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a b s t r a c t 

Recently, lots of dictionary learning methods have been proposed and successfully applied. However, 

many of them assume that the noise in data is drawn from Gaussian or Laplacian distribution and there- 

fore they typically adopt the � 2 or � 1 norm to characterize these two kinds of noise, respectively. Since 

this assumption is inconsistent with the real cases, the performance of these methods is limited. In this 

paper, we propose a novel dictionary learning with structured noise (DLSN) method for handling noisy 

data. We decompose the original data into three parts: clean data, structured noise, and Gaussian noise, 

and then characterize them separately. We utilize the low-rank technique to preserve the inherent sub- 

space structure of clean data. Instead of only using the predefined distribution to fit the real distribution 

of noise, we learn an adaptive dictionary to characterize structured noise and employ the � 2 norm to 

depict Gaussian noise. Such a mechanism can characterize noise more precisely. We also prove that our 

proposed optimization method can converge to a critical point and the convergence rate is at least sub- 

linear. Experimental results on the data clustering task demonstrate the effectiveness and robustness of 

our method. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Dictionary learning has been extensively studied [1–4] due to

its crucial role in sparse representation and low-rank modelling.

Instead of using wavelets predefined by artificial rules, recent

dictionary learning methods are data-adaptive and aim at learn-

ing a series of basic atoms from a data set to linearly approx-

imate a given datum. Mathematically, given a data matrix Y =
[ Y (1) , . . . , Y (m ) ] ∈ R 

d×m where d and m , respectively, denote the fea-

ture dimension and the sample/signal number, dictionary learning

methods try to learn a dictionary D ∈ R 

d×k so that samples Y can

be approximately linearly represented as Y ≈ DA , where each col-

umn D ( j ) in D denotes a dictionary atom, and each column A ( i ) in

A ∈ R 

k ×m is the representation coefficient vector of the i th sam-

ple Y ( i ) . Such a mechanism can characterize the inherent correla-

tions among data, since under the same dictionary, similar samples

would have similar representation coefficients and those dissimi-

lar samples would have very different representation coefficients.

Dictionary learning has now become an efficient feature learn-
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ng method and achieved state-of-the-art performance in many

ractical applications. KSVD [1] constructs a dictionary by mini-

izing the reconstruction error of original samples and achieves

mpressive performance in image recovery application. The tree-

tructured dictionary learning method [2] exploits possible seman-

ic relationships between dictionary atoms to learn structured dic-

ionaries embedded in a hierarchy and produces state-of-the-art

enoising performance. Later Yang et al. [5] further apply tree-

tructured dictionary learning method into mobile visual search

6–10] . Some literature [3,4,11,12] adopts different reconstruction

esidual regularizations to depict noise more precisely and good

esults are obtained in image denoising and data clustering tasks.

n addition, dictionary learning methods have also been used

or other purposes such as signal reconstruction [13] and visual

aliency [14] . 

Due to the commonly existing noise in real data, the origi-

al signals/images cannot be exactly linearly represented by the

earnt dictionary. Thus in many dictionary learning methods, the

riginal data are decomposed into a linear combination of atoms

rom a dictionary and noise, i.e. Y = DA + E, where E denotes the

oise in data. To depict the noise E , some works [1,3,15–19] as-

ume that the noise is of dense Gaussian distribution with small

ariation and can be depicted by the � 2 norm, while [11,20] argue

hat the noise in real data is drawn from Laplacian distribution and

hould be characterized by the � norm. For better depicting noise,
1 
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Fig. 1. Illustration of the proposed DLSN model. Data are decomposed into clean data, structured noise and Gaussian noise. Then, each of the three parts is characterized 

separately, i.e., learning a dictionary and an adaptive dictionary for clean data and structured noise, respectively, and employing � 2 to depict Gaussian noise. For better 

viewing, the negative entries in the images are replaced with their absolute values in displaying. 
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hen and Wu [11] further decompose the noise into two parts,

mall dense Gaussian noise and Laplacian noise, and try to depict

hem separately. However, Chen and Wu [11] and Chen and Yang

20] point out that the actual distribution of noise in real applica-

ions, e.g. face recognition, is very complex and of neither Gaussian

or Laplacian distribution. Thus, such a mechanism of characteriz-

ng the real noise with predefined distributions would limit the

erformance of dictionary learning methods. 

In this paper, we propose a novel dictionary learning with

tructured noise (DLSN) method which aims at handling noise in

ata from another perspective. As shown in Fig. 1 , we decom-

ose data into clean data, structured noise and Gaussian noise, and

hen characterize them separately. Since clean visual data usually

ie in several subspaces, and compared with sparse representation

hat encodes each signal independently, the low-rank technique

an preserve the global inherent structure of data [21–23] . In this

aper, we also utilize the low-rank technique to characterize clean

ata. As for noise, unlike the previous methods that totally use pre-

efined distributions, e.g. Gaussian and Laplacian distributions, to

t the real distribution of noise, we propose an adaptive method to

haracterize noise. We divide noise into two parts, Gaussian noise

nd structured noise. Compared with Gaussian noise, the remain-

ng noise in data usually contains semantic meanings, such as the

ifferent illuminations and the glasses on the faces shown in Fig. 1 .

o we refer to this kind of noise as structured noise. We learn a set

f basic atoms for structured noise, and typically, a datum consists

f some different structured noise. Therefore, we can represent the

tructured noise in a datum with a combination of a few atoms

rom a structured noise dictionary. We also adopt the � 2 norm to

haracterize Gaussian noise. In summary, our main contributions

n this paper include: 

(1) We propose a novel low-rank based dictionary learning

method to handle noisy data. Unlike sparse representation

that encodes each signal dependently, the low-rank tech-

nique can capture the global inherent structure of data and

improve the quality of the learnt dictionary. 

(2) Instead of solely using Gaussian or Laplacian distribution to

characterize the real noise, we learn an adaptive dictionary

for structured noise and adopt Gaussian distribution to de-

pict the remaining Gaussian noise. 

Extensive experimental results demonstrate the advantages of

ur method. 
. Related work 

In this section, we review the existing dictionary learning meth-

ds. Based on the noise assumption, we can roughly divide the dic-

ionary learning methods into three kinds: Gaussian noise based

ethods, Laplacian noise based methods, and mixed (Gaussian and

aplacian) noise based methods, which will be reviewed sequen-

ially. For brevity, we summarize some main notations in Table 1 . 

Gaussian noise based methods [1,3,15–19] assume that noise is

rawn from Gaussian distribution and use the � 2 norm (square loss

unction) to depict the noise E = Y − D . A typical model is 

in 

D,A 
‖ Y − DA ‖ 

2 
F , s.t. ‖ D (i ) ‖ 

2 
2 ≤ 1 , ∀ i ∈ { 1 , 2 , . . . , k } , 

‖ A ( j) ‖ 0 ≤ T , ∀ j ∈ { 1 , 2 , . . . , m } , 
(1) 

here ‖ A ( j ) ‖ 0 ≤ T means for the j th sample, its representation co-

fficients have fewer than T nonzero entries. Among this kind of

ethods, MOD [15] and KSVD [1] are classic ones because of their

implicity and effectiveness. Note that the two methods solve the

ame dictionary learning model (1) but differ in the optimization.

n order to make model (1) more easily solvable, Mairal et al.

3] approximate the � 0 norm by the � 1 norm and consider the fol-

owing model: 

min 

D,A 
‖ Y − DA ‖ 

2 
F + α‖ A ‖ 1 , 

s.t. ‖ D (i ) ‖ 

2 
2 ≤ 1 , ∀ i ∈ { 1 , 2 , . . . , k } . 

(2) 

ubsequently, various variants [16–19] of models (1) and (2) are

uccessfully developed for specific tasks by incorporating differ-

nt discriminative terms into the objective function in (1) or (2) .

or instance, to learn a discriminative dictionary for classification

asks, Zhang and Li [24] utilize the label information of training

amples and incorporate a classification error term into model (2) .

ut recent works [4,11,25] point out that the assumption of Gaus-

ian noise may not be accurate, especially when there are large

orruptions and outliers. Besides, in image denoising applications,

aussian noise based methods may lead to over-smoothness of the

mages, causing loss of the detail [26] . 

To overcome the above drawbacks, Laplacian noise based meth-

ds [4,12,27] are developed. These methods argue that the large

orruptions and outliers are approximately drawn from Lapla-

ian distribution and hence can be depicted by the � norm, i.e.
1 
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Table 1 

Summary of notations frequently used in this paper. 

Notation Meaning 

Capital letter A matrix. 

M 

T Transpose of matrix M . 

M ij The ( i, j )th entry of matrix M . 

M ( i ) The i th column of matrix M . 

x i The i th entry of vector x . 

|| · || ∗ Nuclear norm, sum of the singular values. 

|| · || 0 Number of nonzero entries. 

|| · || 1 || M|| 1 = 

∑ 

i, j | M i j | . 
|| · || F Frobenious norm, || M || F = 

√ ∑ 

i, j M 

2 
i j 

. 

|| · || 2 || x || 2 = 

√ ∑ 

i x 
2 
i 

if x is a vector; || X || 2 is the spectral norm if X is a matrix. 
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absolute error loss function. The model can be formulated as 

min 

D,A 
‖ Y − DA ‖ 1 + α‖ A ‖ 1 , 

s.t. ‖ D (i ) ‖ 

2 
2 ≤ 1 , ∀ i ∈ { 1 , 2 , . . . , k } . 

(3)

Since input data are non-negative values in many real world prob-

lems (such as images, text vector, etc.), Pan et al. [12] further

add non-negative constraints on the dictionary D and the repre-

sentation coefficients A in problem (3) . Though Laplacian noise

based methods have achieved state-of-the-art clustering and de-

noising performance, the assumption of Laplacian noise does not

hold in practice either [11,20] . Furthermore, since the � 1 norm

is not smooth, most approaches [12,27] typically approximate

the � 1 norm with approximative methods, such as the iteratively

reweighted norm technique, and thus are not very effective for

random-valued impulse noise removal [4] . 

For depicting noise more accurately, Chen and Wu [11] propose

a mixed noise based method. They assume that noise is the lin-

ear combination of Gaussian and Laplacian noise, and try to depict

these two kinds of noise separately. Accordingly, their model is for-

mulated as 

min 

D,A,B 
‖ Y − DA − B ‖ 

2 
F + α‖ A ‖ 1 + β‖ B ‖ 1 , 

s.t. ‖ D (i ) ‖ 

2 
2 ≤ 1 , ∀ i ∈ { 1 , 2 , . . . , k } , 

(4)

where E = Y − DA − B and B , respectively, denote Gaussian and

Laplacian noise, and α and β are two positive constants. However,

noise in real data is sophisticated and it is neither Gaussian nor

Laplacian [11,20] . Thus, using predefined distributions cannot de-

pict noise accurately and may limit the performance of these dic-

tionary learning methods. 

3. Dictionary learning with structured noise 

In this section, we first present our dictionary learning with

structured noise (DLSN) method, then introduce a novel optimiza-

tion method, and finally analyze the convergence of the proposed

algorithm. The dictionaries are denoted as D c ∈ R 

d×k c and D s ∈
R 

d×k s for clean data Y c and structured noise Y s , respectively. 

3.1. Formulation of DLSN 

As aforementioned, many dictionary learning methods assume

that the noise in data is drawn from Gaussian or Laplacian dis-

tribution or their mixture. However, in real cases, noise is very

sophisticated and cannot be handled by predefined distributions.

We try to solve this problem from another perspective, rather than

fitting the distribution of noise. As shown in Fig. 1 , we decom-

pose the original data Y to clean data Y c , structured noise Y s , and

Gaussian noise Y g . We learn a dictionary D c for clean data and an

adaptive dictionary D s for structured noise. Some literature [21–

23,28] points out that the clean visual data, such as texture, face
nd motion, can be well characterized by subspaces and the sam-

les in the same class should locate in the same low-dimensional

ubspace. As the dimension of the subspace corresponds to the

ank of the representation matrix, these methods enforce a low-

ank constraint on the representation matrix to characterize the

ubspace structures and enhance the correlation among the rep-

esentation coefficient vectors at the same time. Inspired by these

orks, we also adopt the low-rank technique to characterize the

nherent structure of clean data. On the other hand, the noise in

he data except Gaussian noise is usually structured and contains

emantic meanings, e.g., different illuminations, scarfs and glasses

n the faces shown in Figs. 1 and 2 . Typically, a datum contains

everal kinds of structured noise. Thus, we try to learn an adaptive

ictionary and use a few atoms to linearly represent the structured

oise in a datum. As for Gaussian noise Y g = Y − Y c − Y s , we em-

loy the � 2 norm to characterize it. Our model can be formulated

s follows: 

min 

A c ,A s , 

D c ,D s 

1 

2 

‖ Y − D c A c − D s A s ‖ 

2 
F + αrank (A c ) + β‖ A s ‖ 0 , 

.t. D c ∈ �, D s ∈ �, 

(5)

here � = { D c : ‖ D c(i ) ‖ 2 2 
≤ 1 , i = 1 , . . . , k c } and � = { D s :

‖ D s ( j) ‖ 2 2 
≤ 1 , j = 1 , . . . , k s } . A c ∈ R 

k c ×m and A s ∈ R 

k s ×m are two co-

fficient matrices for clean data Y c and structured noise Y s , respec-

ively. However, directly solving problem (5) is difficult, since min-

mization of the rank( · ) function and the � 0 pseudonorm is NP

ard. We use their convex surrogates, the nuclear norm and the

 1 norm, to approximate them, respectively. Then, our model can

e rewritten as 

min 

A c ,A s , 

D c ,D s 

1 

2 

‖ Y − D c A c − D s A s ‖ 

2 
F + α‖ A c ‖ ∗ + β‖ A s ‖ 1 , 

.t. D c ∈ �, D s ∈ �. 

(6)

.2. Optimization of DLSN 

The optimization problem (6) is not jointly convex with respect

o ( D c , D s , A c , A s ). Empirically, we can develop an iterative mini-

ization method to update each variable alternately. In this paper,

ased on the proximal alternating linearized minimization (PALM)

ethod [29] , we propose an alternating proximal method to solve

his problem. We first give a brief introduction to the optimization

ketch of the PALM method [29] . 

.2.1. Sketch of PALM 

Consider the following optimization problem: 

min 

 1 , ... ,x p 

p ∑ 

i =1 

f i (x i ) + H(x 1 , . . . , x p ) , (7)
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Fig. 2. Some examples in the four face datasets. The images in (a), (b), (c), and (d) are from AT&T, YaleB, AR, and PIE, respectively. 
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a

here H is assumed to be C 1 and each f i (i = 1 , . . . , p) is a proper

nd lower semi-continuous function. We denote by ∇ i H the gra-

ient of H with respect to variable x i (i = 1 , . . . , p) , i.e. the gra-

ient of H with respect to variable x i when all x j ( j 	 = i ) are fixed,

nd L i (i = 1 , . . . , p) the Lipschitz constant of ∇ i H . Then, using the

ALM method to alternately update variables x i (i = 1 , . . . , p) can

e formulated as follows: 

 

k +1 
i 

∈ prox f i 
e k 

i 

(
x k i −

1 

e k 
i 

∇ i H 

(
x k +1 

1 , . . . , x k +1 
i −1 

, x k i , . . . , x 
k 
p 

))
, (8) 

here e k 
i 

= max (γi L i , ˆ γ ) (γi > 1) and ˆ γ can guarantee the proxi-

al steps to be well defined. prox( · ) is a proximal operator, which

s defined as 

rox f μ(x ) = argmin 

z 
f (z) + 

μ

2 

‖ z − x ‖ 

2 
2 . (9) 

.2.2. Solving DLSN via PALM 

We can follow the sketch of PALM to solve problem (6) . We

pdate the variables A c , A s , D c , and D s alternately at each iteration

y minimizing their corresponding proximal problem with other

ariables fixed. Firstly, we define 

 

 

 

 

 

 

 

H(A c , A s , D c , D s ) = 

1 
2 
‖ Y − D c A c − D s A s ‖ 

2 
F , 

f 1 (A c ) = α‖ A c ‖ ∗, 
f 2 (A s ) = β‖ A s ‖ 1 , 

f 3 (D c ) = I �(D c ) , 
f 4 (D s ) = I �(D s ) , 

(10) 

here I �( D ) is the indicator function. That is, if D ∈ �, I �(D ) = 0 ;

therwise, I �(D ) = + ∞ . 

We need to solve the following problems to update these vari-

bles in turn. 
 

 

 

 

 

 

 

 

 

 

 

A 

k +1 
c ∈ prox f 1 

e k 
1 

(A 

k 
c − 1 

e k 
1 

∇ i H(A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s )) , 

A 

k +1 
s ∈ prox f 2 

e k 
2 

(A 

k 
s − 1 

e k 
2 

∇ i H(A 

k +1 
c , A 

k 
s , D 

k 
c , D 

k 
s )) , 

D 

k +1 
c ∈ prox f 3 

e k 
3 

(D 

k 
c − 1 

e k 
3 

∇ i H(A 

k +1 
c , A 

k +1 
s , D 

k 
c , D 

k 
s )) , 

D 

k +1 
s ∈ prox f 4 

e k 
4 

(D 

k 
s − 1 

e k 
4 

∇ i H(A 

k +1 
c , A 

k +1 
s , D 

k +1 
c , D 

k 
s )) . 

(11) 

Actually, the four optimization problems in (11) have closed

orm solutions, which are given as 

 

k +1 
c = 	α/e k 

1 

(
A 

k 
c − ∇ i H(A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) /e k 1 

)
, (12) 

 

k +1 
s = 
β/e k 

2 

(
A 

k 
s − ∇ i H(A 

k +1 
c , A 

k 
s , D 

k 
c , D 

k 
s ) /e k 2 

)
, (13) 

 

k +1 
c = ��

(
D 

k 
c − ∇ i H(A 

k +1 
c , A 

k +1 
s , D 

k 
c , D 

k 
s ) /e k 3 

)
, (14) 
nd 

 

k +1 
s = ��

(
D 

k 
s − ∇ i H 

(
A 

k +1 
c , A 

k +1 
s , D 

k +1 
c , D 

k 
s 

)
/e k 4 

)
, (15) 

here 	μ( X ) is the singular value thresholding (SVT) operator

30] and 
μ( X ) is the soft thresholding [31] . ��( X ) is an opera-

or that projects the matrix X onto the set �. In this paper, we

ave the Lipschitz constants L k 
1 

= ‖ D 

k 
c ‖ 2 2 

, L k 
2 

= ‖ D 

k 
s ‖ 2 2 

, L k 
3 

= ‖ A 

k +1 
c ‖ 2 

2 
,

nd L k 
4 

= ‖ A 

k +1 
s ‖ 2 2 at each iteration. The detailed optimization pro-

edure of DLSN is presented in Algorithm 1 . 

lgorithm 1 Solving DLSN via PALM. 

Input: The data matrix Y , the parameters α > 0 and β > 0 , and

ε = 1 e − 6 . 

Initialize: D 

0 
c , D 

0 
s , A 

0 
c , and A 

0 
c . 

While ‖ D 

k +1 
c − D 

k 
c ‖ ∞ 

> ε or ‖ D 

k +1 
s − D 

k 
s ‖ ∞ 

> ε do 

1. Fix A 

k 
s , D 

k 
c , and D 

k 
s to update A 

k +1 
c by (12) . 

2. Fix A 

k +1 
c , D 

k 
c , and D 

k 
s to update A 

k +1 
s by (13) . 

3. Fix A 

k +1 
c , A 

k +1 
s , and D 

k 
s to update D 

k +1 
c by (14) . 

4. Fix A 

k +1 
c , A 

k +1 
s , and D 

k +1 
c to update D 

k +1 
s by (15) . 

5. k ← k + 1 . 

end while 

Output: D 

k 
c , D 

k 
s , A 

k 
c , and A 

k 
c . 

.3. Analysis of Algorithm 1 

In this section, we first give convergence analysis of our

lgorithm 1 and then analyze the computational cost at each it-

ration and its memory cost. 

.3.1. Convergence analysis 

We first prove that the sequence generated by our proposed op-

imization method can be bounded and converge to a critical point,

s stated in Theorem 1 . 

heorem 1. Assume that the function φ( A c , A s , D c , D s )

 H(A c , A s , D c , D s ) + f 1 (A c ) + f 2 (A s ) + f 3 (D c ) + f 4 (D s ) is our

bjective function. The sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } generated by

lgorithm 1 satisfies the following properties: 

1) φ(A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) is monotonically decreasing. 

2) The sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } is bounded. 

3) The sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } is a Cauchy sequence and con-

verges to a critical point of the optimization problem (6) . 

Then, we can prove that the convergence rate of Algorithm 1 is

t least sublinear. 
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Table 2 

Descriptions of the six testing datasets. (“def.”, “pos.”, “ill.”, “exp.”, and 

“occ.” are short for “deformation”, “pose”, “illumination”, “expression”, 

and “occlusion”, respectively.) 

Dataset Number Size #Class Difficulty 

Alphadigits 390 28 × 23 26 def. 

AT & T 400 28 × 23 40 pos. 

YaleB 380 24 × 21 38 ill. 

AR 1300 33 × 24 100 ill., exp., and occ. 

PIE 680 24 × 24 68 ill., exp., and pos. 

Movement 360 90 × 1 15 def. and pos. 
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1 http://www.cs.toronto.edu/roweis/data.html . 
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html . 
3 https://archive.ics.uci.edu/ml/datasets/Libras+Movement . 
Theorem 2. The sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } generated by Algorithm 1

converges to a critical point { (A 

∗
c , A 

∗
s , D 

∗
c , D 

∗
s ) } of problem (6) in an

at least sublinear convergence rate, i.e., there exists ω > 0, such that 

‖ 

(
A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s 

)
− ( A 

∗
c , A 

∗
s , D 

∗
c , D 

∗
s ) ‖ F ≤ ωk −

1 −θ
2 θ−1 , (16)

where θ ∈ ( 1 2 , 1) . 

The proofs of Theorems 1 and 2 can be found in Appendix . So

by Theorems 1 and 2 , we can know that though problem (6) is

non-convex, the proposed algorithm can guarantee that the gener-

ated sequence can converge to a critical point with at least a sub-

linear convergence speed. 

3.3.2. Computational and memory cost 

The computational cost in each iteration and the total mem-

ory cost of Algorithm 1 are respectively O 

(
(k c + k s ) md + k 2 c m 

)
and O 

(
d(m + k c + k s ) + m (k c + k s ) + k 2 c 

)
. We analyze each step in

Algorithm 1 . For memory cost, we first need to store Y ∈ R 

d×m ,

D c ∈ R 

d×k c , D s ∈ R 

d×k s , A c ∈ R 

k c ×m and A s ∈ R 

k s ×m , which requires

O ( d(m + k c + k s ) + m (k c + k s ) ) memory. In Step 1 (updating A 

k +1 
c 

by (12) ), we need to compute T k c = A 

k 
c − ∇ i H(A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) /e k 

1 
first

with computational cost O ( (k c + k s ) dm ) and then compute the

skinny singular value decomposition (SVD) of T k c , which requires

at most O(k 2 c m ) computational cost. The memory cost of Step 1

is O ( dm + k c (k c + m ) ) . Step 2 updates A 

k +1 
s by the soft threshold-

ing with the computational and memory cost O ( (k c + k s ) dm ) and

O(dm ) , respectively. Step 3 uses the project gradient method to

update D 

k +1 
c with O((k c + k s ) dm ) computational cost and O(dm )

memory. Similar to Step 3, the computational and memory cost of

Step 4 are also O ( (k c + k s ) dm ) and O(dm ) , respectively. Therefore,

the total computational cost in each iteration is O((k c + k s ) md +
k 2 c m ) . Since Steps 1–4 update variables sequentially and thus can

share memory, the total memory cost is O(d(m + k c + k s ) + m (k c +
k s ) + k 2 c ) . 

The computational cost of our method is comparable to or

lower than those of some other dictionary methods, such as OMD

[15] , KSVD [1,4,11,12,26] . There are three reasons. (1) Typically,

most dictionary learning methods need to compute the residual

 − DA where Y ∈ R 

d×m , D ∈ R 

d×k and A ∈ R 

k ×m , respectively, de-

note the data matrix, a dictionary and a coefficient matrix, which

requires the computational cost O(kdm ) , and they may also re-

quire other computational resources. For instance, KSVD [1] needs

to use SVD to update D and A with cost O(dm 

2 ) in each iteration.

(2) In most cases, the dictionary atom number k is usually less

than the sample number m and the feature dimension d , which

leads to k 2 c ≤ dm . (3) For fairness, in our experiments the total dic-

tionary atom number for all compared methods is the same, i.e.

k c + k s = k . So the computational cost of our method in each it-

eration is O(kmd) and thus is comparable to or lower than those

of some other dictionary methods, including [15,1,4,11,12,26] . As for

memory cost, most dictionary methods need at least O(d(m + k ) +
km ) memory, since they need to store Y ∈ R 

d×m , D ∈ R 

d×k and

A ∈ R 

k ×m and they may also need other extra memory. Because

of reasons (2) and (3), the memory cost of our method is also

O(d(m + k ) + km ) and hence is comparable to or lower than those

of some other dictionary methods, e.g. [15,1,4,11,12,26] . 

4. Experiments 

In this section, we compare our proposed dictionary learning

method with other state-of-the-art methods. We will first intro-

duce the initialization strategy of our approach and then experi-

ment on the well-known task: data clustering. Extensive experi-

mental results demonstrate the effectiveness and robustness of our

method. Our code will be released online upon acceptance of

this paper. 
.1. Experimental setting 

.1.1. Initialization and parameter setting 

As described in Algorithm 1 , we need to initialize D c , D s , A c ,

nd A s first and adopt the following initialization way. We first

se Robust PCA [32] to separate the original data into clean data

nd sparse noise roughly. Then, we apply KSVD [1] to learn two

ictionaries: one for clean data and the other for noise. At the

ame time, KSVD also provides the coefficients A c and A s . The iter-

tion number of initializing the dictionary by KSVD is set to only

, since each iteration in KSVD is time-consuming and our method

nly needs a rough initialization. In our method, the numbers of

toms for clean data and structured noise are set to 3 and 2 for

ach class in all experiments, respectively. We empirically set the

anges of parameters α and β as α ∈ [0.005, 5] and β ∈ [0.01, 10],

espectively. We directly use the coefficients A c for clean data for

lustering. 

.1.2. Datesets description 

We evaluate our method on three types of databases: (1) Bi-

ary Alphadigits, 1 for the handwritten alphabet clustering task;

2) AT&T, 2 YaleB [33] , AR [34] , and PIE [35] , for face clustering;

3) Movement 3 [36] , for hand movement recognition. As shown

n Fig. 2 , the difficulties of these four testing face databases are

ot the same. Each class in the Movement dataset corresponds to

 hand movement type in LIBRAS 3 . Table 2 summarizes the ex-

erimental settings and the characteristics of all the six datasets.

ote that when we conduct experiments on the Binary Alphadig-

ts dataset, we only cluster the 26 alphabets and ignore digits, and

hen we test the compared methods on AR, we use all images in

he first session. 

.1.3. Compared methods 

We compare our method with six state-of-the-art dictionary

earning methods: KSVD [1] , ODLSC [3] , DLINR [4] , RDLESD [11] , � 1 -

SVD [26] , and RNNDL [12] . KSVD and ODLSC assume that noise is

rawn from Gaussian distribution and they adopt the � 2 norm to

haracterize it. DLINR, RNNDL, and � 1 -KSVD employ the � 1 norm

o depict noise, since they suppose that noise is Laplacian. RDLESD

ivides noise into Gaussian noise and Laplacian noise and utilizes

he � 2 and � 1 norms to characterize them, respectively. For fair-

ess, the numbers of atoms for each class in KSVD, ODLSC, DLINR,

 1 -KSVD, and RDLESD are all set to 5. Therefore their dictionary

izes are equal to that of our method. All methods use kmeans for

lustering. 

.1.4. Evaluation metrics 

As in [12,37] , we employ the widely used accuracy (ACC), nor-

alized mutual information (NMI), and purity (PUR) as our evalua-

ion metrics. We also compare the average dictionary learning time

http://www.cs.toronto.edu/roweis/data.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://archive.ics.uci.edu/ml/datasets/Libras+Movement
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Table 3 

Clustering results (ACC, NMI, and PUR) on the six testing datasets. (“GNM”, “LNM”, “MNM”, and “SNM” are, 

respectively, short for “Gaussian noise based method”, “Laplacian noise based method”, “Mixed noise based 

method”, and “Structured noise based method”.) 

Dataset Metrics GNM LNM MNM SNM 

KSVD ODLSC DLINR RNNDL � 1 -KSVD RDLESD DLSN (ours) 

Alphadigits ACC 0.3379 0.3484 0.3076 0.30 0 0 0.3282 0.3556 0.5029 

NMI 0.4483 0.4513 0.4133 0.4215 0.4577 0.4784 0.6278 

PUR 0.3484 0.3574 0.3435 0.3256 0.3615 0.3612 0.5178 

AT&T ACC 0.3825 0.3675 0.3700 0.5075 0.4375 0.5700 0.8050 

NMI 0.5423 0.4928 0.4833 0.7174 0.5381 0.6829 0.8884 

PUR 0.4515 0.4375 0.4400 0.5450 0.4108 0.5375 0.8250 

YaleB ACC 0.1805 0.1894 0.1868 0.1789 0.1626 0.1914 0.2504 

NMI 0.3021 0.3243 0.2953 0.3772 0.2791 0.3857 0.4318 

PUR 0.2026 0.2189 0.2157 0.1895 0.1736 0.2173 0.2604 

AR ACC 0.1454 0.1492 0.1476 0.10 0 0 0.1271 0.1531 0.1908 

NMI 0.3547 0.3958 0.3568 0.3241 0.3271 0.3911 0.5048 

PUR 0.1515 0.1584 0.1584 0.1162 0.1392 0.1601 0.2023 

PIE ACC 0.2288 0.2326 0.2138 0.2176 0.2271 0.2382 0.2676 

NMI 0.4714 0.3964 0.4136 0.5189 0.5031 0.4976 0.5662 

PUR 0.2538 0.2579 0.2676 0.2368 0.2312 0.2691 0.2956 

Movement ACC 0.3083 0.3130 0.2944 0.24 4 4 0.2561 0.3316 0.4138 

NMI 0.3545 0.3684 0.3248 0.2618 0.2954 0.3923 0.4555 

PUR 0.34 4 4 0.3527 0.3277 0.2694 0.2544 0.3494 0.4500 

Fig. 3. Average dictionary learning time (s) on the six testing datasets. 
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4  
f our method with other compared methods. The average dictio-

ary learning time is computed as an average over all the samples.

ote that average dictionary learning time of our method includes

he initialization time. The experimental clustering results and the

verage dictionary learning time are summarized in Table 3 and

ig. 3 , respectively. 

.2. Clustering results 

As Table 3 shows, our method achieves much better cluster-

ng results than all the competitors across all datasets on the

hree evaluation metrics. As shown in Fig. 1 , our method decom-

oses the original data into clean data, structured noise, and Gaus-

ian noise, and then characterizes them separately. Such a mecha-

ism can depict data more precisely and obtain better clustering

erformance. Unlike KSVD, ODLSC, DLINR, RNNDL, and � 1 -KSVD,

hich solely utilize Gaussian or Laplacian distribution to fit noise,

DLESD fits the real noise with a mixture of Gaussian and Lapla-

ian distribution and performs better than these five methods in

ost cases. This also demonstrates that characterizing noise more

recisely can lead to better results. Fig. 3 shows that our method

s the fastest. Our method is about two times faster than the sec-

nd fastest method, ODLSC, and is at least five times faster than

DLESD on the six testing databases. 
We also test the effects of parameter selection on our method.

s shown in Fig. 4 , though the values of α and β vary within two

arge ranges, respectively, the results of our method on the three

etrics (ACC, NMI, and PUR) are relatively stable, which verifies

he robustness of our method to parameter selection. To sum up,

ur method not only achieves better clustering performance but

lso has good efficiency and robustness to parameter selection. 

We conduct experiments to verify that our two techniques, i.e.

sing low-rank technique to characterize the clean data and our

ecomposition technique of handling noise, can both benefit the

lustering results. We remove the dictionary of structured noise in

ur model, and use the � 2 norm to depict the noise: 

in 

D,A 

1 

2 

‖ Y − DA ‖ 

2 
F + α‖ A ‖ ∗, s.t. D ∈ �. (17) 

e call this low-rank based dictionary learning method as LRDL

nd also adopt PALM as its solver. For fairness, we also use KSVD

o initialize D in LRDL. Since our method uses Robust PCA which

s also a low-rank based method to initialize our solution, we also

ompare our method with it and simply use the clean data ex-

racted by Robust PCA for clustering. We report the experimental

esults in Table 4 . It can be observed that the low-rank technique

an benefit the results, since the comparison between Tables 3 and

 shows that these low-rank based methods perform better
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Fig. 4. Effects of parameters α and β on our method on the AT&T dataset. 

Table 4 

Comparison of clustering results (ACC, NMI, and PUR) of low-rank based methods on the three testing datasets. 

Alphadigits AT&T YaleB 

Method ACC NMI PUR ACC NMI PUR ACC NMI PUR 

Robust PCA 0.3634 0.4737 0.3918 0.4712 0.6519 0.5327 0.1953 0.3656 0.1942 

LRDL 0.4013 0.5314 0.4451 0.5175 0.7121 0.5859 0.2132 0.3853 0.2102 

DLSN (ours) 0.5029 0.6278 0.5178 0.8050 0.8884 0.8250 0.2504 0.4318 0.2604 

Fig. 5. Corrupted examples of AR. 

Table 5 

Clustering results (ACC, NMI, and PUR) on corrupted AR. (“GNM”, “LNM”, “MNM”, and “SNM” are, respectively, 

short for “Gaussian noise based method”, “Laplacian noise based method”, “Mixed noise based method”, and 

“Structured noise based method”.) 

Dataset Metrics GNM LNM MNM SNM 

KSVD ODLSC DLINR RNNDL � 1 -KSVD RDLESD DLSN (ours) 

Corrupted AR ACC 0.5352 0.5588 0.5721 0.5364 0.5852 0.6358 0.7176 

NMI 0.5687 0.5141 0.5029 0.5548 0.5832 0.6394 0.7489 

PUR 0.5529 0.5941 0.5823 0.5765 0.5570 0.6176 0.7529 
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than those sparse based ones in most cases. Thus, the low-rank

technique is conducive to the improvements of the clustering re-

sults. By comparing the clustering results of LRDL and our DLSN

in Table 4 , we can conclude that our decomposition technique of

handling noise can benefit much our method, since DLSN and LRDL

only differ in their techniques of handling noise: DLSN decomposes

the noise into structured noise and gaussian noise and separately

characterizes them, while DLSN only considers gaussian noise. 

4.3. Noise experiments 

Finally, we conduct noise experiments to further validate the

advantages of our method. We randomly select five classes from

the AR dataset [34] , and then choose fourteen neutral images plus

three with sunglasses for each class. Finally, we add two types of

noise to the images: (1) we add Gaussian white noise with SNR

15 dB to each image; (2) each image is added three occlusion

blocks of size 5 × 5 and the locations of occlusions are randomly
enerated. Fig. 5 shows some corrupted images. We also compare

ur method with other state-of-the-art methods and report ACC,

MI, and PUR in Table 5 . It is easy to observe that our method

chieves much better performance even though the noise is very

omplex. Fig. 6 shows the restorations. KSVD [1] , ODLSC [3] , DLINR

4] , RNNDL [12] , � 1 -KSVD [26] , and RDLESD [11] all fail to deal with

he occlusion well. No one removes the glass on the face. KSVD,

DLSC, DLINR, RNNDL cannot handle the block at the upper-right

orner either, since the pixels near this block are hairs and also

lack, which increases the difficulty of processing. In contrast, our

ethod characterizes the noise more precisely. It removes not only

he glass but also the three blocks. Unlike those methods that use

redefined distributions (Gaussian and Laplacian distributions) to

t the real distribution of noise, our method learns an adaptive

ictionary for structured noise and adopts Gaussian distribution

o characterize the remaining Gaussian noise. Thus, our method is

daptable to more complex noise and achieves much better perfor-

ance. 
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Fig. 6. Examples of restoration. (a) is the original corrupted image. (b), (c), (e), (f), (g), and (h) are restorations by KSVD [1] , ODLSC [3] , DLINR [4] , RNNDL [12] , � 1 -KSVD [26] , 

RDLESD [11] , and our DLSN, respectively. Note that KSVD , ODLSC, DLINR , RNNDL, and � 1 -KSVD only divide the original data into two parts, clean data and noise. RDLESD 

and our DLSN further divide the noise into two parts, Laplacian noise and Gaussian noise in RDLESD, structured noise and Gaussian noise in our method. For better viewing, 

we replace the negative entries in the images with their absolute values when we display the images. 

5

 

(  

B  

s  

s  

s  

c  

s  

o  

s  

t

A

 

s  

a  

o  

a

A

 

L  

q

P  

p  

m

α

w

D  

t  

w  

i  

c  

{
L

 

s

D  

i  

R

S  

A  

{
 

f  

T  

C  

a  

b  

s  

[

 

D  

s

P  

D

 

f

 

s

 

=  

�  

 

t  

f

 

t  

t

σ  

S  

σ  

t  

{  

s  

σ  

p  

c  

l

‖  

w  

f  

n  

a

 

s

P  

+  

g

∑

a  
. Conclusion 

We present a novel dictionary learning with structured noise

DLSN) method, which provides a new way to handle noisy data.

y decomposing the original data into three parts: clean data,

tructured noise and Gaussian noise, and then characterizing them

eparately, our method can characterize data more precisely. Be-

ides, we can prove that our proposed optimization method can

onverge to a critical point and the convergence rate is at least

ublinear. Experimental results demonstrate that our method not

nly obtains better performance but also runs faster than some

tate-of-the-art dictionary learning methods on the data clustering

ask. 
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ppendix 

Before we prove Theorems 1 and 2 , we first prove two lemmas.

emma 1. φ(A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) is monotonically decreasing and the se-

uence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } generated by Algorithm 1 is bounded. 

roof. From Lemma 3 in [29] , the monotonically nonincreasing

roperty holds for the PALM method, when the step size e i =
ax (γi L i , ˆ γ ) > L i (γi > 1) for all i at each iteration. We have 

ε = φ
(
A 

1 
c , A 

1 
s , D 

1 
c , D 

1 
s 

)
≥ · · · ≥ φ

(
A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s 

)
, (18) 

here ε is a constant. Thus, we can obtain that 1 
2 ‖ Y − D 

k 
c A 

k 
c −

 

k 
s A 

k 
s ‖ 2 F + α‖ A 

k 
c ‖ ∗ + β‖ A 

k 
s ‖ 1 ≤ αε. So, ‖ A 

k 
c ‖ ∗ ≤ ε holds at all itera-

ions, i.e., {‖ A 

k 
c ‖ ∗} can be bounded. Since all norms are equivalent

hen they are on a finite dimensional space, the sequence {‖ A 

k 
c ‖ F }

s also bounded. Therefore, { A 

k 
c } is bounded. In the same way, we

an prove that { A 

k 
s } is also bounded. As D c ∈ � and D s ∈ �, { D 

k 
c } and

 D 

k 
s } are bounded. �

emma 2. φ( A c , A s , D c , D s ) is a semi-algebraic function. 

Before we prove Lemma 2 . We first introduce the definition of

emi-algebraic function, which is stated as follows: 

efinition 1. [29] A subset S of R 

d is called the semi-algebraic set

f there exists a finite number of real polynomial functions g ij , h i j :

 

d → R , such that 

 = 

⋃ 

j 

⋂ 

i 

{ u ∈ R 

d : g i j (u ) = 0 , h i j (u ) < 0 } . (19)

 function f ( u ) is called the semi-algebraic function if its graph

 (u, t) ∈ R 

d+1 } is a semi-algebraic set. 

There is a broad class of functions in semi-algebraic sets and

unctions. There are two main results, which will be used later.
he composition of semi-algebraic functions and sup { g(u, v ) : v ∈
} , when g is semi-algebraic and C is a semi-algebraic set, are

ll semi-algebraic functions [38] . These two results can be proved

y the Tarski–Seidenberg principle: the image of a semi-algebraic

et A ⊂ R 

d+1 by the projection π : R 

d+1 → R 

d is semi-algebraic

29,38,39] . 

Now, we prove the objective function φ( A c , A s , D c ,

 s ) = H(A c , A s , D c , D s ) + f 1 (A c ) + f 2 (A s ) + f 3 (D c ) + f 4 (D s ) is a

emi-algebraic function. 

roof. We only need to prove that each function in φ( A c , A s , D c ,

 s ) is a semi-algebraic function. 

H ( A c , A s , D c , D s ) = 

1 
2 ‖ Y − D c A c − D s A s ‖ 2 F 

is a semi-algebraic

unction, since it is a real polynomial function. 

f 2 (A s ) = β‖ A s ‖ 1 is a semi-algebraic function, as the � p norm is

emi-algebraic when p is rational (see Example 2 in [29] ). 

By Definition 1 , � = { D c : ‖ D c(i ) ‖ 2 2 
≤ 1 , i = 1 , . . . , k c }

 

⋂ k c 
i =1 

{ D c : ‖ D c(i ) ‖ 2 2 
≤ 1 } is a semi-algebraic set. Thus,

= { D s : ‖ D s ( j) ‖ 2 2 ≤ 1 , j = 1 , . . . , k s } is also a semi-algebraic set. As

f 3 (D c ) = I �(D c ) and f 4 (D s ) = I �(D s ) are indicator functions of the

wo sets � and �, respectively, f 3 and f 4 are two semi-algebraic

unctions. 

To prove f 1 ( A c ) is a semi-algebraic function, we first prove that

he spectral norm σ1 (Q ) = max { λi (Q 

T Q ) } is a semi-algebraic func-

ion. The spectral norm of Q ∈ R 

m ×n can be rewritten as: 

1 (Q ) = sup {‖ Qx ‖ 2 : ‖ x ‖ 2 ≤ 1 } . (20)

ince the � 2 norm of a vector is a polynomial function and

1 ( Q ) is a sup type function which is a semi-algebraic func-

ion [38] , σ 1 ( Q ) is a semi-algebraic function. By Definition 1 ,

 (Q, y ) ∈ R 

m ×n +1 : y − σ1 (Q ) = 0 } is a semi-algebraic set. As all

emi-algebraic sets are stable under finite unions, { Q ∈ R 

m ×n :

1 (Q ) ≤ 1 } is a semi-algebraic set. Applying the Tarski–Seidenberg

rinciple, { Q ∈ R 

m ×n : σ1 (Q ) ≤ 1 } is a semi-algebraic set. The nu-

lear norm is dual to the spectral norm [40] , which can be formu-

ated as: 

 A ‖ ∗ = sup { Tr (Q 

T A ) : σ1 (Q ) ≤ 1 } , (21)

here Tr( · ) is the trace operator. Since Tr( Q 

T A ) is a polynomial

unction and { Q ∈ R 

m ×n : σ1 (Q ) ≤ 1 } is a semi-algebraic set, the

uclear norm is a semi-algebraic function. Thus f 1 ( A c ) is a semi-

lgebraic function. �

Theorem 1 is based on a proposition in [29] , which can be

tated as follows: 

roposition 1. [29] Suppose that F (x 1 , . . . , x p ) = 

∑ p 
i =1 

f i ( x i )

 H(x 1 , . . . , x p ) is the objective function. The sequence { (x k 
1 
, . . . , x k p ) }

enerated by PALM [29] is a Cauchy sequence, such that 

∞ 

 

k =1 

‖ 

(
x k +1 

1 , . . . , x k +1 
p 

)
−

(
x k 1 , . . . , x 

k 
p 

)‖ < ∞ , 

nd the sequence { (x k 
1 
, . . . , x k p ) } converges to a critical point

(x ∗
1 
, . . . , x ∗p ) of F if F satisfies the following properties: 

(1) H(x 1 , . . . , x p ) is Lipschitz continuous; 
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(2) f i ( x i ) is a proper and lower semi-continuous function with

inf f i > ∞ ; 

(3) F (x 1 , . . . , x p ) satisfies the Kurdyka–Lojasiewicz (KL) properties

[41] ; 

(4) The sequence { (x k 
1 
, . . . , x k p ) } is bounded. 

Now, we prove Theorem 1 . 

Proof. From Lemma 1 , the properties (1) and (2) in

Theorem 1 hold. To prove the property (3) in Theorem 1 , we

only need to prove that φ( A c , A s , D c , D s ) satisfies the four con-

ditions in Proposition 1 . φ( A c , A s , D c , D s ) meets the first two

conditions obviously. Since all semi-algebraic functions satisfy the

Kurdyka–Lojasiewicz (KL) properties by Theorem 3 in [29] and

φ( A c , A s , D c , D s ) is a semi-algebraic function by Lemma 2 , φ( A c ,

A s , D c , D s ) satisfies the Kurdyka–Lojasiewicz (KL) properties.

From Lemma 1 , { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } is bounded. Thus, the sequence

{ (x k 
1 
, . . . , x k p ) } is a Cauchy sequence and it converges to a critical

point, i.e., the property (3) in Theorem 1 holds. �

Before we prove Theorem 2 , we introduce a proposition [29,42] ,

which is described as follows: 

Proposition 2. [29 , 42] Assume that the objective function

F (x 1 , . . . , x p ) satisfies the following conditions: 

(1) inf F > −∞ ; 

(2) The restriction of F to its domain is a continuous function; 

(3) F satisfies the Lojasiewicz property: for any limiting-critical

point (x ∗
1 
, . . . , x ∗p ) , there exist C , ε > 0, and θ ∈ [0, 1) such that 

‖ F ( x 1 , . . . , x p ) − F 
(
x ∗1 , . . . , x 

∗
p 

)‖ 

θ ≤ C‖ (x ∗1 , . . . , x 
∗
p ) ‖ , 

for ∀ (x 1 , . . . , x p ) ∈ B ((x ∗
1 
, . . . , x ∗p ) , ε) , ∀ (x ∗

1 
, . . . , x ∗p ) ∈ crit F ,

where crit F denotes the critical point set of F; 

(4) The sequence { (x k 
1 
, . . . , x k p ) } generated by PALM [29] is

bounded. 

Then the sequence { (x k 
1 
, . . . , x k p ) } convergences in an at least sub-

linear rate. Generally, we meet the worse case that θ ∈ ( 1 2 , 1) , there

exists ω > 0 such that 

‖ 

(
x k 1 , . . . , x 

k 
p 

)
−

(
x ∗1 , . . . , x 

∗
p 

)‖ ≤ ωk −
1 −θ

2 θ−1 . 

Now, we prove Theorem 2 . 

Proof. We need to prove that φ( A c , A s , D c , D s ) satisfies the four

conditions in Proposition 2 . φ( A c , A s , D c , D s ) satisfies the first two

conditions obviously. Besides, φ( A c , A s , D c , D s ) satisfies the Lo-

jasiewicz property, since it is a semi-algebraic function (see Ex-

ample 1(b) in [42] ). Incorporating with the boundedness of the

sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } in Lemma 1 , we can obtain that the

sequence { (A 

k 
c , A 

k 
s , D 

k 
c , D 

k 
s ) } converges to a critical point in an at

least sublinear rate. �
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