values on the three
curves are normalized to the same interval for viewing convenience. From this figure
we can observe that the proposed method can achieve a better tradeoff in terms of
the overall objective function by greatly decreasing the coding rate while keeping the
distortions slightly increased. As a result, the coding performance can be improved
via the proposed algorithm.

Subsequently, we compare the GVCSR based sparse coding algorithm described
in Section 2.2 with other sparse coding approaches. Specifically, three popular sparse
decomposition methods are used for comparison, and all of them can be categorized
into the separately updated matching pursuit algorithms. The first one is the standard
OMP algorithm [25], where the iteration process stops until the �0 norm of coefficients
reaches the limited value L. The second one is similar but the stop criterion is
determined by the error energy,

Ai = argmin
Ai

‖Ai‖0, s.t. ‖Si −DAi‖22 < ε. (21)

Those two methods are denoted as OMPL and OMPE, respectively. In addition, the
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(a) Completeness γ = 24
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(b) Completeness γ = 32
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(c) Completeness γ = 40
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(d) Completeness γ = 48

Figure 3: Rate-distortion performance comparisons with three matching pursuit based al-
gorithms, in terms of dictionaries with different completeness values.

RDOMP method [16, 17] based on the probability distribution of coefficients is also
compared.

In Fig. 3, the rate-distortion comparisons are illustrated in terms of different
values of completeness, where the completeness is defined as γ � M

N
assuming the

dictionary D ∈ R
N×M . It can be observed that the rate-distortion performance can

be significantly improved by the proposed algorithm. This may benefit from the
global optimization of the proposed method that jointly considers the distortion and
coding rate. Furthermore, from the figure one can also discern that the improvements
are more obvious for larger γ. Obviously, the sparse coefficients tend to become more
sparse for larger γ. Thereby the matching pursuit based methods may suffer from
their potential instability due to the increasing independency among coefficients, while
the proposed method can effectively solve this by global optimization to significantly
reduce the coding bits.

Finally, we evaluate the performance of the GVCSR based dictionary learning
scheme described in Section 2.3 by comparing it with the state-of-the-art algorithms,
including MOD [9], KSVD [10], ODL [11] and RLS [12]. For fair comparison, the
initial dictionary in each algorithm is the same, which is randomly selected from the
training set. The maximum iteration time is also set to be identical. The GVCSR
based sparse coding method is employed for generating the sparse coefficients. The
averaged results of actual coding rate and Peak Signal to Noise Ratio (PSNR) on the
CSIQ dataset are shown in Fig. 4, from which we can see that the proposed scheme
can achieve impressive improvements in terms of rate-distortion performance.
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Figure 4: Performance comparisons with the state-of-the-art dictionary learning algorithms,
including MOD [9], KSVD [10], ODL [11] and RLS [12].

4 Conclusion

In this work, we present a novel Globally Variance-Constrained Sparse Representation
(GVCSR) for rate-distortion joint optimization. To achieve this, a variance-constraint
term that can accurately predict the coding rate of the sparse coefficients is introduced
into the optimization process. Subsequently, we propose to use the Alternating Direc-
tion Method of Multipliers (ADMM) to effectively solve this model in a scientifically
sound way. In this manner, the rate-distortion jointly optimized sparse representation
can be achieved, leading to higher compression efficiency. Furthermore, experimen-
tal results have shown that the GVCSR model can achieve better RD performance
comparing with the state-of-the-art sparse coding and dictionary learning algorithms.
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