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a b s t r a c t 

Feature learning is a critical step in pattern recognition, such as image classification. However, most of 

the existing methods cannot extract features that are discriminative and at the same time invariant under 

some transforms. This limits the classification performance, especially in the case of small training sets. 

To address this issue, in this paper we propose a novel Partial Differential Equation (PDE) based method 

for feature learning. The feature learned by our PDE is discriminative, also translationally and rotationally 

invariant, and robust to illumination variation. To our best knowledge, this is the first work that applies 

PDE to feature learning and image recognition tasks. Specifically, we model feature learning as an evo- 

lution process governed by a PDE, which is designed to be translationally and rotationally invariant and 

is learned via minimizing the training error, hence extracts discriminative information from data. After 

feature extraction, we apply a linear classifier for classification. We also propose an efficient algorithm 

that optimizes the whole framework. Our method is very effective when the training samples are few. 

The experimental results of face recognition on the four benchmark face datasets show that the proposed 

method outperforms the state-of-the-art feature learning methods in the case of low-resolution images 

and when the training samples are limited. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Nowadays, many well-known methods for image classification

tasks (e.g. face recognition) involve two steps: feature extraction

and classification. As the performance of the classifier is heavily

dependent on the quality of features (or data representation),

much of the effort on image classification goes into the design of

features and data transformations [1] . The approaches to feature

extraction can be split into two categories: manually designing

features and automatically learning features. 

Manual feature design is a way that incorporates human inge-

nuity and prior knowledge to represent data. Features extracted

by existing popular methods, such as Scale-Invariant Feature

Transform (SIFT) [2] , Histogram of Oriented Gradients (HOG)

[3] , and Invariant Scattering Convolution Networks [4] , usually

satisfy some invariance properties, e.g., translational and rotational

invariance, that are beneficial to the image classification tasks.
∗ Corresponding author. 

E-mail addresses: fangcong@pku.edu.cn (C. Fang), dwightzzy@gmail.com (Z. 
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hey are intuitive and fit for various image classification tasks

elatively well. However, inventing these methods is extremely

abor-intensive, and existing methods may not extract discrimina-

ive information from the data well. So researchers gradually turn

o learn representations of data. 

Linear representation based feature learning methods have at-

racted much attention recently. This is because images of convex

nd Lambertian objects taken under distant illumination lie near

n approximately nine-dimensional linear subspace, known as the

armonic plane [5] . By utilizing this subspace property, Low Rank

epresentation [6] based methods extract feature to capture the

lobal structure of the whole data and are robust to noise. Chen

t al. [7] extract the low rank matrix as feature and then apply

parse Representation Classification (SRC) [8] for classification.

i et al. [9] propose a semi-supervised framework with class-

ide diagonal structure to learn low-rank representations. Zhang

t al. [10] expand the low-rank model into a dictionary learning

ethod. Wu et al. [11] also apply a low-rank dictionary model

nto multi-view tasks. Dictionary learning methods, which learn a

et of representation atoms and weighted coefficients (feature) at

he same time, have also achieved huge success. Zhang et al. [12]

http://dx.doi.org/10.1016/j.patcog.2017.03.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.03.034&domain=pdf
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Fig. 1. Illustration of the proposed approach. The evolutionary process of our 

PDE (solid arrow) with respect to the time ( t = 0 , T /N, · · · , T, ) extracts the feature 

from the image and the gradient descent process (hollow arrow) learns a transform 

to represent the feature. 
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1 The code will be available at http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin. 

htm . 
2 Currently, our method focuses on low-resolution images. To best of our knowl- 

edge, all the compared methods which aim at classification with limited training 

samples also test on images at this scale. 
ropose a discriminative KSVD method (D-KSVD) which combines

he dictionary reconstruction error and classification error and

hen solve their model by a single KSVD. Mairal et al. [13] model

he supervised dictionary learning as a bilevel optimization frame-

ork. To build the relationship between dictionary atoms and the

lass labels, Jiang et al. [14] associate label information with each

ictionary item and propose a Label Consistent K-SVD method (LC-

SVD). Liu et al. [15] also propose an oriented-discriminative

ictionary to tackle this problem. There are also some works

hich construct several different dictionaries for classification. Ou

t al. [16] use an occlusion dictionary for face recognition with

cclusion. Liu et al. [17] apply a bilinear dictionary for face recog-

ition. However, these linear representation based feature learning

ethods ignore the invariance of the features. For example, in

ace recognition tasks the changes of illumination or poses can

nly be regarded as noise. Moreover, since a little misalignment

mong faces can bring down the performance of classification

ignificantly, much effort is spent on aligning the faces before

lassification [18] . 

Deep neural networks, which are composed of multiple non-

inear transformations, have shown their superiority during the

ast few years [19–21] . Their hierarchical structure is effective

n extracting discriminative information. Convolutional Neural

etworks (CNN) [22] cut down the connections between the

uccessive layers by using shared weights (same filters) and apply

ooling strategies to extract local useful features, which have

chieved an amazing performance [21] in image classification

asks. However, deep neural networks usually need a huge number

f samples for training. Unfortunately, for many problems, such as

asks in bioinformatics and face recognition, each class only has

everal samples for training. 

Recently, Liu et al. [23,24] have proposed a framework that

earns partial differential equations (PDEs) from training image

airs, which has been successfully applied to several computer

ision and image processing problems. In [24] , they apply learning-

ased PDEs to object detection, color2gray, and demosaicking. In

25] , they model the saliency detection task as learning a bound-

ry condition of a PDE system. Zhao et al. [26] extend this model

o text detection. 

The incapability of the existing methods in incorporating

oth discrimination and invariance into features motivates us

o find new ways to feature learning, especially in the case of

imited training samples . Considering that symmetry methods for

ifferential equations can construct invariances rigorously, in this

aper we propose a novel PDE model for feature learning. An

llustration of the proposed approach is shown in Fig. 1 .

he PDE is formulated as a linear combination of fundamental

ifferential invariants. The evolution process of the PDE works

s a mapping from the raw images to the features of the same

imension. Distinguished from traditional PDE methods, our PDE

s data-driven, enhancing discriminative information in the learned

eature. In addition, its evolution process is strictly translationally

nd rotationally invariant. Then the feature is fed to a simple

inear classifier for classification. We also provide an algorithm

hat updates the parameters alternately to optimize our discretized

odel. By utilizing the invariance property well, our method is

ery efficient when the training samples are few. We summarize

he contributions of this paper as follows: 

• We propose a novel PDE based method to extract image feature

for classification. We model the feature extraction process as

an evolutionary PDE. The learned feature is both discriminative

and invariant under translation, rotation and gray-level scaling.

To our best knowledge, this is the first work that applies PDE

to feature learning and image recognition. 
• We provide a simple yet effective algorithm to optimize

our discretized PDE model. The whole training time in each

experiment is less than five minutes. 1 

Face recognition is a paradigm where the training samples are

ew. Our experimental results 2 on the four well-known public

ace recognition datasets show that our method outperforms the

tate-of-the-art methods in this case. For example, we obtain a

ecognition accuracy of 96% on Extended Yale B, with only 10

amples for each person, which is about 9% higher than sparse

oding and dictionary learning methods. 

The rest of the paper is structured as follows: we will first

ntroduce our PDE model in Section 2 . In Section 3 , we provide

ur algorithm to optimize our model. We discuss some other

elated works in Section 4 . In Section 5 , we evaluate our PDE

odel on face recognition tasks and show the superiority of our

odel. Finally, we will conclude our paper in Section 6 . 

. PDE based feature learning model 

In this section, we present our PDE model for discriminative

eature learning. We first propose the general framework and then

rystallize our model via some invariance properties. To begin

ith, we provide in Table 1 a brief summary of the notations used

hroughout the paper. For vector x, x i presents its i th component. 

.1. General PDE model 

We first assume that feature extraction is an evolution process

hich can be described by a certain kind of time-dependent PDE.

http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
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Table 1 

Notations (Nota. stands for notation.) 

Nota. Description Nota. Description 

u Evolution of the input image. vec( · ) Rearrange a matrix to a column vector. 

� An open bounded region in R 2 . || · || F Frobenious norm, || X || F = 

√ ∑ 

i, j X 
2 
i j 

. 

∂� Boundary of �. I m , h m The m th training image and its tag vector. 

Q � × [0, T ]. { a i (t) } 5 i =0 Parameters in the PDE. 

� ∂� × [0, T ]. A, W Parameters in the PDE and classifier. 

∇u Gradient of u . X T Transpose of matrix (or vector). 

H u Hessian of u . 〈·, ·〉 Inner product, 〈 C, D 〉 = ( vec (C)) T vec (D ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Rotational invariants up to the second order. 

i inv i ( u ) 

0,1,2 1, u , ‖∇u ‖ 2 = u 2 x + u 2 y , 

3 tr(H u ) = u xx + u yy , 

4 (∇ u ) T H u ∇ u = u 2 x u xx + 2 u x u y u xy + u 2 y u yy , 

5 tr(H 

2 
u ) = u 2 xx + 2 u 2 xy + u 2 yy . 
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The input of the PDE (initial condition) is the original image. The

output of the PDE is the feature of the image. The time-dependent

operations of the evolutionary PDE resemble different steps of

information processing. The PDE can be formulated as: ⎧ ⎨ 

⎩ 

∂u 

∂t 
= F (u, x, y, t) , (x, y, t) ∈ Q, 

u (x, y, t) = 0 , (x, y, t) ∈ �, 

u | t=0 (x, y, t) = I, (x, y ) ∈ �, 

(1)

where I is the input image, � is the rectangular region occupied

by the input image I , and T is the time that the PDE finishes fea-

ture extraction. 3 The evolution result u | t= T is the learned feature

map. The meanings of other notations in Eq. (1) can be found in

Table 1 . So when the PDE is discretized, which will be discussed

in Section 3.1 , the dimension (size) of the feature map u | t= T will

be the same as the input image I . 

2.2. Formulate the PDE 

The F ( u, x, y, t ) in (1) is unknown. For most existing evolution-

ary PDE methods for image processing tasks [27,28] , the PDEs can

be written as follows: 

∂u 

∂t 
= F (u, ∇u, H u ) , (2)

where F is a function of u , ∇u , and H u . Different choices of F result

in different PDEs. For some image processing problems, people can

use their intuition (e.g. smoothness of edge contour and surface

shading) to devise a particular F . But for classification tasks, it is

hard to directly write down an F which can describe the feature

extraction process. Inspired by Liu et al. [24] , we tend to deduce

the property of F in order to narrow down its search space instead

of directly finding the right form the PDE. 

2.2.1. Translational and rotational invariants 

For many image classification tasks, the features need to be

invariant under some transformations so as to make the classifi-

cation robust. The most basic transformations are translation and

rotation. Some existing manually designed features, such as SIFT

and HOG, are roughly invariant under translation and rotation.

Inspired by Liu et al. [24] , we also require our PDE to be trans-

lationally and rotationally invariant over time. According to the

differential invariant theory [29] , F ( ·, ·, ·, t ) must be a function of

the fundamental differential invariants under the group of trans-

lation and rotation. The fundamental differential invariants are

invariants under translation and rotation and any other invariant

can be written as their function. The fundamental invariants up to

the second order 4 that we will use are listed in Table 2 , which we

refer to as inv i ( u ), i = 0 , · · · , 5 . 
3 When discretizing the PDE, we pad images with zeros so as to satisfy the 

Dirichlet boundary conditions u (x, y, t) = 0 , where ( x, y, t ) ∈ �. 
4 Like most PDE based methods, we limit our attention to second order PDEs, 

since higher order PDEs will pose difficulties in numerical stability and theoretical 

analysis. 

c  

t

P  

{

To verify that the inv i ( u ), i = 0 , · · · , 5 , are invariant under

otation, it is not hard to find that ∇u , H u will change to R ∇u and

H u R 

T , respectively, when the image is rotated by a matrix R . 

.2.2. Nonlinear mapping 

In many image classification tasks, such as face recognition,

ariation of illumination is a big challenge [8] . To achieve approx-

mate invariance in illumination, we add a nonlinear mapping

(x ) = 

x 
1+ | x | on each fundamental differential invariant, making it

early invariant under gray-level scaling. Note that we cannot use

˜  (x ) = 

x 
| x | = sgn (x ) because it is not a bijection. So { ̃ g ( inv i (u )) } 5 i =0 

re not fundamental differential invariants that can be used to

epresent other differential invariants. In contrast, { g( inv i (u )) } 5 i =0 

re still fundamental differential invariants. In the same spirit, g ( x )

an be chosen as other commonly used transfer function in neural

etworks, such as the logistic function [19,20] . But g ( x ) here is

uch simpler. Since F ( ·, ·, ·, t ) can be written as a function of

undamental differential invariants, in the simplest case we choose

 as a linear combination of these transformed fundamental

ifferential invariants, formulated as follows: 

 (u, x, y, t) = 

5 ∑ 

i =0 

a i (x, y, t ) g ( inv i ( u ( t ) ) ) , (3)

here { a i (x, y, t) } 5 i =0 are parameters to be determined. 

The nonlinear mapping has another advantage, i.e., making

he fundamental differential invariants bounded, reducing the

ifficulty of optimization and improving numerical stability of the

DE. The experiments show that the mapping can improve face

ecognition rate by about 4%. 

When F ( u, x, y, t ) in Eq. (1) is chosen as Eq. (3) , our PDE

s actually a simplified version of the PDE system proposed by

iu et al. [24] , who have successfully used this model to handle

ifferent image processing problems. Our model adds a nonlinear

apping on each fundamental differential invariants, and drops

he indicator function in their model which was introduced for

ollecting global information. This is because we are considering

ocal features. Omitting the indication function greatly reduces the

omputational complexity and the training cost. Our PDE also has

he following properties: 

roposition 1. Suppose the PDE (1) is translationally invariant, then

 a j (x, y, t) } 5 
j=0 

must be independent of ( x, y ) . 
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roposition 2. When F ( u, x, y, t ) is a function of the fundamental

ifferential invariants, u ( t ) is invariant under the group of translation

nd rotation through the evolution of the PDE (1) . 

The proofs are the same as those in [24] , despite the introduc-

ion of the nonlinear mapping g . According to Proposition 1 , we

ill use { a j (t) } 5 
j=0 

to denote { a j (x, y, t) } 5 
j=0 

in the following. 

.3. Classification 

When obtaining the feature u m 

| t= T from the input image I m 

,

e need a classifier for classification. In the training phase, we

inimize a loss function to determine both the F and the param-

ters in the classifier. Especially, we first prepare training samples

 (I m 

, h m 

) } M 

m =1 
, where I m 

is the m th input image, h m 

is its corre-

ponding tag vector with 1 at the i th entry if the m th input image

elongs to class i , and M is the number of samples. For each input

mage I m 

, we obtain a feature map u m 

| t= T by PDE (1) for classifica-

ion. Then the whole learning model can be formulated as finding

 certain function F ( u, x, y, t ) and parameters W of a classifier to

inimize a loss function L with a regularization term J : 

in 

F,W 

E = 

1 

M 

M ∑ 

m =1 

L (W ; u m 

| t= T , h m 

) + λJ(W ) , (4) 

here u m 

satisfies the PDE (1) with u m 

| t=0 = I m 

and λ > 0 is

 trade-off parameter. When F is chosen as Eq. (1) , we are to

etermine a i ( t ), i = 0 , · · · , 5 , instead. 

For simplicity, we use a linear classifier, such as Multivariate

idge Regression (MRR), for classification, which is widely used

n multi-class classification [10,12,14] . We can also adopt the

inge loss as it is advantageous in many cases, such as in face

ecognition and in dimensionality reduction [30–32] . The objective

n (4) to learn MRR is as follows: 

 = 

1 

M 

‖ 

H − W · U| t= T ‖ 

2 
F + λ‖ W ‖ 

2 
F , (5) 

here H = [ h 1 , h 2 , · · · , h M 

] . And as mentioned before, u m 

| t= T will

e a matrix of the same size as the input image I m 

when the

DE is discretized. So for MRR, W will be a matrix with size of

 × p , where c is the number of categories and p is the pixel

umber of the input images I m 

. 5 We set U| t= T = [ vec (u 1 | t= T ) ,
ec (u 2 | t= T ) , · · · , vec (u M 

| t= T )] . When testing, the class label l ∗ of a

esting image I can be obtained as follows: 

 

∗ = arg max 
l 

{ s l } , (6) 

here s = W · vec (u | t= T ) is the label vector and u satisfies our

earned PDE (1) with u | t=0 = I. 

.4. The whole PDE based feature learning model 

Integrating feature extraction and classification, our whole PDE

odel can be formulated as follows: 

min 

, { a i (t) } 
E = 

1 

M 

‖ 

H − W · U| t= T ‖ 

2 
F + λ‖ W ‖ 

2 
F , 

s.t. 

⎧ ⎨ 

⎩ 

∂u m 

∂t 
= 

∑ 5 
i =0 a i (t ) g ( inv i ( u m 

( t ) ) ) , (x, y, t) ∈ Q, 

u m 

(x, y, t) = 0 , (x, y, t) ∈ �, 

u m 

| t=0 (x, y, t) = I m 

, (x, y ) ∈ �, 

(7) 

here m = 1 , 2 , · · · , M, I m 

presents each training image, H, U| t= T ,
 , and λ are the same as those in Eq. (5) , and a i ( t ) is give in

q. (3) . One can find that our PDE extracts discriminative feature

s { a (t) j } 5 j=0 
is determined to minimize the loss function of the

raining data. 
5 We assume that all images are in a same size. Otherwise, we will normalize 

hem to a unique size. 

w  

i

. Algorithm for solving (7) 

In this section, we propose an algorithm to solve our feature

earning model (7) . The main strategy is to update the parameters

 and W alternately, where discretized of a i is the i th column of

 . We first discretize the PDE and then show details of optimizing

 and W . When updating A , we use the gradient descent method.

 is given a closed-form solution. The whole algorithm is shown

n Algorithm 1 , including some fixed hyper-parameters. 

lgorithm 1 Training PDEs. 

Input Training image pairs { (I m 

, h m 

) } M 

m =1 
, η, λ. 

Initialize �t = 0 . 5 , N = 5 , ρ = 0 . 95 , ε = 10 −6 , k = 1 , k max = 10 . 

Initialize A with each entry uniformly sampled from [ −1 , 1] . 

while k ≤ k max and || E k − E k −1 || > ε do 

1. For all images, set u 0 m 

= I m 

and calculate u n m 

by Eq. (10). 

2. Solve W by Eq. (11). 

3. Update A by one gradient descentstep as Eq. (22). 

4. Update η = ρη. 

5. Update k = k + 1 . 

end while 

.1. Discretization 

We first discretize our PDE. We use central difference to

pproximate the spatial derivatives as follows: 
 

 

 

 

 

∂ f 

∂x 
= 

f (x +1) − f (x −1) 
2 

, 

∂ 2 f 

∂x 2 
= f (x + 1) − 2 f (x ) + f (x − 1) , 

(8) 

he discrete forms of ∂ f 
∂y 

, 
∂ 2 f 
∂y 

, and 

∂ 2 f 
∂ x∂ y 

can be defined similarly

hrough central difference. Then inv i (u ) , i = 0 , · · · , 5 , can be cal-

ulated directly through the discrete form of spatial derivatives,

.g. inv 3 (u )(p, q ) = u (p − 1 , q ) + u (p + 1 , q ) + u (p, q + 1) + u (p, q −
) − 4 u (p, q ) , where ( p, q ) is the coordinate in the image u . 

The temporal derivatives is approximated by forward difference,

ormulated as: 

∂ f 

∂t 
= 

f (t + �t) − f (t) 

�t 
, (9) 

here �t is the step size. We then denote discreted temporal

ariable t as t i = i · �t, i = 0 , · · · , N, where in our experiments

 = 5 . In the sequel, we simply use u n m 

to denote u m 

( x, y, t n )

nd a n 
i 

to denote a i ( t n ). So A can be written as a matrix with a n 
i 

eing the ( n, i )th entry. The forward scheme to approximate the

volutionary PDE in Eq. (7) can be written as follows: 

 

n +1 
m 

= u 

n 
m 

+ �t 

5 ∑ 

i =0 

a n i · g ( inv i ( u 

n 
m 

) ) , (10) 

here n = 0 , 1 , · · · , N − 1 . 

.2. Updating W 

By fixing A , we calculate u m 

| t= T = u N m 

by iterating Eq. (10) with

 ranging from 1 to N − 1 . Then W can be solved as: 

 = arg min 

W 

1 

M 

∥∥H − W · U 

N 
∥∥2 + λ‖ W ‖ 

2 
F 

= H ·
(
U 

N 
)T ·

[ 
U 

N ·
(
U 

N 
)T + λMI 

] −1 

, (11) 

here I ∈ R 

p×p is an identity matrix, p is the pixel number of an

mage, and U 

N = [ vec (u N ) , vec (u N ) , · · · , vec (u N )] . 

1 2 M 
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Table 3 

Operator K(g( inv i (u n m ))) , where u n 
A 

= u n x u 
n 
xx + u n y u 

n 
xy , u n B = u n y u 

n 
yy + u n x u 

n 
xy , and g ′ = 

1 
(1+ | x | ) 2 

∣∣∣
x = inv i (u n m ) 

. 

i = 0 i = 3 ⎛ 

⎝ 

0 0 0 

0 0 0 

0 0 0 

⎞ 

⎠ 

⎛ 

⎝ 

0 g ′ 0 

g ′ − 4 g ′ g ′ 
0 g ′ 0 

⎞ 

⎠ 

i = 1 i = 4 ⎛ 

⎝ 

0 0 0 

0 g ′ 0 

0 0 0 

⎞ 

⎠ 

⎛ 

⎝ 

g ′ u n x u 
n 
y / 2 g ′ u n B + g ′ (u n y ) 

2 − g ′ u n x u 
n 
y / 2 

g ′ u n 
A 

+ g ′ (u n x ) 
2 − 2 g ′ (u n x ) 

2 − 2 g ′ (u n y ) 
2 − g ′ u n 

A 
+ g ′ (u n x ) 

2 

−g ′ u n x u 
n 
y / 2 − g ′ u n B + g ′ (u n y ) 

2 g ′ u n x u 
n 
y / 2 

⎞ 

⎠ 

i = 2 i = 5 ⎛ 

⎝ 

0 g ′ u n y 0 

g ′ u n x 0 − g ′ u n x 

0 − g ′ u n y 0 

⎞ 

⎠ 

⎛ 

⎝ 

g ′ u n xy 2 g ′ u n yy − g ′ u n xy 

2 g ′ u n xx g ′ · (−4 u n xx − 4 u n yy ) 2 g ′ u n xx 

−g ′ u n xy 2 g ′ u n yy g ′ u n xy 

⎞ 

⎠ 
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3.3. Updating A 

When W is fixed, A is updated by the gradient descent method.

So we deduce the gradient first. ∂E 
∂a n 

i 

is obtained by the chain rule

or back-propagation [33] : 

∂E 

∂a n 
i 

= 

∂E 

∂U 

n +1 
· ∂U 

n +1 

∂a n 
i 

. (12)

where U 

n = [ vec (u n 
1 
) , vec (u n 

2 
) , · · · , vec (u n 

M 

)] . According to Eq. (10) ,
∂E 
∂a n 

i 

can be rewritten as 

∂E 

∂a n 
i 

= �t 

M ∑ 

m =1 

〈
∂E 

∂u 

n +1 
m 

, g ( inv i ( u 

n 
m 

) ) 

〉
, (13)

where ∂E 
∂u n m 

is a matrix with 

∂E 
∂u n m 

(p, q ) = 

∂E 
∂u n m (p,q ) 

and 〈·, ·〉 is the

matrix inner product. Now we compute ∂E 
∂u n m 

. When n = N, 

∂E 

∂U 

N 
= 

1 

M 

W 

T ·
(
W · vec 

(
U 

N 
)

− H 

)
. (14)

For n < N , by the chain rule we have 

∂E 

∂u 

n 
m 

(p, q ) = 

∂E 

∂u 

n +1 
m 

(p, q ) + �t 

5 ∑ 

i =0 

a n i 

∑ 

r 

∑ 

s 

∂E 

∂u 

n +1 
m 

(r, s ) 

×∂ g ( inv i ( u 

n 
m 

) ( r, s ) ) 

∂ u 

n 
m 

(p, q ) 
, (15)

where ( r, s ) is the image coordinate and travels all the pixels

over the image. Since the central difference are only linked to the

adjacent points on each point, Eq. (15) reduces to: 

∂E 

∂u 

n 
m 

= 

∂E 

∂u 

n +1 
m 

+ �t 

5 ∑ 

i =0 

a n i Z(i, m, n ) , (16)

where Z ( i, m, n ) is a matrix in a same size of the input image I m
with each element ( p, q ) being 

Z(i, m, n )(p, q ) = 

1 ∑ 

r= −1 

1 ∑ 

s = −1 

∂E 

∂u 

n +1 
m 

(p + r, q + s ) 

×∂ g ( inv i ( u 

n 
m 

) ( p + r, q + s ) ) 

∂ u 

n 
m 

(p, q ) 
. (17)

In the following, we give details of computing Z ( i, m,

n ). We use (i = 3) as an example. The discrete form of

inv 3 (u n m 

)(p, q ) = u n m 

(p − 1 , q ) + u n m 

(p + 1 , q ) + u n m 

(p, q + 1) + 

u n m 

(p, q − 1) − 4 u n m 

(p, q ) . Then we have 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p − 1 , q ) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p + 1 , q ) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q − 1) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q + 1) 
= g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , 

∂g ( inv 3 ( u 

n 
m 

) ( p, q ) ) 

∂u 

n 
m 

(p, q ) 
= −4 g ′ ( inv 3 ( u 

n 
m 

( p, q ) ) ) , (18)

where g ′ (x ) = 

1 
(1+ | x | ) 2 . So we obtain 

Z(3 , m, n )(p, q ) = 

∂E 

∂u 

n +1 
m 

(p + 1 , q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p + 1 , q ) ) 

+ 

∂E 

∂u 

n +1 
m 

(p − 1 , q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p − 1 , q ) ) 

+ 

∂E 

∂u 

n +1 (p, q + 1) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q + 1 ) ) 

m 
+ 

∂E 

∂u 

n +1 
m 

(p, q − 1) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q − 1 ) ) 

−4 

∂E 

∂u 

n +1 
m 

(p, q ) 
g ′ ( inv 3 ( u 

n 
m 

) ( p, q ) ) . (19)

o make the above expression simple, we define an operator: 

(C ◦ D )(p, q ) = 

1 ∑ 

r= −1 

1 ∑ 

s = −1 

C(p + r, q + s )[ D (r + 2 , s + 2 , p + r, q + s )] , 

here C is a matrix with the same size of the image and D is a

 × 3 operator, with each entry being a function. D actually has

 parameters. The first two parameters index an entry in the 3 ×
 matrix and the last two index the coordinate in an image. Then

q. (19) can be written as 

(3 , m, n ) = 

∂E 

∂u n +1 
m 

◦ K ( g ( inv 3 ( u 
n 
m 

) ) ) , (20)

here K(g( inv 3 (u n m 

))) is a 3 × 3 operator and is 
(0 g ′ 0 

g ′ −4 g ′ g ′ 

0 g ′ 0 

)
. For

xample, when i = 3 , r = 0 , and s = −1 , K(g( inv 3 (u n m 

))(r + 2 , s +
 , p + r, q + s )) = g ′ ( inv 3 (u n m 

(p, q − 1)) . For other i , similarly we also

ave 

(i, m, n ) = 

∂E 

∂u n +1 
m 

◦ K ( g ( inv i ( u 
n 
m 

) ) ) , (21)

here K(g( inv i (u n m 

))) is shown in Table 3 . 

With the gradient of E computed, by gradient descent, in the

 th iteration A is updated as follows: 

(a n i ) 
k +1 = (a n i ) 

k − η
∂E k 

∂(a n 
i 
) k 

, (22)

here η is the step size and 

∂E 
∂a n 

i 

is obtained through Eq. (13) . 

.4. Complexity 

Since each point on inv i (u n m 

) is linked only to nine adjacent

oints in u n m 

, the back-propagation process can be calculated in

inear time with respect to the pixel number. The whole com-

lexity of our algorithm is O (Nmp + p 3 ) , where N is 5, m is the

umber of training samples, and p is the pixel number of the input

mage. The experiments on Section 5 show that our method is

uch faster than sparse coding and dictionary learning methods. 

. Discussions 

.1. Distinction from other PDE based methods 

There are also some PDE based works which try to devise

articular PDEs for classification [34,35] . In [34] , Yin et al. apply



C. Fang et al. / Pattern Recognition 69 (2017) 14–25 19 

Input 
Image

Processing 
Cell 1

Processing 
Cell 2

Output 
Image

Processing 
Cell 3

Processing 
Cell 4

Processing 
Cell 5

Fig. 2. The architecture of L-PDE. 
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Fig. 3. The internal architecture in processing cell of L-PDE. 
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Conv Kernel
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Fig. 4. The internal architecture in processing cell of CNN. 
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he total variation as regularization to decompose the image, and

se the decomposed part as feature for classification. In [35] ,

han et al. devise a simple PDE to normalize illumination and

hen use the normalized image as feature for classification. These

DE based works are actually using the PDE as a pre-processing

or classification . The classification and PDE are still separated. So

hese methods should belong to image processing. In contrast,

ur method integrates classification with feature extraction, which

ses a PDE as a learning tool to extract discriminative feature. 

.2. Relation with CNN 

The CNN models have achieved a huge success in image clas-

ification tasks [21] in recent layers. Like CNN, the discrete form

f our PDE has a hierarchical architecture. Since the element-wise

perations can be available to all modern deep learning training

uits, e.g. Caffe [36] , Torch [37] , our PDE can be implemented

s a “special CNN”. The architecture of our PDE model is shown

n Figs. 2 and 3 , where Fig. 3 illustrates the internal

rchitecture in the processing cell in Fig. 2 . A traditional CNN with

 similar architecture is shown in Figs. 2 and 4 . 

There are still critical distinctions between our L-PDE and

NN. First, from Fig 3 , the fundamental differential invariants are

on-linear and are calculated through element-wise multiplica-

ion, not convolutional operators. Second, for neural networks, the

on-linear mapping is after the linear transformation, while our

DE does the non-linear mapping, i.e., computing the differential

nvariants, before the linear combination. Third, in practice, most

NN models have a large number of parameters in the convolu-

ional kernels, and they learn the feature through the strength of

big data”. Our PDE model develops invariance properties in the

volution process and works with few training samples. 

. Experiments 

In this section, we present experiments to validate the pro-

osed method. Classification with few training samples is a big
hallenge in image classification tasks, which is often encountered

n reality and could be as difficult as the case of large training

amples. Many sparse coding and dictionary learning methods

7,8,10,12,14] have aimed at classification in this case and have 

hown their superiorities. Face recognition is a paradigm which

as few training samples but a lot of real applications, such as

iometrics, information security, access control, law enforcement,

mart cards and surveillance system (see [38] for a review). We

ocus our experiments on face recognition and do the same or

imilar experiments to compare with those sparse coding and

ictionary learning methods. Currently, like all the compared

ethods, we focus on low-resolution images. We choose four

atasets: Extended Yale B [39] , PIE [40] , AR [41] , and FRGC [42] ,

hown in Fig. 5 sequentially. The first three datasets have

lso been used by compared methods [7,8,10,14] . We use the same

r similar training samples and image scales on these datasets to

ompare with them. The three datasets have different difficulties.

he faces in Extended Yale B are under different illuminations

hich are hard to be linearly represented. The PIE dataset is taken

nder different poses. The main challenge of AR is that it contains

ifferent facial expressions and occlusions (sunglasses and scarf).

e use the FRGC dataset to test our method when the training

amples are few (only five images for each person). 

In the above recognition tasks, we compare our method with

he existing state-of-the-art sparse coding and dictionary learning

eature learning methods: D-KSVD [12] , LC-KSVD [14] , Task-Driven

ictionary Learning (TDDL) [13] , and Low-Rank Representations

lassification (LRRC) [10] . All these methods use Ridge Regression

or classification. So the differences in recognition performance

eflect the effectiveness of feature learning. We do not compare

ur model with the old PDE based methods [34,35] which use

he PDE as a pre-processing for classification, since we find that

heir results are inferior to those sparse coding methods, such as

RC [8] . We also compare our method with representative face

ecognition methods: k-Nearest Neighbors [43] , Kernel Support

ector Machine [30] , SRC [8] , and Low-Rank Structural Incoherence

lassification (LRC and LRSIC) [7] , since all the experiments are
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)b()a(

)d()c(

Fig. 5. Sample images from (a) YaleB, (b) PIE, (c) AR, and (d) FRGC, respectively. 

Table 4 

Recognition accuracies (%) on Extended Yale B, with 10, 15, and 20 training sam- 

ples. 

Type Method # training samples 

10 15 20 

Feature learning + ridge regression L-PDE (ours) 96.3 98.1 98.8 

CNN-GD 21.6 24.1 28.4 

CNN-AD 85.0 89.3 90.8 

LC-KSVD1 88.0 91.2 93.2 

LC-KSVD2 89.2 92.4 94.2 

TDDL 84.7 89.5 93.8 

LRRC 84.8 91.6 93.6 

Others kNN 54.8 63.8 69.8 

K-SVM 87.8 93.1 95.1 

SRC 87.9 93.6 96.4 

LRC 87.7 92.3 94.6 

LRSIC 88.2 94.0 95.1 
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conducted on the face datasets. 6 LRC and LRSIC [7] are regarded as

face recognition methods because they use SRC [8] for recognition.

We also compare our method with CNN in all experiments. The

architecture is shown in Figs. 2 and 4 . The CNN model has a

similar configuration to our L-PDE. The parameter number of our

PDE in each processing cell is H × W × 5, where H and W are

the height and the width of images, respectively, while that of the

CNN model is 6 × 3 × 3 + 11 × 6 + 5 × 11 + 3 × 3 × 5 = 220 in each

processing cell. However, the parameters to be learned in our PDE

are only { a i } and the linear classifier W . We first train the CNN

model through the standard Stochastic Gradient Descent. We set

the learning rate as ηt = η0 (1 + η′ ) −1 . The momentum is set to be

0.9, and the batchsize is searched from 10 0, 20 0, or the number of

training samples. However, we find that CNN trained by Stochastic

Gradient Descent will face seriously overfitting and achieve pool

results. It seems that training CNN by Stochastic Gradient Descent

achieves a very good generalization property in practice only

when there are huge training samples. As training CNN is a typical

non-convex problem, the optimization method does have some

influence on the test error [45] . However, we find that training

CNN through Alternate Descent (as our LPDE’s) can improve the

recognition accuracies a lot when the training samples are limited.

In experiments, we also compare with the CNN model optimized
6 The codes for D-KSVD and LC-KSVD are downloaded from the authors’ websites. 

SVM is from libSVM [44] . kNN is a function in Matlab. Other methods are our own 

implementations. 

r  

f  

|  

i  

t  
y Alternate Descent, where we alternately update the parameters

n the kernels and the linear classifier. We use CNN-GD to denote

he recognition accuracies of CNN trained by Stochastic Gradient

escent, and use CNN-AD to denote the recognition accuracies of

NN trained by Alternate Descent. Throughout the experiments,

ur method and CNN work on the raw data, while we normalize

he Frobenius norm of each image to 1 when testing other meth-

ds. We choose a Gaussian kernel in SVM (K-SVM). For dictionary

earning methods, including LC-KSVD [14] , TDDL [13] , and LRRC

10] , we choose the number of atoms to be 5 for each class. For

ach algorithm, parameters are tuned to the best. And for each

xperiment, we repeat 10 times and report the average accuracy.

he platform is Matlab 2013a under Windows 7 on a PC equipped

ith a 3.4 GHz CPU and 8GB memory. 

.1. Extended Yale B dataset 

We first test our method on the Extended Yale B dataset [39] .

here are 2,414 frontal-face images of 38 people with a cropped

nd normalized size of 192 × 168. The faces are captured under

arious laboratory-controlled lighting conditions [46] . Following

7,10] , for each person we randomly select 10, 15, and 20 images

or training and the others for testing. As the dimension of the

mages is high, we down sample each image by 1/4. 

We choose λ = 1 . 5 and η = 0 . 5 in our method. The experimen-

al results are summarized in Table 4 . Our approach outperforms

ll the methods in all cases and the advantages are more when

he train samples are fewer. CNN-GD achieves poor recognition

esults due to serious overfitting. Our method achieves higher

ecognition accuracies than CNN-AD since our method maintains

nvariant properties through the evolution process. We also find

 SVD methods, including LC-K SVD [14] , achieve inferior results

han SRC [8] . The same phenomenon is also observed in [12] . 

Fig. 1 shows the evolution process of our learned PDE on three

ersons. One can see that the lighter faces gradually become

arker and the darker faces change to lighter during the evolution

f PDE. So the features U 

N 
i 

become invariant under different

lluminations. This demonstrates that our methods are robust

o illumination variation. This phenomenon may be due to two

easons. First, we add a nonlinear mapping g(x ) = 

x 
1+ | x | on each

undamental differential invariant which is nearly constant when

 x | is large. So the fundamental differential invariants are nearly

nvariant under gray-level scaling. Second, our PDE is learned

o obtain good recognition results. The training dataset provides
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Table 5 

Recognition accuracies (%) on PIE, with 10, 15, and 20 training samples. 

Type Method # training samples 

10 15 20 

Feature learning + ridge regression L-PDE (ours) 84.1 88.9 90.9 

CNN-GD 19.3 19.8 22.0 

CNN-AD 69.3 76.1 79.6 

LC-KSVD1 35.8 36.8 65.0 

LC-KSVD2 36.2 37.7 65.3 

TDDL 78.4 84.4 87.9 

LRRC 79.8 85.2 89.1 

Others kNN 29.0 29.3 31.1 

K-SVM 73.4 82.9 85.7 

SRC 77.3 87.2 90.5 

LRC 79.1 84.7 88.3 

LRSIC 82.4 87.7 90.6 
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Table 6 

Recognition accuracies (%) on AR (S.G. is short for Sunglasses). 

Type Method Scenario 

S.G. Mixed Hybrid 

Feature learning + ridge regression L-PDE (ours) 88.9 87.1 87.2 

CNN-GD 36.7 35.3 36.5 

CNN-AD 83.1 83.5 85.4 

D-KSVD 76.6 69.5 71.4 

LC-KSVD1 78.0 79.5 79.7 

LC-KSVD2 79.2 80.8 81.3 

TDDL 83.6 82.7 83.5 

LRRC 86.1 82.7 83.4 

Others kNN 66.9 61.6 61.1 

K-SVM 81.6 79.9 81.2 

SRC 88.6 83.9 85.0 

LRC 84.7 81.3 82.6 

LRSIC 87.2 83.5 84.0 
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raining samples that are under different illuminations. So feature

s learned to be invariant under these variants. 

.2. PIE dataset 

The PIE dataset [40] consists of 41,368 images of 68 individuals.

ach individual has 4 different expressions, 13 different poses and

3 different illumination conditions. Like [47] , a subset (C05, C07,

09, C27, C29) of PIE contains 5 near frontal poses and all the

mages under different illuminations and expressions are chosen

or experiment. Thus, each subject has about 170 images. Like [47] ,

e also randomly select 10, 15, and 20 images for training and the

thers for testing. Each image is down sampled to 32 × 32. 

We choose λ = 1 . 5 and η = 0 . 5 in our method. The experimen-

al results are summarized in Table 5 . Our method also obtains the

est recognition rates at different numbers of training samples.

ince the dataset is relatively hard, some feature learning methods

erform poorly. The experiment demonstrates the robustness of

ur method to different poses. 

.3. AR dataset 

The AR dataset [41] consists of over 40 0 0 frontal images of 126

eople. For each individual, images are separated into 2 sessions

ith different difficulties, including illumination, expression, and

acial occlusion/disguise. All images are at the size of 165 × 120.

or each session, there are 3 images obscured by sunglasses, 3

mages obscured by scarves, and 7 clean images with expressions

nd illuminations variations. Following [7,8,10] , in our experiments

e select a subset of the AR dataset consisting of 50 men and 50

omen and down sample each image by 1/5. Following [7,10] , the

xperiments are under the following scenarios: 

• Sunglasses : We consider the case where images are only oc-

cluded by sunglasses. We use 7 clean images and 1 image with

sunglasses (randomly chosen) from session 1 for training. The

testing images consist of 4 sunglasses images (2 from session 1

and 3 from session 2) and 7 remaining clean images (all from

session 2). 
• Mixed : We consider the case where images are both occluded

by sunglasses and scarf. We select all 7 clean images from

session 1 and 2 corrupted images (occluded by sunglasses and

the scarf, respectively) for training. The rest of 19 images are

for testing. 
• Hybrid : In this case, we choose images from session 1 for

training and session 2 for testing. The numbers of training and

testing images are all 13 for each person. 

We choose λ = 45 and η = 0 . 15 in our method. The experimen-

al results are summarized in Table 6 . Our approach obtains the
est results in all three scenarios. This shows that the occlusion

roblem can be relieved by learning discriminative local feature. 

.4. FRGC dataset 

We also conduct our experiment on Experiment 4 in the

RGC 2.0 dataset [42] . Experiment 4 is the most challenge FRGC

xperiment. In the query set, the dataset consists of 8,014 single

ncontrolled still images of 466 individuals. Like [4 8,4 9] , we

earch all images of each person in this set and take the first 60

mages of the first 60 individuals, whose number of facial images

s more than 60. Thus, we collect 3,600 facial images for our

xperiments. We down sample the images to a size of 32 × 36.

or each person, we only randomly choose 5 images for training.

he rest 55 images are for testing. 

We choose λ = 1 . 6 and η = 0 . 1 in our method. The experimen-

al results are summarized in Table 7 . Our method also gets the

est results in the case of few samples. 

.5. Comparison of computation time and hyper-parameter selection 

We compare the average training and testing time of our

ethod with those dictionary learning and sparse coding meth-

ds. The average training or testing time is the total training or

esting time divided by the number of training or testing sam-

les. Since SRC [8] have no training time, and LRC [7] and LRSIC

7] only use the low rank ingredient as a dictionary, their training

imes can be ignored. So we only compare the average training

ime with dictionary learning methods. Tables 8 and 9 show the

verage training time and testing time for each image, respectively.

e can see that our model is fast in both training and testing

rocesses. As a result, the whole training and testing time on

ach database are no more than 5 min. This is due to the low

omplexity ( O (5 mp + p 3 ) for one iteration) of our method. The

esults show the practicability and efficiency of our PDE method. 

Our method has two hyper-parameters, λ and η, to tune. One

ay notice that we use different parameters in the different

atasets. The settings of hyper-parameters that we use in the

xperiments are tuned to obtain the best recognition perfor-

ances of our method. We have also tuned the parameters to

e best for the compared methods. So the experiments are fair.

ur method has two hyper-parameters, λ and η, to tune. Now

e give suggestions on how to set the hyper-parameters. λ is a

egularization parameter in the linear classifier. Since the training

amples are limited, λ is critical in the performance. We suggest

be chosen from {1, 5, 10, 50, 100}. η is the step size during

ptimization. We suggest setting η from {0.1, 0.3, 0.5, 0.7, 0.9}.

here are 25 selections to choose the pairs of hyper-parameters.
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Table 7 

Recognition accuracies (%) on FRGC (Acc. stands for the recognition accuracy). 

Type Method Acc. Type Method Acc. 

Feature learning + ridge regression L-PDE (ours) 92.3 Others. kNN 54.4 

CNN-GD 17.3 K-SVM 85.4 

CNN-AD 81.5 SRC 87.8 

D-KSVD 60.2 LRC 85.6 

LC-KSVD1 63.4 LRSIC 87.6 

LC-KSVD2 88.7 

TDDL 91.3 F. + R. LRRC 87.6 

Table 8 

Average training time (s), normalized by the training sam- 

ples, on the four database. 

Dataset 

Method Yale B PIE AR FRGC 

D-KSVD 1.0368 1.3521 0.9949 0.8757 

LC-KSVD1 0.2634 0.4008 0.2445 0.2036 

LC-KSVD2 0.2758 0.4079 0.2593 0.2191 

L-PDE (ours) 0.0519 0.0549 0.0424 0.0593 

Table 9 

Average testing time (s), normalized by the testing samples, 

on the four database. 

Dataset 

Method Yale B PIE AR FRGC 

D-KSVD 0.0151 0.0298 0.0135 0.0088 

LC-KSVD1 0.0144 0.0287 0.0123 0.0063 

LC-KSVD2 0.0141 0.0264 0.0121 0.0059 

SRC 0.3936 0.3499 0.1245 0.0133 

LRC 0.3527 0.5479 0.2482 0.0183 

LRSIC 0.3617 0.6658 0.2799 0.0182 

L-PDE (ours) 0.0027 0.0010 0.0014 0.0011 

Fig. 6. The effects of hyper-parameters on recognition accuracy on the Extend Yale 

B dataset. 

 

 

 

 

Table 10 

Recognition accuracies using the suggested pa- 

rameters. 

Extended Yale B 10 15 20 

L-PDE 96.1 97.8 98.7 

PIE 10 15 20 

L-PDE 83.3 88.0 90.0 

AR S.G. Mixed Hybrid 

L-PDE 88.5 86.6 86.5 
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7 The model is downloaded from the website: http://www.robots.ox.ac.uk/ ∼vgg/ 

software/vgg _ face/ . 
Fig. 6 shows the effects of hyper-parameters on recognition

accuracy on the Extended Yale B dataset. Table 10 reports the

recognition accuracies on Extended Yale B, PIE, and AR using the

suggested parameters. We can see that the recognition accuracies

drop less than 1% in all experiments. 
.6. Comparison with pre-trained neural networks on low-resolution 

mages 

Deep neural networks trained on large dataset are observed to

ave a great generalization ability to extract discriminative feature

or images. It is shown in [50] that the classification accuracy

btained by pre-trained CNN surpasses around 20% than the tra-

itional method which uses SIFT [2] to extract the feature on the

altech 101 dataset. In this subsection, we compare our method

ith the pre-trained VGG-Face [51] model to demonstrate the

ffectiveness of our method on low-resolution images. VGG-Face

s originally trained on the dataset with 2.6 M images, and has

chieved the state-of-art performance for face recognition. In this

xperiment, the network is used out-of-box in order to produce

 discriminant feature of facial images. The facial images are first

ormalized to the sizes that are used in all other methods (48 ×
2 in Extended Yale B, 32 × 32 in PIE, 33 × 24 in AR, and 32 × 32

n FRGC) and then back to 224 × 224 in order to match the input

ize of pre-trained VGG-Face net. The normalized images then go

hrough the pre-trained VGG-Face 7 model. We apply Ridge Regres-

ion on the outputs of the last feature layer for classification. We

onduct experiments on the four datasets. The recognition results

re shown in Table 11 . Our PDE model achieves higher recognition

ccuracies on low-resolution images. The advantages are more on

xtended Yale B and AR. 

.7. Training with more samples 

The previous experiments have demonstrated the effectiveness

f our method when there are few training samples. It is also

nteresting to explore the case when there are more training

amples. We conduct an experiment on the PIE dataset. Fig. 7

shows the recognition accuracy against the number of training

amples on the PIE dataset. We choose the PIE dataset, since we

ave achieved very high recognition accuracies on Extended Yale

, and the rest datasets (AR and FRGC) do not have enough train-

ng samples. Due to the time limit, we only compare our method

ith Low-Rank Structural Incoherence Classification (LRSIC) [7] ,

ecause LRSIC achieves the best recognition accuracies among all

ompared methods when the training samples are 10, 15, and 20.

ompared with LRSIC, the improvement of our method through

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
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Table 11 

Comparison with pre-trained VGG-Face on Extended Yale B, PIE, AR and FRGC. 

Dataset 

Method Extended Yale B PIE AR FRGC 

# training samples # training samples Scenario 

10 15 20 10 15 20 S.G. Mixed Hybrid 

L-PDE (ours) 96.3 98.1 98.8 84.1 88.9 90.9 88.9 87.1 87.2 92.3 

VGG-Face 81.5 84.5 85.0 83.3 86.2 88.8 77.2 79.1 83.5 91.2 

10 15 20 25 30 35 40 45 50 55 60

training samples

82

84
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96

re
co

gn
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ac
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LRSIC
L-PDE

Fig. 7. The recognition accuracy against the number of training samples on PIE. The 

horizontal axis represents the number of training samples for each person. LRSIC 

achieves the best results among the compared methods when the training samples 

are 10, 15, and 20. So we only compare with it. 
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he increase of training samples is not remarkable. This may be

ue to the limited parameters in our PDE. We are going to extend

ur PDE to a system of PDEs which is the most effective way to

ncrease the number of parameters in the future. 

. Conclusions 

In this paper, we propose a novel PDE method for feature

earning. We model the feature extraction process as an evolution

rocess governed by a PDE. The PDE is assumed to be a linear

ombination of fundamental differential invariants under transla-

ion and rotation, which is transformed by a nonlinear mapping

o achieve the invariance with respect to gray-level scaling. The

xperiments with few training samples show that our approach

chieves the best performance in various settings. It should be

entioned that our approach could be applied to not only face

ecognition problems but also general image classification prob-

ems. In the future, we will extend our PDE to a system of PDEs

nd carry out some theoretical analysis. 
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