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a b s t r a c t 

Multi-view facial expression recognition is a challenging and active research area in computer vision. In 

this paper, we propose a simple yet effective method, called the locality-constrained linear coding based 

bi-layer (LLCBL) model, to learn discriminative representation for multi-view facial expression recognition. 

To address the issue of large pose variations, locality-constrained linear coding is adopted to construct an 

overall bag-of-features model, which is then used to extract overall features as well as estimate poses in 

the first layer. In the second layer, we establish one specific view-dependent model for each view, respec- 

tively. After the pose information of the facial image is known, we use the corresponding view-dependent 

model in the second layer to further extract features. By combining all the features in these two layers, 

we obtain a unified representation of the image. To evaluate the proposed approach, we conduct exten- 

sive experiments on both BU-3DFE and Multi-PIE databases. Experimental results show that our approach 

outperforms the state-of-the-art methods. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Facial expression recognition has become a hot research topic

n computer vision because of its significant role in many appli-

ations, such as psychological research and human computer in-

eraction (HCI). As defined by Ekman et al. [1] , there are mainly

ix basic expression types, including angry, disgust, fear, happy,

ad, and surprise. The major task of facial emotion recognition is

o classify the given facial images into these six categories. Dur-

ng the past decades, a variety of methods [2,3] have been pro-

osed in the literature towards this problem. For a comprehensive

urvey, one may refer to [4] and [5] . Most existing works focus

n expression recognition from frontal or near-frontal face images.

owever, it is unrealistic to always acquire frontal facial images

n real-world applications. Compared with frontal facial expression

ecognition, non-frontal facial expression recognition is more prac-

ical and challenging since we need to deal with the pose varia-

ions in the meantime. 
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Feature coding methods [6] have shown superior performance

or image classification. Inspired by that, in this paper, we propose

 novel locality-constrained linear coding based bi-layer (LLCBL)

odel, which is simple but effective for multi-view facial expres-

ion recognition. By sharing local bases, locality-constrained linear

oding (LLC) [7] captures the correlations between similar descrip-

ors and ensures that similar patches have similar codes, which

re very helpful for facial expression recognition. Compared with

parse coding (SC) [8,9] , LLC has analytical solution and hence the

omputation speed is much faster. Besides, for image feature en-

oding, locality is more essential than sparsity [10] . Therefore, we

dopt the LLC based BoF method to represent the facial expression

mages. 

For multi-view facial expression recognition, pose variation is

he major problem we need to handle. Towards this issue, we

onstruct an overall LLC based BoF model and a view-dependent

odel for each angle, respectively. The overall BoF model is used

o extract overall features on all the facial images in the first layer.

hen, we take advantage of the first layer features to estimate the

ose, after which the corresponding view-specific BoF model is uti-

ized to extract second layer pose-related features. By combining

ll of these two layers’ features, we obtain a unified representa-

ion of the image. As the variances between different views are

istinct, it is very easy to classify the pose. In the second layer,

early all the train images and test images of view-dependent
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model are under the same view, the representation of the test im-

ages is much more precise and it is easier to recognize the facial

expression. While the overall BoF model preserves the correlated

features between different angles, the view-dependent BoF model

in the second layer can capture the characteristics of facial images

under specific view as well as eliminating the influence of pose

variations. In view of these above advantages, we construct LLCBL

model for multi-view facial expression recognition. While facial

landmark points are still very difficult to detect precisely in actual

scene, another advantage of our method is that we extract local

features on the dense and overlapped regions. Experimental results

show that our LLCBL method can achieve a competitive multi-view

facial expression recognition accuracy with a linear SVM [11] clas-

sifier. 

The contributions of this paper are summarized as follows: 

1. We apply the LLC based BoF method to recognize multi-view

facial expression. The extracted features enjoy local smooth

sparsity and can capture the correlations between similar de-

scriptors very well. 

2. Unlike existing works that just use classifiers to estimate the

pose directly, our method can extract the first layer features,

which is not only used for pose estimation but also part of the

final facial image representation. 

3. We propose a simple but effective LLCBL method for multi-view

facial expression recognition. After the feature extraction and

pose estimation in the first layer, we construct a specific model

for each view in the second layer to extract view-dependent

features, which can eliminate the impact of pose variations.

By concatenating bi-layer features, we acquire a discrimina-

tive representation. In contrast to existing methods, the LLCBL

method can preserve both the relationship between different

views and characteristics of each single view. 

The rest of the paper is organized as follows. We first intro-

duce the framework of BoF model in Section 2 . Then we present

the LLC method and our bi-layer model in Section 3 . We conduct

multi-view facial expression recognition experiments on various

databases in Section 4 . Finally, Section 5 concludes our paper. 

2. Related work 

In this section, we introduce the related work on multi-view

facial expression recognition and the BoF framework. 

2.1. Multi-view facial expression recognition 

Multi-view facial expression recognition has attracted many re-

searchers’ interest. According to which kinds of geometric informa-

tion are based on to extract features, the existing approaches can

mainly be classified into two different categories: facial landmark

points based methods and facial regions based methods. As for the

facial landmark points based methods, Hu et al. [12] used 2D dis-

placements of facial landmark points around the eyes, eye-brow

and mouth as facial features, and Rudovic et al. [13–15] mapped

the 2D locations of landmark points of facial expressions in non-

frontal poses to the corresponding locations in the frontal pose.

Zhang et al. [16] utilized active appearance models (AAM) [17] to

detect the locations of facial landmarks, after which they learnt

multi-modal to combine texture and landmark modality. Instead

of using geometric location features, Hu et al. [18] applied three

different local descriptors (Local Binary Pattern (LBP) [19] , His-

tograms of Oriented Gradients (HoG) [20] , and Scale Invariant Fea-

ture Transform (SIFT) [21] ) on key facial points to characterize fa-

cial expressions, and Zheng et al. [22,23] used sparse SIFT features

extracted on the given 83 landmark points to represent the facial

images. 
However, all these facial landmarks based methods need to ac-

uire the accurate locations of facial landmarks at the very begin-

ing. According to the survey [24] of facial points detection, many

andmarks detection methods have been proposed in the past sev-

ral years, but it is still a challenging work to robustly detect ac-

urate facial key points when the pose variations are very large.

or these above landmarks based methods, inaccurate landmarks

ill influence the following feature extraction and representation

rocedures. 

To handle the above issue, researchers proposed some ap-

roaches to extract features on image regions. These regions based

ethods can be divided into two groups: overall model based

ethods and pose estimation based methods. The first group of

ethods generally consist of three parts: SIFT features extrac-

ion on overlapped dense patches, feature encoding or dimension

eduction, and overall classifier learning. In the feature encod-

ng process, Zheng et al. [25] calculated regional covariance ma-

rices (RCM) first, and then proposed Bayes discriminant analy-

is via Gaussian mixture model (BDA/GMM) to reduce dimension.

ang et al. [26] learned super vectors based on ergodic hidden

arkov models (EHMM). Tariq et al. [27–29] used different encod-

ng methods of the bag-of-features (BoF) [30] model to represent

acial images. However, as the differences between facial images

nder different views are very large, the existing overall models

annot capture the specific characteristics of each view. Towards

his issue, the second group of methods propose to estimate the

ose first, and then construct a view-dependent model for each

iew. Wu et al. [31,32] projected multi-view features into a com-

on space for classification. Moore and Bowden [33,34] and Zheng

t al. [23] divided each facial image into a set of grid regions and

hen extracted LBP [19] features on each subregion. After feature

xtraction and pose estimation, Moore and Bowden [33,34] used a

iew-specific support vector machine (SVM) [11] classifier for each

iew to recognize facial expressions. Zheng et al. [23] constructed a

roup sparse reduced-rank regression (GSRRR) model to encoding

he features. Although view-dependent models can eliminate the

nfluence of pose variations, they do not utilize the relationship

mong different views, which is also very important for recogni-

ion. Besides, the low level features they extracted and the final

mage representation are not discriminative enough to classify fa-

ial expressions. Besides these 2D facial image based methods, a

ew researchers tried to acquire pose invariant image based on 3D

odel. For example, Vieriu [35] first acquired 3D point cloud of the

ace, and then used two head landmarks and pose information to

roject the multi-view facial image into near frontal facial image.

hen they extracted various features from the projected image and

dopted random forest [36] for classification. This kind of methods

an also handle pose variations problem, but the computation cost

s very expensive. 

.2. Bag-of-features model 

BoF is one of the most popular and effective image classification

rameworks in the recent literature, which has achieved the state-

f-the-art performance in many image classification tasks [6] . As

hown in Fig. 1 , a traditional BoF framework generally consists of

our basic steps. These are, respectively: 

1. Local features extraction: In this step, each image is divided

into many landmark points or dense overlapped patches, and

local features such as SIFT [21] , HoG [20] , and LBP [19] are ex-

tracted from each block or key point to represent the image. 

2. Codebook generation: By learning from local features of the

first step, this procedure generates a codebook. Sparse cod-

ing [8] and locality preservation [7] approaches are often used

for learning the codebook. In order to improve the computa-



J. Wu et al. / Neurocomputing 239 (2017) 143–152 145 

Feature Encoding Concatenate
Feature
vectors

Image Descriptors Codes SPM

Poolingextrac�on 

Fig. 1. A general framework of the traditional BoF model. 
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tional efficiency, clustering methods such as K-means [37] is

often used to compute the cluster centres based on a subset

of descriptors which are randomly selected from all these fea-

ture vectors. These cluster centres are called codewords, which

compose the codebook. 

3. Descriptors encoding: Each descriptor is encoded into a code

vector with codewords in the codebook. By utilizing different

encoding methods such as SC [8] , saliency coding [38] , and

LLC [7] , we can acquire code vectors with different proper-

ties. For a literature survey on encoding methods, one can refer

to [39] and [6] . 

4. Spatial feature pooling: In this step, spatial pyramid match-

ing(SPM) [40] first partitions the image into increasingly

fine subregions, and then pooling process integrates all re-

sponses on each codeword in a subregion into one value. As

SPM [40] can preserve the rough image geometric characteris-

tics, it is commonly used in image categorization tasks, such

as Li et al. [41,42] explored graph connections between im-

ages based on SPM. Besides, Li et al. [43] also proposed cellet-

encoded SPM to improve the performance. 

In pooling process, max-pooling and average pooling are two

ain pooling methods. By pooling code vectors in each spatial

lock across different spatial scales, we obtain the local description

f every block. The final representation of the image is obtained by

ombining descriptions of all blocks. 

. Bi-layer model for multi-view facial expression recognition 

In this section, we first describe the details of locality-

onstrained linear coding in Section 3.1 . Then we illustrate the

ramework of our proposed bi-layer model in Section 3.2 . 

.1. Locality-constrained linear coding 

Let X = [ x 1 , x 2 , . . . , x N ] ∈ R 

D ×N be a set of D -dimensional local

eatures extracted from an image. B = [ b 1 , b 2 , . . . , b M 

] ∈ R 

D ×M de-

otes the codebook with M codewords. Encoded by different cod-

ng algorithms, local features X is converted to N coding vectors

 = [ c 1 , c 2 , . . . , c N ] ∈ R 

M×N . The Locality-constrained linear coding

ethod [7] encodes each local descriptor x i by solving the follow-

ng problem: 

arg min 

C 

N ∑ 

i =1 

(‖ x i − Bc i ‖ 

2 + λ‖ d i � c i ‖ 

2 ) , 

.t. 1 

T c i = 1 , ∀ i, 

(1) 

here 1 ∈ R 

M×1 is a column vector of all ones, � denotes

he element-wise multiplication and d i = exp ( 
dist (x i ,B ) 

σ ) ∈ R 

M is

he locality adaptor. Specifically, dist (x i , B ) = [ ‖ x i − b 1 ‖ 2 , . . . , ‖ x i −
 M 

‖ 2 ] T . σ is used for adjusting the weight decay speed. 

Compared with SC [8] , LLC adopts locality constraint, which is

ore crucial than sparsity in encoding [10] . Another advantage of
LC is that the problem defined in Eq. 1 has a closed-form solu-

ion: 

ˆ 
 i = ((B 

T − 1 x T i )(B 

T − 1 x T i ) 
T + λdiag 

2 
(d i )) 

−1 1 , 

 i = 

ˆ c i / (1 

T ˆ c i ) . 
(2) 

he above idea is also shown in [7] . 

During the process of solving Eq. 1 , local bases for each descrip-

or are selected to form a local coordinate system. Instead of solv-

ng Eq. 1 directly, we can simply use the K ( K < D < M ) nearest

eighbors of x i in the codebook as the local base ˜ B to reconstruct

he descriptor x i : 

min 

C 

N ∑ 

i =1 

‖ x i − ˜ B c i ‖ 

2 , 

.t. 1 

T c i = 1 , ∀ i. 

(3) 

ince ˜ B is the K closest codewords of x and K is usually much

maller than the total number of codewords, approximated LLC

chieves both locality and sparsity. The computation complexity

an also be significantly reduced by this approximation. 

.2. Framework of our bi-layer model 

Based on LLC, we propose a bi-layer model, LLCBL, for multi-

iew facial expression recognition. The framework and pipeline of

he proposed method are illustrated in Figs. 2 and 3 , respectively.

he detailed process is illustrated as follows. During the training

rocess, in the first layer, we first extract the dense SIFT features

f all the images. Let X = [ X 1 , X 2 , . . . , X S ] be the local descriptors

et of all the images, where S is the total number of different an-

les and X i (i = 1 , 2 , . . . , S) denotes the local features subset of the

 -th angle facial expression images. Based on the features set X of

ll local descriptors, an overall dictionary B is learnt, which is then

tilized to encoding all the descriptors with the LLC method. The

nal image representation of the first layer F 1 = [ f 1 , f 2 , . . . , f M 

] is

btained by max-pooling over the LLC codes in each spatial block

cross different spatial scales. In the second layer, we train the dic-

ionary B i of specific i -th view with the corresponding features

ubset X i , respectively. For each view, the descriptors in subset

 i (i = 1 , 2 , . . . , S) is encoded by the corresponding dictionary B i 
ith LLC, respectively. Then spatial pyramid pooling is applied to

et the final representation of the second layer F 2 . The main differ-

nce of these two layers lies in the dictionary learning process. By

ombining all the features of these two layers, we obtain a unified

epresentation of the image F = [ F 1 , F 2 ] . For the test facial expres-

ion images, we first extract the first layer features F 1 with the

verall dictionary B with the same process as that in the training

rocess. With the pose information of train samples, the first layer

epresentation F 1 of test image is then used to estimate the an-

le of test image by a linear SVM [11] classifier. As the variances

etween different views are distinct, it is very easy to correctly

lassify the pose. After the view of the test image is acquired, the

econd layer features F 2 are calculated based on the correspond-

ng dictionary B . We concatenate features F = [ F 1 , F 2 ] as the final
i 
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Fig. 2. Framework of the proposed LLCBL model. For the input expression images with pose variations, we first extract local features in each block. Then in the first layer, 

we use the overall dictionary to encode local features. In the second layer, we use the corresponding view specific dictionary to encode local features. After encoding, SPM 

based max pooling is adopted to pool the coding vectors on each codeword. By concatenating the features of two layers, we get the final representation of the image. For 

test images, the pooled features of first layer F 1 are used to estimate the view. 
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Fig. 3. Pipeline of the proposed LLCBL model. An overall LLC based BoF model is constructed in the first layer, and several view-dependent BoF models are established in 

the second layer. 
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representation of test image. Finally, a linear SVM [11] classifier is

applied to final representation F to recognize the facial expression

of the test image. 

3.3. LLCBL properties analysis 

In the proposed LLCBL method, the first layer is the overall LLC

based BoF model, and the second layer is view-specific LLC based

BoF model. LLCBL concatenates the features of these two layers

to get the final discriminative representation. Our bi-layer model

possesses several attractive properties. Firstly, this model can well

preserve those nice properties of LLC. As the extracted dense SIFT

features are invariant to scale and rotation transformations, the fi-

nal image representation can also well handle these transforma-

tions. During the encoding process, under the locality regulariza-

tion, codewords of LLC can well reconstruct the local features and

similar descriptors are encoded with similar codes. Besides, as the
LC method has close-form solution, the encoding speed is very

ast. Secondly, view-dependent models in the second layer can rep-

esent the facial images more precisely while the angle of facial

xpression images has a large variation. For multi-view facial ex-

ression recognition, the most challenging aspect is the view trans-

ormation. Towards this issue, we construct view-dependent model

or each specific view in the second layer of LLCBL, and it will

liminate the influence of various views. Last but not least, the fi-

al concatenated features F of LLCBL contain both the overall and

iew-dependent characteristics. It can represent the original fa-

ial image with richer information, which benefits classification. As

oth global and local features are important for image representa-

ion, we concatenate features of both two layers to acquire better

epresentation. 

Compared with single layer LLC for multi-view expres-

ion recognition, LLCBL takes view variations into consideration

nd constructs view-dependent models. While single layer LLC
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Fig. 4. Example images from the BU-3DFE and Multi-PIE datasets. (a) Examples of the 2D facial images of one subject in the first set of the BU-3DFE database with respect 

to the six facial expressions and five facial views. (b) Examples of the 2D facial images of one expression for one subject in the second set of the BU-3DFE database with 

respect to five tilt angles and seven pan angles. (c) All 42 facial expression images of one subject in the Multi-PIE database with respect to six facial expressions and seven 

facial views. 
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nly contains overall features, LLCBL contains both overall and

iew-dependent features, which help LLCBL to represent expres-

ion images better. 

. Experimental results and analysis 

We do extensive experiments on two widely used databases

hat are BU-3DFE database [44] which is synthetic and Multi-PIE

atabase [45] which is close to real-world scenes to validate our

roposed method. Some example images of these databases are

hown in Fig. 4 . As we introduced in the Section 1 , facial landmark

oints are still very challenging to detect precisely in practice, es-

ecially for those facial expression images with large variations.

hile the detected key points are not as exact as the ground truth,

he recognition accuracy may decrease significantly. Therefore, we

nly compare the performance of our proposed LLCBL model with

hat of other region based state-of-the-art methods in this paper,

ncluding the pose estimation based LBP method [34] and GSRRR

odel [23] , overall model based BDA/GMM [25] , EHMM [26] ,

eneric sparse coding (GSC) method [27] , supervised soft vec-

or quantization (SSVQ) method [28] and supervised super-vector

ncoding (SSE) method [29] . We also apply the original LLC

ethod [7] to multi-view facial expression recognition and com-

are the performance. 

Throughout the experiments, we only use one single descrip-

or SIFT [21] and a set of 128-dimension SIFT features is extracted

rom patches densely located with step size of 3 pixels in both

orizontal and vertical directions under only one scale 16 × 16.

-means [37] is used to generate the codebook with 1024 cen-

res. The number of neighbors is set to 5 during feature cod-

ng with LLC, after which we use the spatial pyramid matching

SPM) [40] with levels of [1 × 1, 2 × 2, 4 × 4, 8 × 8] and

dopt max-pooling method to pool the feature codes in each spa-

ial block. We set all above optimal parameters according to [6] ,

hich give a detailed analysis about parameters selection. In the

lassification process, we use the liblinear SVM [11] classifier to

stimate the pose and classify the facial expressions. To evaluate

he performance, we do 5-fold cross validation and then average

he results. All the subjects are randomly divided into 5 portions.

n each of 5 folds, images from one portion (20% subjects) are used
s test samples and images from the remaining four portions (80%

ubjects) are used as train samples. Under this circumstance, there

re no overlapped subjects between train subjects and test sub-

ects, and images of each subject are regarded as test samples ex-

ctly once. 

.1. Experimental results on BU-3DFE database 

We first test the performance on the synthetic database. The

U-3DFE database [44] has been widely used for multi-view fa-

ial expression recognition. It contains 3D models of 100 subjects

56 female and 44 male), each of whom has six universal facial ex-

ressions (anger (AN), disgust (DI), fear (FE), happiness (HA), sad-

ess (SA), and surprise (SU)) under four different levels of intensi-

ies. The OpenGL software is utilized to render these 3D models

nd generate 2D facial expression images under different angles

or classification. Among all of the existing multi-view facial ex-

ression recognition works, there are mainly two widely used 2D

acial image sets of BU-3DFE database. We conduct experiments on

oth two image sets. 

For the first image set of BU-3DFE database, it consists of

 × 4 × 6 × 100 = 12000 2D facial expression images under five

ifferent yaw angles (0 °, 30 °, 45 °, 60 °, 90 °) and four levels of in-

ensities (levels 1,2,3, and 4). Some sample images of one subject

n various yaw angles are shown in Fig. 4 a. [23,34] also adopt this

mage set for experiments. We evaluate the performance of our al-

orithm with these images under all five yaw views and four levels

f intensities. 

In Table 1 , we compare the performance of our bi-layer model

ith that of other state-of-the-art methods under the same exper-

ments setting on the first set of BU-3DFE database. We need to

ention that this dataset contains all 4 levels intensities expres-

ion images. On this dataset, the single layer LLC can achieve the

ccuracy 72.1%, which is a little higher than the best performance

1.1% of other region based methods. Our LLCBL can further im-

rove the recognition accuracy to 74.6%. 

Table 2 shows the recognition rates of each expression under

very yaw angle and Fig. 5 shows the confusion matrix among

hese six expressions. From Table 2 , we can see that the recog-

ition rates vary form view to view, and the optimal view for
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Table 1 

Performance comparison with state-of-the-art methods on the first image set of BU-3DFE database. 

Method Poses Expressions Feature Overall(%) 

number pan number levels 

Moore and Bowden [34] 5 (0 o , +90 o ) 6 1,2,3,4 LBP u 2 58.4 

Moore and Bowden [34] 5 (0 o , +90 o ) 6 1,2,3,4 LBP ms 65.0 

Moore and Bowden [34] 5 (0 o , +90 o ) 6 1,2,3,4 LGBP 68.0 

Moore and Bowden [34] 5 (0 o , +90 o ) 6 1,2,3,4 LGBP/LBP ms 71.1 

GSRRR [23] 5 (0 o , +90 o ) 6 1,2,3,4 LBP u 2 66.0 

Single layer LLC 5 (0 o , +90 o ) 6 1,2,3,4 Dense SIFT 72.1 

LLCBL method (Ours) 5 (0 o , +90 o ) 6 1,2,3,4 Dense SIFT 74.6 
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(f) Overall

Fig. 5. Confusion matrices for facial expressions over different facial views on the first image set of BU-3DFE database. (a)–(e) The confusion matrices corresponding to five 

facial views. (f) The overall recognition confusion matrix. 

Table 2 

Recognition accuracies under different expressions and facial views on the first 

image set of BU-3DFE database. 

Expressions Results (%) 

0 0 30 0 45 0 60 0 90 0 Average 

Angry 74.25 72.00 72.00 75.25 73.00 73.30 

Disgust 75.50 76.00 75.00 76.75 73.00 75.25 

Fear 57.25 55.50 50.50 50.00 49.25 52.50 

Happy 88.75 86.50 86.25 88.50 80.75 86.15 

Sad 66.75 68.25 67.25 74.00 71.00 69.45 

Surprise 90.25 91.25 91.75 90.25 90.50 90.80 

Average 75.46 74.82 73.79 75.79 72.92 74.58 
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recognition is 60 o with accuracy 75.79% while the worst view is

90 o with accuracy 72.92%. For different expressions, the recogni-

tion accuracies are also different. Surprise and happy expressions

are much easier to recognize while fear is very difficult to clas-

sify, whose average recognition accuracy is less than 55%. In the

meantime, we can see from Fig. 5 that angry and sad expressions

are more likely to be misclassified, which result in the low accura-

cies of these two expressions. The recognition rates of these two

expressions are less than the average recognition result. All the

misclassification rates of fear expression to other expressions are

relatively high, which make the accuracy of fear expression lowest

among all these six expressions. 
For the second image set of BU-3DFE database, it consists of

 × 5 × 6 × 100 = 210 0 0 2D facial expression images under seven

ifferent pan angles (0 °, ±15 °, ±30 °, ±45 °), five different tilt yaw

ngles (0 °, ±15 °, ±30 °) and with the strongest expression inten-

ity (level 4). Some sample images of one expression in various

iews are shown in Fig. 4 a. There are mainly three fundamental

ifferences between these two image sets of BU-3DFE database.

irst of all, The second image set contains facial expressions un-

er not only different pan views but also different tilt views. The

argest variation pan angle of this image set is only ± 45 °, while

he pan angle of the first image set vary from 0 ° to 90 °. Besides,

he second image set only contains images with the strongest ex-

ression intensity, but images in the first image set are under four

ifferent intensities. Many works, such as [25–29] , adopt the sec-

nd image set for experiments and achieve state-of-the-art recog-

ition results. We evaluate the performance of our algorithm with

ll these expression images under all seven yaw views and five tilt

iews. 

As shown in Table 3 , the performance of single layer LLC is bet-

er than other state-of-the-art methods, which demonstrates that

LC is better than SC [8] , SSVQ [28] , and SSE [29] during encod-

ng. Our proposed LLCBL method can achieve 80.2% while the high-

st recognition accuracy among all existing methods is only 76.6%,

hich is much lower than that of our method. In the meantime,

he recognition accuracy of LLCBL surpasses that of LLC with 2.5%.
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Table 3 

Performance comparison with state-of-the-art methods on the second subset of BU-3DFE database with the strongest expression intensity. 

Method Poses Expressions Feature Overall (%) 

number pan tilt number level 

Zheng et al. [25] (DBA/GMM) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 68.2 

Tang et al. [26] (EHMM) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 75.3 

Tariq et al. [27] (GSC) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 76.1 

Tariq et al. [28] (SSVQ) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 76.1 

Tariq et al. [29] (SSE) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 76.6 

Single layer LLC 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 77.7 

LLCBL method (Ours) 35 ( −45 o , +45 o ) ( −30 o , +30 o ) 6 4 Dense SIFT 80.2 

Table 4 

Performance comparison with state-of-the-art methods on the Multi-PIE database. 

Method Poses Expressions number Feature Overall (%) 

number pan 

Moore and Bowden [34] 7 (0 o , +90 o ) 6 LBP ms 73.3 

Moore and Bowden [34] 7 (0 o , +90 o ) 6 LGBP 80.4 

GSRRR [23] 7 (0 o , +90 o ) 6 LBP u 2 81.7 

Single layer LLC 7 (0 o , +90 o ) 6 Dense SIFT 84.4 

LLCBL method (Ours) 7 (0 o , +90 o ) 6 Dense SIFT 86.3 
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Fig. 6. The overall recognition confusion matrix for facial expressions on the second 

image set of BU-3DFE database. 
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Table 5 

Recognition accuracies of expressions under different facial views on the Multi- 

PIE database. 

Expressions Results (%) 

0 o 15 o 30 o 45 o 60 o 75 o 90 o Average 

Disgust 74.0 77.0 78.0 78.0 80.0 79.0 85.0 78.7 

Neutral 90.0 93.0 93.0 91.0 91.0 84.0 86.0 89.7 

Scream 97.0 96.0 98.0 95.0 94.0 96.0 98.0 96.3 

Smile 86.0 84.0 82.0 83.0 85.0 84.0 85.0 84.1 

Squint 82.0 81.0 80.0 74.0 74.0 61.0 72.0 74.9 

Surprise 96.0 94.0 96.0 97.0 93.0 90.0 94.0 94.3 

Average 87.5 87.5 87.8 86.3 86.2 82.3 86.7 86.3 
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s there are so many different views, we only present the overall

ecognition confusion matrix for facial expressions over different

acial views in Fig. 6 . The recognition results are roughly consistent

ith that shown in Fig. 5 , except for the recognition improvement

f disgust, happy and surprise three expressions. 

.2. Experimental results on Multi-PIE database 

Now we test the performance of LLCBL on the real-world im-

ge database. The Multi-PIE database [45] contains 755,370 im-

ges from 337 different subjects. The facial images of this database

re captured under 15 view points and 19 illumination conditions

n up to four recording sessions. We adopt the same subset of

ulti-PIE for expression recognition as in [23,34] , and only select

hese 100 subjects presented in all four recording. For each sample

f the selected subjects, six types of expressions (neutral, smile,

urprise, squint, disgust, and scream) and seven different poses

0 °, 15 °, 30 °, 45 °, 60 °, 75 °, and 90 ° yaw angles) are considered in

he experiments. Consequently, there are 4200 images in total. Be-

ore the experiments, we first crop and normalize each facial im-

ge, and then down-sample it into the same size of 120 × 160 pix-

ls. Fig. 4 a shows all 42 facial images of one subject. 

We compare the average recognition accuracy of our bi-layer

odel with the ones achieved by [34] and [23] under the same ex-

eriments settings, and the results are shown in Table 4 . While the

ecognition rates of [34] and [23] are 80.4% and 81.7%, respectively,
he recognition accuracy of our method can achieve 86.3%, which is

uch higher than that of other methods. Table 5 shows the recog-

ition rates of each expression under different facial views. We can

ee that the optimal facial view for each expression is different,

nd the corresponding view of the highest average recognition ac-

uracy among all expressions is 30 o . Fig. 9 shows the confusion

atrices of each yaw angle as well as the overall confusion ma-

rix of the experiments. From both Table 5 and Fig. 9 , we can see

hat, among these six expressions, scream and surprise expressions

re easier to be recognized while their recognition accuracies are

6.3% and 94.3%, respectively. Squint and disgust expressions are

ore difficult to recognize while their recognition rates are less

han 80%. Besides, it can be found in Fig. 9 that disgust and squint

xpressions are more likely to be misclassified, which is due to the

act that these two expressions are relatively similar to each other.

.3. Influence of pose estimation 

In the end of the first layer of Fig. 2 , we simply use the liblinear

VM [11] classifier to estimate the pose. The accuracy and confu-

ion matrix of pose estimation are presented in Fig. 7 . For simpli-

cation, we just show the pose estimation results on the Multi-PIE

nd the first subset of BU-3DFE dataset. Since there are obvious

ifferences between facial expressions of different views, the ac-

uracy of pose estimation is very high. The average accuracies of

ose estimation on the Multi-PIE and the first subset of BU-3DFE

re 98.31% and 99.01%, respectively. According to Fig. 7 , we can see

hat only a few images are misclassified and those misclassified

amples are all classified into their adjacent views. Even though
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Fig. 7. Pose estimation accuracy and confusion matrix on two datasets. 
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the ground truth views of them are slightly different, they also

share the similar patterns. Therefore, it is reasonable to neglect the

influence of pose estimation in our method. Through experiments,

we also find that most of those expressions whose views are mis-

classified can be correctly recognized in the second layer of our

framework. In this case, our LLCBL model can well eliminate the

influence of view variations. 

4.4. Experimental results analysis 

According to the recognition results on these three datasets, we

can easily find that single layer LLC can achieve comparable ac-

curacy with the state-of-the-art methods as LLC can well preserve

the local similarity during encoding. Compared with single layer

LLC, our LLCBL can further improve the accuracy with nearly 2.3%.

There are mainly two reasons accounting for this improvement.

The first one is that we construct view-dependent models in the

second layer of LLCBL to reduce the impact of view variations, and

the second reason is that LLCBL contains both overall and view-

dependent features, both of which are important for classification. 

For the impact of expressions intensities, compared with the

recognition result on the second image set of BU-3DFE database,

the recognition accuracy of LLCBL method on the first BU-3DFE im-

age set is much lower, which can be ascribed to the inconspicuous

deformations of the low intensities expressions and large variation

of the facial expression views. To further investigate the influence

of expression intensity, we show the recognition accuracy of differ-

ent expression intensities on the first subset of BU-3DFE dataset in

Fig. 8 . As introduced in the Section 4.1 , the first subset of BU-3DFE

dataset consists of facial expressions across four different intensi-

ties. According to Fig. 8 , we can easily find that the recognition

accuracy goes up with the increase of expression intensity. For ex-
Fig. 8. Influence of expression intensity on the first image set of BU-3DFE database. 
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ressions with high level intensity, the change of action units is

ery large. In this case, the difference between expressions of dif-

erent class under high level intensity is much larger than that un-

er low level intensity. Therefore, expressions with high level in-

ensity are relatively easier to be correctly recognized than that

ith low level intensity. 

For the misclassification between expressions, it is related to

he similar action units of facial expressions. Facial action unit sys-

em (FACS) [46] defined 44 action units, and each expression can

e regarded as a combination of several action units. When two

acial expressions share similar action units, they are easy to be

isclassified. For example, as shown in Figs. 5 and 6 , misclassi-

cation rate of angry and sad expressions is very high. This can

e due to the fact forehead action units of angry and sad expres-

ions are very similar to each other, which can be seen in Fig. 4 a.

hen the action units are very different, misclassification rate is

elatively low. 

For different views, facial images with pan angle that is less

han 60 o benefit the recognition. When the pan angle is larger than

0 o , the overall recognition accuracy decreases. According to the

ACS [46] , action units of different expressions mainly lie in the

outh, eyes and forehead. However, when the pan angle is larger

han 60 o , these moving parts of face are not obvious any longer,

hich will reduce the recognition result. On the other hand, we

otice that the pan angle corresponding to the highest recogni-

ion accuracy among all different angles is not 0 o but between 30 o 

nd 60 o . For frontal images, they are nearly symmetric. Half of the

rontal image can well represent the original image. In this way,

he frontal facial expression images contain much redundant in-

ormation. Compared with frontal facial images, facial images with

mall pan angle can also preserve the information of one face side

nd add some detailed side face information. Therefore, facial im-

ges with small pan angle might benefit the classification. 

. Conclusions 

In this paper, we investigate the multi-view facial expression

ecognition problem and propose a simple yet effective bi-layer

odel based on the classical LLC method. Our bi-layer model, LL-

BL, can extract discriminative features to represent the facial ex-

ression images. The extracted features contain both overall and

iew-dependent characteristics, which benefit the classification. As

e extracted SIFT features from dense local patches, another major

dvantage of our method is that we do not need to detect the fa-

ial landmark points which is still a challenging work. To evaluate

he performance of our proposed method, we conduct extensive
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Fig. 9. Confusion matrices for facial expressions over different facial views on the Multi-PIE database. (a)–(g) The confusion matrices corresponding to seven facial views. 

(h) The overall recognition confusion matrix. 
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xperiments on both BU-3DFE database and Multi-PIE database.

he results show that the recognition accuracy of our method is

uch higher than that of other state-of-the-art methods under the

ame experimental settings, especially on the Multi-PIE database.

hile the dimension of the final unified representation is very

igh and the structure is very sparse, we would like to design

n approach to reduce the dimension of these features in the fu-

ure. Other efficient classifiers such as kernel SVM can be applied

o multi-view facial expression recognition to further improve the

ecognition accuracy. 
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