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Abstract—Structure from motion (SfM) is a crucial and
widely studied problem in computer vision. Recently, the
factorization framework for SfM was formulated as a low
rank approximation problem: the rank of rescaled measurement
matrix is always smaller than four. Since the rank function is
non-convex, a common practice is to replace with its convex
surrogate, i.e., the nuclear norm. However, nuclear norm
sometimes gets unsatisfactory results. In this paper, we apply
the recently proposed truncated nuclear norm to handle the
factorization framework in a non-convex way, which heavily
penalizes the singular values beyond the desired rank. We
further introduce weighted �1-norm to handle missing data
and outliers uniformly. Based on truncated nuclear norm, we
propose two factorization models for projective reconstruction
and metric reconstruction, respectively. We also proposed an
extremely efficient algorithm to tackle one of the optimization
sub-problems. Extensive experiments on synthetic and real
datasets verify the effectiveness of our method for projective and
metric reconstructions. Our method achieves higher accuracy
in 3D reconstruction and is more robust to missing data and
outliers.

I. INTRODUCTION

The structure from motion (SfM) problem, i.e., recovering

the 3D scene structure and camera motion from point cor-

respondence, is an important issue in computer vision [1],

[2]. Traditional methods tackle the problem via the epipolar,

trifocal, or more constraints. However, these kinds of multi-

linear constraints cannot estimate the SfM parameters with

more than four views simultaneously. In contrast, by adopting

factorization framework, SfM can be solved uniformly.

Figure 1 illustrates a common framework of factorization

methods for 3D reconstruction from multiple uncalibrated

images. Given an uncalibrated image sequence of a scene, the

feature matching and tracking module can be described by a

measurement matrix M, whose elements are the coordinates

of matched features in the image sequence. The projective

reconstruction module aims at recovering the projective depth

matrix Λ or the corresponding rescaled measurement matrix

(RMM) W ≡ Λ � M (where � denotes the Hadamard

product) and further factorizing W into a camera projection

matrix P̂ and a 3D structure matrix X̂. The projective

reconstruction differs from the true reconstruction by a

projective transformation. Although projective factorization

can provide some useful information, in most cases, it is the

metric reconstruction that really matters, which only differs

from the true reconstruction by a similarity transformation
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Fig. 1. A framework of factorization methods for 3D reconstruction. The
two steps in the middle are the focus issues of this paper.

(composed of a translation, a rotation or a reflection, and a

uniform change of scale). By assuming additional constraints,

the projective reconstruction P̂X̂ can be upgraded to a

metric reconstruction PX. With texture mapping and other

processing, we can build and visualize a 3D model. In this

paper, we focus on the projection and metric reconstructions

and propose new factorization methods for them.

A. Related work

The factorization method is originated from Tomasi and

Kanade’s work [3] based on an orthographic imaging model,

where the projective depths can be assumed to be constant

and hence the measurement matrix M can be directly factor-

ized into P and X by singular value decomposition (SVD). A

more general but also more difficult case is the perspective

imaging model with unknown projective depths. The most

popular approach is proposed by Sturm and Triggs [4], where

the rescaled measurement matrix W = Λ�M is factorized

into W = P̂X̂, by alternately updating P̂, X̂, and Λ. Despite

its elegance, the Sturm-Triggs factorization and its extensions

[5] have some disadvantages [1]: (1) the iteration is not

guaranteed to converge; (2) sometimes it converges to a trivial

solution; (3) the iteration may be unstable; (4) it works only

when the perspective projection is close to be affine.

Recently, Dai et al. proposed an element-wise factorization

(EWF) algorithm [6] that recovers W by solving a rank

minimization problem. Angst et al. [7] further proposed an

extension of EWF with the prior that the camera track is

smooth. Since the rank minimization is NP-hard, the rank

function is usually relaxed to its convex surrogate, i.e. the

nuclear norm. The nuclear norm (also known as the trace
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norm) of a matrix is defined as the sum of its singular values.

However, the nuclear norm minimization cannot guarantee

that the optimal W satisfies the fixed rank constraint.
Another category of low-rank matrix approximation is

based on matrix factorization. One of the widely used matrix

factorization methods is the so called Wiberg method [8],

which jointly optimizes a product UVT of two fixed size U
and V matrices, and introduces �1-norm to reject outliers.

However, for large size and high-dimensional data, Wiberg

method costs too much and requires more memory to reach

the minimum. Compared with nuclear norm minimization,

matrix factorization based methods can easily enforce the

fixed rank constraint by the explicit bilinear matrix form,

but introduces non-convexity, which makes the quality of the

result dependent on initialization.
The projective reconstruction can convey some useful

information, but the metric reconstruction is more attractable,

because it is closer to the true reconstruction. There are two

ways to achieve metric reconstruction:
(1) One is the classical approach called self-calibration,

which first recovers the camera motion and parameters, and

then computes the scene structure by triangulation. Most of

the self-calibration methods are based on the Kruppa equa-

tions [9]. Mendonca and Cipolla [10] proposed a cost func-

tion minimization approach to recover the camera intrinsic

parameters, which enjoys excellent convergence properties.
(2) The other is stratified reconstruction that upgrades

projective reconstruction to metric reconstruction by exploit-

ing many geometric constraints [11]. In most situations,

these methods show a degradation as noise increases, and

commonly require a initialization closed to the ground truth.

B. Contributions
While Dai et al. [6] and Angst et al. [7] formulate

projective reconstruction as rank minimization problems, it

is actually a fixed rank problem: the rank of the target

matrix is known priori. Despite the nuclear norm has proven

to be effective for solving rank minimization problems, it

is deficient in tackling fixed rank problems. Therefore, we

propose a novel method, which has following contributions:

• We apply truncated nuclear norm [12] to solve the fixed

rank minimization problem. The truncated nuclear norm

can encourage the rank of the optimal solution to be

the desired one by heavily penalizes the singular values

beyond the desired rank.

• We propose new models for both projective and metric

reconstruction based on truncated nuclear norm, which

greatly improve the accuracy of reconstructions. To

enhance the robustness of reconstructions, we also intro-

duce weighted �1-norm to handle outliers and missing

data in a unified way. Moreover, our method works

for both uncalibrated and unstructured camera motion,

while [7] assumes that the camera path is smooth.

• We design an extremely efficient algorithm to tackle

one of the optimization sub-problems and get better

reconstruction result.

II. THE PROPOSED FACTORIZATION METHODS

Our factorization methods can be divided into two steps

(Figure 1). First, we recover the RMM and apply projective

factorization. Second, we upgrade the projective reconstruc-

tion to the metric reconstruction. Both steps rely on truncated

nuclear norm minimization.

A. Truncated nuclear norm

In SfM and many other computer vision problems, we are

often faced with seeking an optimal matrix whose rank is

known to be less than or equal to a given integer. Such prob-

lems are often hard to solve. A common practice is to find an

intermediate solution by disregarding the rank constraint first,

and then perform SVD to truncate the singular values beyond

the given rank. Such a strategy is efficient in computation, but

often the accuracy cannot be guaranteed. Alternatively, Dai

et al. [6] proposed to solve a rank minimization problem for

projective factorization. Since rank minimization problems

are usually NP-hard [13], nuclear norm is used as a convex

surrogate of the rank [6], [7], [13], [14], [15], [16]. Such a

substitution has proven to be very successful in many low

rank recovery problems. However, we observe that nuclear

norm minimization is no longer effective for SfM problems.

For nuclear norm of matrices, the extreme points of unit

nuclear norm ball are all rank-one matrices uvT , where

‖u‖2 = ‖v‖2 = 1. Suppose that the ambient space is consist

of p×q matrices. Then the k-faces of the ball mainly consist

of matrices whose ranks are min(k, p, q), since they are the

convex combination of k rank-one p × q matrices. So we

can infer that if the constraint subspace is r dimensional

(r < pq), then for a linearly constrained nuclear norm

minimization problem, the optimal solution is most likely

to be rank min(pq − r, p, q). Therefore, if the dimension of

the constraint subspace is very low, we cannot produce a

truly low rank solution by using nuclear norm as a surrogate

of rank. For our RMM recovery problem (Eq. (4)), we can

easily count that the dimensions of the ambient space and

the constraint subspace are 3m×n and mn−1, respectively.

So if nuclear norm is used, we will most likely have a full

rank solution, and 3D reconstruction errors will be large.

Notice that nuclear norm does not encode any prior

knowledge about the rank constraint. It simply assigns an

equal weight for all the singular values of the solution.

However, for many SfM problems, we know that the rank of a

solution should not exceed a fixed integer. To this end, in this

paper we apply the recently proposed truncated nuclear norm

[12] to get a more accurate rank minimization solution. The

truncated nuclear norm is defined as the sum of min(m,n)−r
minimum singular values, i.e.,

‖S‖∗,r ≡
min(p,q)∑
i=r+1

σi(S), (1)

where p× q is the dimension of S, {σi(S)} are the singular

values of S, r is the known rank that S should not exceed.
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B. Projective factorization

Basic model for recovering the rescaled measurement
matrix. Suppose that there are n 3D points observed by

m projective cameras. The image formation process can be

described by λijmij = Pixj , where Pi ∈ R
3×4 is the pro-

jection matrix of the i-th camera, xj = [xj , yj , zj , 1]
T ∈ R

4

denotes the homogeneous coordinate of the j-th 3D point,

mij = (uij , vij , 1)
T ∈ R

3 is the homogeneous coordinate of

xj in the image captured by the i-th camera, and λij is a

scaling factor, called the projective depth [1], to account for

the perspective projection. Putting all imaged points together,

we have a basic matrix equation [1], [2], [6]:

Λ�M = PX, (2)

where Λ = [λij ] ⊗ 13×1 ∈ R
3m×n, M = [mij ] ∈ R

3m×n,

P = [P1; · · · ;Pm] ∈ R
3m×4, and X = [x1, · · · ,xn] ∈

R
4×n. Here are some notations: � represents the element-

wise (Hadamard) product, ⊗ is the Kronecker product, and

1 is an all-one vector. M is called the measurement matrix.

For simplicity, we define the rescaled measurement matrix as

W ≡ Λ�M ∈ R
3m×n.

To find the constraints on W, we first observe that Λ
can be replaced by λij = w3i,j due to using homogeneous

coordinates mij = (uij , vij , 1)
T . So W −Λ�M = 0 can

be written as A(W) = 0, where

A(W) ≡

⎡⎢⎢⎣
· · · · · · · · ·
· · · w3i−2,j − uijw3i,j · · ·
· · · w3i−1,j − vijw3i,j · · ·
· · · · · · · · ·

⎤⎥⎥⎦
2m×n

. (3)

Moreover, it is easy to see that rank(W) ≤ 4, because it

is expected that W = PX (P ∈ R
3m×4 and X ∈ R

4×n).

So the problem of finding W can be formulated as a fixed

rank problem. As discussed in the last subsection, we use

truncated nuclear norm [12] to enforce the rank constraint,

resulting in the following optimization problem:

min
W

‖W‖∗,r1 , s.t. A(W) = 0, dTW1 = mn, (4)

where r1 = 4, and d = 1T
m×1⊗(0, 0, 1)T . The last constraint

imposes
∑

ij λij = mn to avoid the trivial solution W = 0.

Note that the two constraints above are more general than

those in [6]. Besides, we do not require λij to be positive,

allowing points to be behind some cameras, e.g., when taking

photos on a moving car.

Dealing with outliers and missing data. In real SfM

applications, outliers and missing data pose a great challenge

to most factorization methods. Outliers may be caused by

wrong matches. They make a small number of entries of

M contaminated by gross errors, but in general we do not

know where they are. For missing data, we know the exact

position of these incomplete entries. They may be caused by

occlusion or points out of image boundary or behind cameras.

For both outliers and missing data, we assume that only a

few entries are corrupted, thus being “sparse”. Although this

sparsity assumption seems a bit restrictive, we will show in

Fig. 2. Procedure to recover a highly sparse measurement matrix with a
strong band-diagonal pattern. The black areas represent the missing data. Top
row: the original measurement matrix. Second row: two sub-matrices with
relatively few missing entries are selected from the original measurement
matrix, then all the missing entries are filled in. Bottom row: the fully
recovered measurement matrix. (Figure in this paper are best viewed
on screen!)

Section IV that our method can also account for a reasonably

high percentage of corruptions. Actually, we are able to fill

in the measurement matrix even if it is very sparse (see

Algorithm 1).

In reality, outliers and missing data often mix together. To

handle outliers and missing data jointly, we propose weighted

�1-norm for these two types of corruptions, leading to the

following model:

min
W,E

‖W‖∗,r1 + τ̂‖E‖Ω�1, (5)

s.t. A(W) +E = 0, dTW1 = mn,

where E accounts for the corruptions, Ω ∈ R
2m×n is a 0-1

mask matrix:

Ω = [ωij ], ωij =

{
0 ∈ R

2, if mij is missing,
1 ∈ R

2, if mij is available,
(6)

and ‖E‖Ω�1 ≡ ‖Ω � E‖1 =
∑

ij ωij |eij |, which only

collects the errors at available pixels. In practice, we set

τ̂ = τ/max{3m,n}, where τ > 0 is a tunable parameter.

Eq. (5) can be efficiently solved by the alternating direction

method of multiplier (ADMM) [17]. The details are given

in Section III. We want to highlight that, if we mark those

highly confident pixels as “available” pixels and those lowly

confident ones as “missing” pixels, outliers can also be

handled by Eq. (5).

Dealing with a highly sparse measurement matrix.
According to [7], in real SfM applications, due to the

occlusions, the measurement matrix M may be highly sparse,

e.g., exhibiting a strong band-diagonal pattern with most of

the off-band-diagonal entries missing (first row in Figure 2).

Such a pattern is deemed to be very challenging for 3D

recovery [7].

To tackle this issue, we propose an algorithm to iteratively

fill in the missing entries with band-diagonal pattern. We first

select multiple sub-matrices from M such that the percentage

of the missing entries is smaller than a given threshold

(second row in Figure 2). These sub-matrices are recovered

in parallel using the above RMM recovery method. For the

missing entries covered by multiple sub-matrices (Figure 3),
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Fig. 3. A sketch of storing candidate values for missing entries of a
measurement matrix. “×” represents a missing entry and “©” represents

a known entry. Three different rectangles represent three different ̂Msub. It

can be seen that some missing entries are covered by different ̂Msub’s. So
more than one candidate values are stored for this entry.

if the recovered values do not vary too much, their median

values are assigned. Then we find new sub-matrices and fill

in the missing entries again, until all the missing entries are

filled in. This process is illustrated in Figure 2 and more

details are given in Algorithm 1.

Algorithm 1 Process of Recovering a Highly Sparse Mea-

surement Matrix
Input:

Original highly sparse measurement matrix M (top row

in Figure 2)

Notation:
mij = [ui,j , vi,j , 1]

T , ωij ∈ [0, 1].
Msub ∈ R

3p×q and Ωsub ∈ R
2p×q are sub-matrices of

M and Ω, respectively. η is an expected ratio of known

entries. ρ is an expected confidence threshold of Ω.

1: Initialize the mask matrix Ω by using Eq. (6).

2: Select some Msub’s whose Ωsub’s satisfy the following

conditions:∑p
i=1{ωsub}ij > p× η, ∀j,

∑q
j=1{ωsub}ij > q × η, ∀i,

i.e., the ratios of known entries in every row and column

are above the threshold η.

3: Recover all the Msub’s in parallel by solving Eq. (5).

Store each M̂sub as a candidate value of mij (Figure 3).

4: Update ωij = exp
(
−

∑n
k=1 ‖mk−m‖2

n

)
, where n is the

total number of all candidate values, mk is the kth

candidate value of mij , and m is the median of {mk}.

5: If ωij > ρ, then update M: mij = m.

6: If M is not fully filled-in, then go to step 2.

7: Output:
Fully filled-in measurement matrix M (bottom row in

Figure 2).

After recovering the rescaled measurement matrix W, a

projective reconstruction is available to apply by directly

factorizing W into P̂X̂, where P̂ = [P̂1; P̂2; · · · ; P̂m] ∈
R

3m×4 is the camera motion matrix and X̂ ∈ R
4×n is the

scene structure matrix.

C. Upgrade to Metric reconstruction
Clearly, the projective factorization is not unique: W =

(P̂H)(H−1X̂), where H ∈ R
4×4 is any non-singular matrix.

In real applications, a metric reconstruction is more desirable

as it differs from the true reconstruction only by a similarity

transformation. So we upgrade the projective reconstruction

to the metric reconstruction by reducing the ambiguity in H.

To this end, we assume that the intrinsic parameters of all

the cameras are the same.
Based on the projective imaging model, the relation be-

tween the ground truth P and the intermediate P̂ can be

expressed as [5]:

P̂iH = αiPi = αiK[Ri ti], i = 1, · · · ,m,

where K is an upper-triangular matrix composed of camera

intrinsic parameters, Ri and ti are the rotation and translation

of the i-th camera, respectively.
Rewriting H as [H3,h] where H3 ∈ R

4×3 consists of the

first three columns of H, we have

P̂iH3 = αiKRi, i = 1, · · · ,m,

and hence [18]:

P̂iH3H
T
3 P̂

T
i = α2

iKKT , i = 1, · · · ,m.

Let Q ≡ H3H
T
3 , which is positive semi-definite of rank 3,

and V ≡ KKT , which is positive definite and called the

dual image of the absolute conic (DIAC) [1]. Using notation

Vi ≡ α2
iKKT , we obtain

P̂iQP̂T
i = Vi, i = 1, · · · ,m. (7)

Eq. (7) can be rewritten as:

(P̂i ⊗ P̂i)vec(Q) = vec(Vi), i = 1, · · · ,m,

where vec(·) is the vectorization operator that stacks all the

columns of a matrix into a long column vector. Notice that

the rank of V ≡ [vec(V1), · · · , vec(Vm)] is one, as each

column is a scaled vec(V).
Combining all constraints together, we have the following

optimization problem for Q and Vi:

min
Q,{Vi}

m∑
i=1

∥∥∥(P̂i ⊗ P̂i)vec(Q)− vec(Vi)
∥∥∥2
F

+‖Q‖∗,r2 + ‖V‖∗,r3 , (8)

s.t. Q 	 0,V1 	 I,Vi 	 0, i = 2, · · · ,m,

where r2 = 3, r3 = 1, and the positive semi-definite

constraint V1 	 I is imposed to avoid trivial solutions Q = 0
and V = 0. Eq. (8) can be solved by applying ADMM [17]

and semidefinite programming (SDP) [19]. We will provide

the details on our website or arXiv later.
When Q is obtained, H3 can be directly computed by the

eigenvalue decomposition of Q with a rotation transformation

ambiguity. As h is the homogeneous coordinate of the origin

of the world coordinate, an arbitrary h can be selected as

long as H = [H3,h] is non-singular. After recovering H,

the metric reconstruction is achieved by

P = P̂H and X = H−1X̂.

The intrinsic parameter K can be obtained from the Cholesky

decomposition of V1 with a scale transformation ambiguity.
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III. OPTIMIZATION BY ADMM

In this paper we adopt the alternating direction method

of multiplier (ADMM) [17] to solve our truncated nuclear

norm minimization problems. ADMM is a representative first

order method due to its simplicity and has found to be very

effective for many nuclear norm minimization problems [13],

[17].

To make each sub-problem of ADMM have a closed-form

solution, we introduce an auxiliary matrix Z and rewrite

problem Eq. (5) as:

min
W,E,Z

‖W‖∗,r1 + τ̂‖E‖Ω�1, (9)

s.t. A(Z) +E = 0, W − Z = 0, dTZ1 = mn.

The partial augmented Lagrangian function of Eq. (9) is:

L1(W,E,Z,G,L) = ‖W‖∗,r1 + τ̂‖E‖Ω�1

+〈G,A(Z) +E〉+ α
2 ‖A(Z) +E‖2F

+〈L,W − Z〉+ α
2 ‖W − Z‖2F , (10)

where G and L are the Lagrange multiplier matrices,

〈A,B〉 ≡ trace(ATB) denotes the matrix inner product, and

α > 0 is a penalty parameter.

The iterations of ADMM go as follows:

Wk+1 = argmin
W

L1(W,Ek,Zk,Gk,Lk)

= argmin
W

‖W‖∗,r1+ α
2 ‖W−Zk+

Lk

α ‖2F ,(11)

Ek+1 = argmin
E

L1(Wk+1,E,Zk,Gk,Lk)

= argmin
E

τ̂‖E‖Ω�1+
α
2 ‖E+A(Zk)+

Gk

α ‖2F ,(12)

Zk+1 = arg min
dTZ1=mn

L1(Wk+1,Ek+1,Z,Gk,Lk)

= arg min
dTZ1=mn

α
2 ‖A(Z) +Ek+1 +

Gk

α ‖2F
+α

2 ‖Wk+1 − Z+ Lk

α ‖2F , (13)

Gk+1 = Gk + α(A(Zk+1) +Ek+1), (14)

Lk+1 = Lk + α(Wk+1 − Zk+1). (15)

According to Lu et al.’s proof [20], the solution to Eq. (11)

is given by:

Wk+1 = Dr1,α−1

(
Zk − Lk

α

)
, (16)

where Dr,ε(Y) (ε > 0) is the truncated singular value

shrinkage operator defined as follows:

Dr,ε(Y) ≡ U(Σ− εdiag(c))+V
T ,

in which UΣVT is the SVD of Y, (x)+ = max{x, 0}, and

c is a vector where c1 = · · · = cr = 0 and cr+1 = · · · =
cmin(p,q) = 1.

The solution to Eq. (12) is

Ek+1 = SΩ,α−1

(
−A(Zk)− Gk

α

)
, (17)

where SΩ,ε(Y) is the weighted shrinkage operator:

SΩ,ε(Y) ≡ (|Y| − εΩ)+ � sgn(Y),

in which |Y| = [|yij |]. The proof of Eq. (17) is in [21].

Here we propose an extremely efficient algorithm to solve

Eq. (13), which is hard to solve directly. In detail, denote the

matrix representation of the operator A as A, where A =

diag(· · · ,Aij , · · · ), and Aij =

[
1 0 −uij

0 1 −vij

]
, then the

optimality condition for Eq. (13) is[
α(I+ATA) D̃

D̃T 0

] [
Z̃
β

]
=

[
αW̃k+1 + L̃k −AT (αẼk+1 + G̃k)

mn

]
,

(18)

where β is an introduced Lagrange multiplier, [̃·] means

the vectorized one of the matrix, and D = 1T ⊗ d. A

direct way to solve Eq. (18) will involve extremely expensive

computation, because the size of the coefficient matrix is

(9mn + 1) × (9mn + 1). We first compute the eigenvalue

decomposition of AT
ijAij as VijSijV

T
ij , which has a

closed-form solution. Denote S = diag(· · · ,Sij , · · · ) and

V = diag(· · · ,Vij , · · · ), then[
V 0
0 1

] [
α(I+ATA) D̃

D̃T 0

] [
VT 0
0 1

]

=

[
α(I+ S) VD̃

(VD̃T ) 0

]
is an arrowhead matrix, whose non-zero entries are

only on the last row, the last column, and the di-

agonal. Let x =

[
VT 0
0 1

] [
Z̃
β

]
, and y =[

VT 0
0 1

] [
αW̃k+1 + L̃k −AT (αẼk+1 + G̃k

mn

]
,

then the Eq. (18) can be transformed into a much simpler

linear system: [
diag(a) b
bT 0

]
x = y, (19)

where diag(a) ∈ R
9mn is the diagonal of α(I + S) and

b = VD̃ ∈ R
9mn. Since V and AT are block diagonal,

their multiplication with a vector can be efficiently calculated.

Finally, the solution to Eq. (19) is simply given as:

x9mn+1 =

⎡⎣9mn∑
j=1

(bjyj/aj)− y9mn+1

⎤⎦/ 9mn+1∑
j=1

(b2i /ai),

xi = (yi − bix9mn+1)/ai, 1 ≤ i ≤ 9mn.

After x is computed, we can compute Z by solving[
Z̃
β

]
=

[
V 0
0 1

]
x.
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IV. EXPERIMENTS

In this section, we conduct extensive experiments on both

synthetic and real-world datasets to evaluate the performance

of our factorization methods for projective and metric recon-

structions.

For projective reconstruction, we cannot compare with [7]

because their method requires a smooth and densely sampled

trajectory of the camera. Two measures are employed to

evaluate the performance:

(1) Reprojection errors in the image space [6]:

ε1 ≡ ‖m− m̂‖2,
where m ∈ R

2 is an imaged point and m̂ is its re-

projected point that is computed by m̂ = [w3i−2,j/w3i,j ,

w3i−1,j/w3i,j ]
T (for the j-th point in the i-th image).

(2) Relative 3D reconstruction errors in the 3D space:

ε2 ≡ ‖x− x̂‖2/‖x‖2,
where x ∈ R

3 is the ground truth 3D point and x̂ is the

estimation.

For metric reconstruction, we compare our method with the

classic SfM method named “Bundler”, which was proposed

by Snavely et al. [22]. We use the following measure for

performance evaluation:

Overall relative 3D reconstruction error :

ε3 = ‖X̃−Xt‖F /‖Xc‖F ,
where Xc is the matrix of centered 3D points by deducting

their mean from the ground truth Xt and X̃ is the recon-

struction output corrected by resolving scale, rotation, and

reflection ambiguities using Xt as a reference.

A. Experiments with synthetic data

We test the robustness of our algorithm under different

settings. For all the synthetic experiments, we set the camera

intrinsic matrix as the identity matrix.

1) Accuracy in projective reconstruction: We first test

our algorithm on synthetic data with both missing data and

outliers. We add different ratios of outliers, ranging from 0%

to 10% to the synthetic data, together with 20% uniformly

random missing data. Empirically, the ratio of outliers caused

by mismatching is below 5% in a real stereo system, so our

settings of outliers are sufficient. The best τ is selected for

different settings. As shown in Figure 4, our algorithm works

well in a wide variety of scale settings with both missing data

and outliers.

2) Accuracy in metric reconstruction: We use 3D Max

to simulate a 3D point cloud of a house observed from 10

or 20 cameras (Figures 5(a)) and with dense noise of ±0.5
pixels. The missing data are naturally produced by occlusion

by a teapot and an ellipsoid. Different ratios of outliers (up to

10%) are further imposed. The metric reconstruction results

of Snavely et al.’s classic SfM method “Bundler” [22] and

our method are shown in Figures 5(b) and 5(c), whose overall

relative 3D reconstruction errors are ε3 = 5.93% and 0.47%,

Fig. 4. Histograms of relative 3D reconstruction errors on synthetic data
with 20 cameras × 60 points. The percentage of missing data is set to 20%
with different percentages of outliers. In our algorithm, τ ’s are tuned to
achieve the best performance (τ = 0.35).

(a)

(b) (c)

Fig. 5. Results on data simulated by 3D Max. (a) A simulated scene
consisting of a point cloud of a house and two obstacles (teapot and
ellipsoid), captured by several cameras. (b) Overlap of the ground truth
(red sphere) and the 3D points (green square) reconstructed by using
Bundler [22]. It cannot recover all of the points. (c) Overlap of the ground
truth (red sphere) and the estimated 3D points (green square) by our metric
reconstruction.

respectively. Our method is clearly much more accurate than

“Bundler” [22]. Moreover, “Bundler” cannot recover all the

points because it does not handle missing values well.

B. Experiments with real data

1) Accuracy in projective reconstruction: Comparison
with state-of-the-art methods. First, we compare the av-

erage reprojection errors on two real datasets: Corridor and

Chair [6]. Table I shows that the reprojection errors of our

algorithm are much lower than that of the state-of-the-art

methods on both datasets. Due to memory limitation, L1-

Wiberg [8] fails on the Corridor dataset.

Robustness to corruptions. We also verify our method

on the first seven frames of Oxford Dinosaur dataset [25].
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Fig. 6. Results on the Oxford dinosaur data by using our algorithm. Most of the input points (red star) coincide with the estimated reprojected points
(blue circles). Black circles and black squares show examples of missing data in the original input points, which are recovered by our algorithm. White
squares indicate one of the obvious outliers (No.578 point in the input data) found by our algorithm, which has never been reported before.

TABLE I
COMPARISON OF AVERAGE REPROJECTION ERRORS ON REAL IMAGES

WITH COMPLETE MEASUREMENTS (SOME ARE QUOTED FROM [6]).

Method/Dataset Corridor Chair
(cameras×points) (11×104) (6×9)

SIESTA [23] 0.4328 1.3584
CIESTA [23] 0.4296 1.3723

Col-space [24] 0.4501 1.4759
EWF [6] 0.4327 1.3568

EWF [6]+Bundler [22] 0.3763 1.2545
L1-Wiberg [8] - 0.9368
Our algorithm 0.2823 0.9154

Figure 6 shows the ground truth and the recovered reprojected

points which are visible in at least 4 frames. We can see

that our algorithm can handle missing data and outliers

simultaneously. Notice that our model does not need to

explicitly distinguish missing data from outliers.

2) Accuracy in metric reconstruction: Since the Oxford

Dinosaur dataset has ground truth, we seek to recover metric

reconstruction of the whole dinosaur and then compare with

the ground truth. Unfortunately, due to the occlusions, the

whole dataset of 36 frames yields a strong band-diagonal

pattern in the measurement matrix with almost all off-

band-diagonal entries missing, which is regarded as a very

challenging problem for 3D recovery [7]. So the first step

of this experiment is to recover the whole measurement

matrix. To this end, we first select points which appear in

more than four frames. So there are more than 900 points in

the whole measurement matrix. Next, we fill in the original

measurement matrix by using Algorithm 1. Figure 7 shows an

example of updating missing points by assigning the median

values to it.

With the fully filled-in measurement matrix, we apply

our metric reconstruction method to it. Figure 8(b) shows

the 3D points collected by the measurement matrix (more

than 900 points). After aligning (i.e., by removing the scale

and rotation/reflection ambiguities) our metric reconstruction

Fig. 7. A example of updating the positions of missing points. Top left: a
frame with all recovered missing points in it. Top right: all the candidate
values of one missing point are in the same rectangle. Bottom row: different
colors of points stand for different candidate values. The median value of
all the candidate values is shown as the black point.

with the ground truth, which is obtained by triangulation

using the camera matrices provided by the dataset [25], we

can see that they match fairly well (Figure 8(e)). Actually,

the overall relative 3D reconstruction error is only 6.18%. We

also apply the estimated camera matrix P to all the points

recorded in the dataset [25] (about 5000 points) and obtain

the triangulation reconstruction, as shown in Figure 8(f).

Again, our triangulation reconstruction and the ground truth

model match well (Figure 8(g)). In contrast, “Bundler” [22]

can only reconstruct part of the points (Figures 8(a) and

8(c)) and the error is much larger (40.80%, Figure 8(d)).

This shows the effectiveness of our metric reconstruction

method. In particular, we want to re-emphasize that the

original measurement matrix is very sparse and we have to

fill in it first by Algorithm 1. This strongly proves the high

robustness of our method.

V. CONCLUSIONS

In this paper we argue that the commonly used nuclear

norm is ineffective in producing fixed rank solutions for

SfM problems. We then apply recently proposed truncated
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. (a) Reconstruction by Bundler [22] from a subset of the original measurement matrix (more than 900 points). (b) Reconstruction by Bundler from our
fully filled-in measurement matrix. (c) Registration between the reconstruction by Bundler (green points) and the ground truth triangulation reconstruction
(red points) computed by using the camera matrices provided in the dataset [25]. The overall relative 3D error is about 40.80%. (d) Metric reconstruction by
our method from the same subset as (a). (e) Registration between our metric reconstruction (green points) and the ground truth triangulation reconstruction
(red points). The overall relative 3D error is about 6.18%. (f) Triangulation reconstruction of all points in the data set (about 5000 points) by utilizing our
estimated camera matrix P. (g) Registration between our triangulation reconstruction (green points) and the ground truth (red points).

nuclear norm to better enforce the fixed rank constraints

while preserving the elegance of the factorization framework.

Based on truncated nuclear norm, we propose the projective

reconstruction and metric upgrade methods to pursuit more

accurate 3D reconstructions than the state-of-the-arts. More-

over, our method deals with outliers and missing data in a

unified way by using weighted �1-norm. We also provide

an extremely efficient algorithm to tackle one of the opti-

mization sub-problems and get better reconstruction result.

Extensive experiments on synthetic and real-world data have

demonstrated the efficacy and robustness of our method.
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