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Bilevel Model-Based Discriminative Dictionary
Learning for Recognition
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Abstract—Most supervised dictionary learning methods
optimize the combinations of reconstruction error, sparsity prior,
and discriminative terms. Thus, the learnt dictionaries may not
be optimal for recognition tasks. Also, the sparse codes learning
models in the training and the testing phases are inconsistent.
Besides, without utilizing the intrinsic data structure, many
dictionary learning methods only employ the £y or £; norm to
encode each datum independently, limiting the performance of
the learnt dictionaries. We present a novel bilevel model-based
discriminative dictionary learning method for recognition tasks.
The upper level directly minimizes the classification error, while
the lower level uses the sparsity term and the Laplacian term
to characterize the intrinsic data structure. The lower level is
subordinate to the upper level. Therefore, our model achieves an
overall optimality for recognition in that the learnt dictionary
is directly tailored for recognition. Moreover, the sparse codes
learning models in the training and the testing phases can be
the same. We further propose a novel method to solve our
bilevel optimization problem. It first replaces the lower level
with its Karush-Kuhn-Tucker conditions and then applies the
alternating direction method of multipliers to solve the equivalent
problem. Extensive experiments demonstrate the effectiveness
and robustness of our method.

Index Terms—Sparse representation, dictionary learning,
bilevel optimization, recognition, alternating direction method.

I. INTRODUCTION
PARSE representation has been widely used in signal
processing and computer vision, such as signal recon-
struction [1], image denosing [2], and recognition [3]-[5],
yielding state-of-the-art performance. Its main idea is to
represent a signal/sample by a linear combination of a few
atoms from a learnt dictionary. Thus, the dictionary quality is

Manuscript received April 26, 2016; revised September 15, 2016; accepted
October 23, 2016. Date of publication October 30, 2016; date of current
version January 20, 2017. The work of P. Zhou and C. Zhang was supported in
part by the National Key Basic Research Project of China (973 Program) under
Grant 2015CB352303 and in part by the National Nature Science Foundation
of China under Grant 61671027 and Grant 61071156. The work of Z. Lin was
supported in part by the 973 Program of China under Grant 2015CB352502
and in part by the NSF of China under Grant 61625301 and Grant 61231002.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Abd-Krim Karim Seghouane. (Corresponding
author: Chao Zhang.)

P. Zhou is with the Key Laboratory of Machine Perception, School of
Electronics Engineering and Computer Science, Peking University, Beijing
100871, China (e-mail: pzhou@pku.edu.cn).

C. Zhang and Z. Lin are with the Key Laboratory of Machine Perception,
School of Electronics Engineering and Computer Science, Peking Univer-
sity, Beijing, China, and also with the Cooperative Medianet Innovation
Center, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
chzhang @cis.pku.edu.cn; zlin@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2623487

an important factor in sparse representation based methods.
For example, sparse representation classification (SRC) [3]
directly uses the training data as the dictionary and achieves
great success in face recognition. Unfortunately, SRC breaks
down when the training data are wildly corrupted, because
using the noisy data as the dictionary distorts the structure of
data [6]-[9]. To resolve this issue, many dictionary learning
methods have been proposed. Based upon whether utilizing
supervised information in the training phase, one can roughly
divide these dictionary learning methods into two kinds:
unsupervised methods and supervised ones.

Among unsupervised methods, the method of optimal direc-
tions (MOD) [10] and KSVD [1] are classical. Note that these
two methods solve the same dictionary model. They only
differ in the optimization methods. At each iteration, MOD
uses the orthogonal matching pursuit (OMP) algorithm [11]
to find a sparse representation and updates the dictionary by
solving a least squares problem, while KSVD updates the
representation and the dictionary with singular value decom-
position (SVD) to accelerate convergence. There are also other
performance-impressive methods, such as [12]-[14]. Unsu-
pervised methods construct a dictionary by minimizing the
reconstruction error of original samples. Such methods have
achieved promising results in signal representation and recon-
struction and have also been used for other purposes, such as
recognition [3], [15]-[18].

Supervised dictionary learning methods exploit the class
labels of the training data, thus can obtain better classification
performance than unsupervised methods. In [4], Zhang et al.
propose a discriminative KSVD (D-KSVD) dictionary learn-
ing method. They consider not only the reconstruction error
but also the classification error in their model and utilize
KSVD to solve their model. Jiang et al. [5] present a label
consistent KSVD (LC-KSVD) dictionary learning method.
They explicitly incorporate a label consistency constraint,
called the discriminative sparse-code error, and an optimal
classification performance criterion into the objective function
and solve their model with the KSVD algorithm. Similarly,
Mairal et al. [19] and Lian et al. [20] consider the logistic
loss function in their models, while Yange et al. [21] and
Wang et al. [22] adopt the hinge loss function as the discrim-
inative criterion. There are also other discriminative criteria
to guide discriminative dictionary learning. Yang et al. [§]
and Zhou et al. [23] propose two Fisher discrimination based
dictionary learning approaches. Their models encourage the
sparse representation coefficients to have small within-class
scatter but large between-class scatter. Supervised methods
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usually incorporate discriminative terms into the objective
functions directly to learn discriminative dictionaries.

However, there are three drawbacks in the aforementioned
methods. Firstly, unsupervised methods, without utilizing
supervised discriminative information, learn dictionaries only
by minimizing the reconstruction error of original samples.
Minimizing the reconstruction error may not be closely
related to the recognition task that follows. Indeed, recent
works [4], [5], [8], [19]-[24] all indicate that supervised
dictionary learning methods can yield higher-quality dictio-
naries and achieve better performance in recognition tasks.
Secondly, almost all the aforementioned supervised methods
minimize the combinations of the reconstruction error and
the classification error (or other discriminative terms), rather
than the final goal of discriminative dictionary learning, i.e.,
the classification error. So the classification using the learnt
dictionaries may not be optimal. Another side effect is that
the problems for computing the sparse codes in the training
and the testing phases have to be different, making the models
inconsistent. Finally, most of the unsupervised and supervised
dictionary learning methods only employ the £y or {1 norm
as the sparsity constraint for dictionary learning. As a result,
each sample is encoded independently. Such a mechanism
may not take advantage of the structure information of data
sufficiently. Actually, the authors of [7], [9], and [25]-[28]
all point out that given a dictionary the nonzero coefficients
of samples from the same class should cluster, such that
they accord with the clustering in the sample space. Thus,
seeking the sparsest representation of a sample might not be
the best criterion. So the authors of [25]-[28] all employ mixed
norms (such as ¢,/€1) as the sparsity criteria to encourage
group sparsity of representation. Zhang et al. [7] propose a
low-rank representation based dictionary learning (LRRDL)
method to capture the data structure. Later they introduce an
ideal coding based regularization term into the LRRDL model
to learn a structured low-rank dictionary. This new method
is called the SLRRDL method. Sun et al. [9] construct a
class-specific dictionary by adding a weighted group sparse
constraint. Compared with the methods that each sample is
encoded independently, these methods can utilize data struc-
ture information more sufficiently, hence can achieve better
performance in recognition tasks.

In this paper, aiming at overcoming the above three draw-
backs, we propose a novel bilevel model based discriminative
dictionary learning (BMDDL) method for recognition tasks.
Unlike other supervised dictionary learning methods that opti-
mize the combinations of the classification error and other
criteria (such as reconstruction error and sparsity constraint),
BMDDL directly minimizes the classification error. It is a
bilevel optimization model. The upper level aims at mini-
mizing the classification loss, while the lower level aims at
characterizing the intrinsic data structure. The objective of
lower level is subordinate to that of the upper level. By this
way, the dictionary is learnt to minimize the classification
error directly. In addition, the problems for computing the
sparse codes in the training and the testing phases can be the
same. So our model is consistent. What is more, in the lower
level we use the Laplacian regularization and sparsity penalty
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to encourage group sparsity of representation. Therefore, the
lower level encourages samples from the same class to have
similar sparse codes and those from different classes to have
dissimilar sparse representations. Such a mechanism leads
to a high quality learnt dictionary, which encourages the
representations of samples to preserve the geometric struc-
ture within data. At last, we propose a novel method to
solve our bilevel model. As far as we know, bilevel model
based dictionary learning methods usually use the stochastic
subgradient method [29] to solve their models [30], [31].
We replace the lower level problem with its Karush-Kuhn-
Tucker (KKT) conditions, which are equality and inequality
constraints. Thus we can use the alternating direction method
(ADM) of multipliers [32] to solve this equivalent model. The
advantage of our approach is that in each iteration we do not
have to solve the lower level problem exactly in order to obtain
a subgradient of the upper level objective function. Moreover,
it is unnecessary to deduce the (sub)gradient via implicit
differentiation, which is rather complex when the lower level
objective function is non-differentiable, e.g., involving the £
norm for sparsity.

Although Yang et al. [31], Mairal et al. [30],
Tao et al. [33], and Lobel et al. [34] also use bilevel
models to learn discriminative dictionaries, our method is
different from theirs. Firstly, the model by Yang et al. [31] is
for learning two dictionaries that couple two signal spaces. Its
upper level is to minimize the difference between the sparse
codes in the two spaces. The model is unsupervised and
targets on image superresolution, not recognition tasks. The
model by Tao et al. [33] is for semantic segmentation. The
upper level minimizes the conditional random field energy
function, which is usually used for semantic segmentation,
rather than image classification. The task-driven dictionary
learning (TDDL) model by Mairal et al. [30] is for recognition
as its upper level optimizes the classification error. In [30]
and [33], the lower level considers the reconstruction error
and the sparsity of representation, but it only adopts the ¢
norm as the sparsity constraint. No structure information
of data is considered. By comparison, our model employs
the Laplacian regularization to preserve the data structure.
Lobel et al. [34] also propose a bilevel model aiming at
learning more compact representations for recognition tasks.
Its upper level minimizes the combination of the loss function
of a linear SVM and the regularization on dictionary. Thus,
it also has the second drawback we mentioned previously
that the learnt dictionary is optimal for the combination,
rather than the classification loss. Accordingly, the dictionary
may not be the most discriminative for recognition tasks. Its
lower level uses the max-pooling operator to select a few
visual dictionary words to construct more compact features.
While our upper level only minimizes the classification
loss of a linear classifier, which can avoid the second
drawback, and our lower level adopts the ¢; norm and
the Laplacian regularization to encourage group sparsity.
Secondly, [30], [31], and [33] all use the stochastic subgradient
method to solve their models. At each iteration, in order to
obtain a good descent direction (subgradient), they need to
solve a LASSO problem in the lower level at reasonably
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good numerical precision, which is computationally expensive
when the scale of a dictionary is large [5], [12], [35]. Besides,
they use the subgradient of the upper level objective to
update the dictionary, which is known to be very slow.
By comparison, our optimization method utilizes the KKT
conditions to transform the lower level problem into equality
and inequality constraints. The equivalent problem can
be solved by ADM [32]. In this way, the lower level
problem needs not be solved at high precision in each
iteration. The KKT conditions only need to be met when
convergence. Therefore, our method could be much faster.
Lobel et al. [34] use an alternating minimization algorithm
based on the CCCP algorithm [36], which is designed
for unconstraint optimization problems whose objective is
decomposed as the sum of a convex and a concave term.
Thus, the applicability of this optimization method is limited.

Note that Laplacian regularization has been utilized in
dictionary learning, e.g., Gao et al. [17] present a Laplacian
sparse coding (LSC) method. However, LSC is a unilevel
optimization model and is unsupervised, while ours is a bilevel
model and supervised. Guo et al. [18] propose a pairwise
constraint based discriminative dictionary learning method,
named DDL-PC. They also incorporate a Laplacian term with
a linear classifier to jointly learn a discriminative dictionary
and a classifier. However, their model is unilevel, which cannot
avoid the second drawback we mentioned above, i.e., non-
optimality for classification and model inconsistency. We will
discuss the differences between unilevel models and bilevel
models in more detail in Section IV. Another difference is
that in the testing phase, Guo et al. [18] solve a LASSO
problem to compute the sparse codes of testing samples, while
we further consider the data structure and solve the lower level
optimization problem, i.e., problem (22), to compute the sparse
representations of testing samples.

In summary, our main contributions include:

1) We propose a bilevel model for simultaneous discrim-
inative dictionary learning and data classification. The
upper level directly minimizes the classification error,
while the lower level aims at characterizing the intrinsic
data structure. Our model achieves an overall optimality
in that the dictionary learning is directly connected to
recognition. Moreover, our model is consistent. Namely,
the problems for computing the sparse codes in the
training and the testing phases can be the same.

2) While most of dictionary learning methods only adopt
the o or {1 norm as the sparsity constraint for dic-
tionary learning and encode each sample independently,
which ignores the data structure information, our method
employs the supervised Laplacian regularization to pre-
serve the intrinsic data structure.

3) Unlike other bilevel model based dictionary learning
methods that employ the stochastic subgradient method
to solve their models, we propose a novel method to
solve our bilevel model. We utilize the KKT conditions
to transform the lower level problem into equality and
inequality constraints, then apply ADM to solve the
equivalent model.
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TABLE I
SUMMARY OF NOTATIONS FREQUENTLY USED IN THIS PAPER

Notation Meaning

capital letter | A matrix. Especially, I is the identity matrix.
MT Transpose of matrix M.

M;; The (i, 7)th entry of matrix M.

M; The ith column of matrix M.

Mt Moore-Penrose pseudo-inverse of matrix M.
Il 1lo Number of nonzero entries.

11l 1Ml =32, 5 [ M.

|- llF Frobenious norm,HMHp:,/zijM%.
|- 1]2 Vector Euclidean norm, ||z|| = />, z2.
@ CZA@B, where Ci]' :A”Bm

(%) C = A Q@ B, where Cij =Aij/Bij.

tr(-) Sum of the diagonal entries of a matrix.

Extensive experimental results demonstrate the advantages
of our method.

The remainder of this paper is organized as follows.
Section II briefly reviews related work on the existing dictio-
nary learning methods. In Section III, we present our bilevel
model based discriminative dictionary learning (BMDDL)
method. We also present how to utilize the KKT conditions
and ADM to solve our bilevel model. In Section IV, we
compare unilevel models with bilevel models and argue for the
advantages of bilevel models. Section V presents experimental
results and analysis. Finally, Section VI concludes the paper
and discusses future work.

II. RELATED WORK

Since the existing dictionary learning methods can be
roughly divided into unsupervised and supervised ones, we
will briefly introduce these two kinds of methods in turn in
this section. For brevity, we summarize some frequently used
notations in Table I. Suppose that ¥ = [Yy,---,Y,] € Rdxn
is the data matrix, in which d is the feature dimension and »n
is the number of samples. D € R?*¥ is the dictionary we want
to learn, in which k is the number of atoms in the dictionary.
A=1[Al, - ,Ay] € R is the representation of the feature
matrix Y under the dictionary D, where A; corresponds to the
ith sample Y;.

A. Unsupervised Dictionary Learning

Unsupervised dictionary learning methods usually minimize
the combinations of the reconstruction error and the sparsity
of the learnt representation. A typical model is:

min ||Y — DA|IZ, st IDil3 <1, Vi€ (1,2, k},

IAjllo =T, Vje{l,2,---,n}, (1)

A

where the term ||Y — DA||% is the reconstruction error.
[Ajllo < T means that the jth sample has fewer than T
nonzero entries in its representation. MOD [10] and KSVD [1]
learn a dictionary by solving problem (1). Some unsupervised
methods also consider discriminative terms in their models.
Besides, the {p norm is often approximated by the €1 norm
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TABLE II

SUMMARY OF DISCRIMINATIVE TERMS IN UNSUPERVISED AND SUPER-
VISED DICTIONARY LEARNING METHODS

Unsupervised Discriminative term

LSC [17] F = tr(ALAT), where L is the Laplacian matrix.
Supervised Discriminative term

D-KSVD [4] F =1[H - WA|% + A[W]|[%, where H is the label

matrix and W is the classifier parameter matrix.

F = ||Q — BA||%, where Q is the ideal sparse codes
matrix and B is a linear transformation matrix.

F =||H — WA||% + A|Q — BA||%. where H and
W have the same meanings as those in D-KSVD.

F =|H—-WA|% + X|W|% + ytr(ALAT), where

LC-KSVDI1 [5]

LC-KSVD2 [5]

DDL-PC [18] H and W have the same meanings as those in
D-KSVD, and L is the Laplacian matrix.

Mairal [19] F=3%, log(1‘+ ehi“’TAi) + AHwH%, where h; is th-
e label of the ith sample and w is the parameter vector.
F =tu(Sw(A) — Sg(A)), where Sy (A) and

Zhou [23] Sp(A) are the within-class scatter and the between-cl-

ass scatter matrices, respectively.

in order to make the models more easily solvable. A general
model can be written as:
min

st. D3 <1, Vie(l,2,---,k}, (2)

1Y — DA% + allAl + BF(D, A, S),

where ||A||; is a sparse penalty term, F(D,A,S) is a
general unsupervised discriminative term, and a and f are
two positive parameters controlling the relative contribution
of the corresponding terms, respectively. Since this kind of
methods construct the discriminative term F(D, A, S) in an
unsupervised way, these methods belong to the unsupervised
category. The discriminative term of LSC [17] can be found
in Table II, where its Laplacian matrix is computed from
histogram intersection.

B. Supervised Dictionary Learning

Based on unsupervised dictionary learning methods, most
supervised methods directly add discriminative terms to the
objective functions of unsupervised methods. So a general
supervised dictionary learning model can also be formulated
as (2), where F(D, A, S) is a general supervised discrimi-
native term. Many supervised dictionary learning methods,
such as [4], [5], [8], and [18]-[23], can be formulated as
the above dictionary learning model (2). The discriminative
terms of D-KSVD [4], LC-KSVD [5], DDL-PC [18], [19],
and [23] are summarized in Table II. Note that LC-KSVD has
two versions, LC-KSVD1 and LC-KSVD2. Please refer to [5].
With the class labels of the training data available, supervised
dictionary learning methods exploit the class discriminative
information and obtain better classification performance than
unsupervised methods in most cases. However, since their
objective functions consist of the reconstruction error and
other discriminative terms, the classification error may not be
minimized. Therefore, the learnt dictionary may not be the
most discriminative one for recognition tasks. Besides, the
{1 norm cannot well capture the data structure. In [30], a
bilevel model based dictionary learning method is proposed.
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But it also only employs the £1 norm and encodes each sample
independently.

In either kinds of dictionary learning methods, when com-
puting the sparse code for a testing sample, the discriminative
term F(D, A, S) has to be dropped. So their models are
inconsistent.

III. BILEVEL MODEL BASED DISCRIMINATIVE
DICTIONARY LEARNING

In this section, we first present our bilevel model for
discriminative dictionary learning. Then we introduce a novel
method to solve our bilevel optimization problem. Finally, we
summarize our framework for recognition tasks.

A. Model for Discriminative Dictionary Learning

We propose a bilevel model for recognition-driven discrim-
inative dictionary learning. In a recognition task, minimizing
the classification error is the ultimate goal. Accordingly, in our
model the upper level feeds the representation A; of the ith
sample Y; into a classifier f(A;, W) and directly minimizes
the classification loss. This goal is primary. The lower level
tries to capture the data structure and this goal is secondary.
Actually, in most cases the high-dimensional sample points
across multiple classes lie in multiple low-dimensional sub-
spaces, and samples in the same class should cluster together
as a low-dimensional subspace whose intrinsic dimension is
often much smaller than the data dimension. Intuitively, given
a dictionary the nonzero coefficients of samples from the same
class should also cluster, which can be promoted by group
sparsity. To this end, we adopt the combination of the sparsity
term and the Laplacian discriminative term to encourage group
sparsity of representation. It should be pointed out that we
construct the Laplacian matrix in a supervised way. So it can
well preserve the data structure even if there exists noise in
the data. In this way, the lower level can utilize the intrinsic
data structure to optimize for the discrimination capability of
the representations with respect to a given dictionary. Such a
framework leads to a better recognition-driven dictionary. Our
model can be formulated as follows:

n
min ;mhi,f(Ai,W))Han%,
1=

_ 1 2 B T
s.t. A—angEHEHY—DAHF-FO!HAHl+§tr ALA" ),
IDilI5 <1, Vi e{l,2,--,k}, 3)

where A; € R is the representation of the ith sample and W is
the parameter matrix of classifier f(-, W). h; is the 0-1 binary
label vector of the ith sample, where the position of 1 indicates
the class of Y;. ¢ is a classification loss function. ||Al|; is a
sparse penalty term. L € R"*" is the Laplacian matrix of the
data matrix Y (please refer to Eq. (30) for constructing L).
tr (ALAT) is the Laplacian term, which encourages samples
from the same class to have similar sparse codes and those
from different classes to have dissimilar sparse representations.
A, a, and f are three regularization parameters.
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In this paper, we use a linear predictive classifier f(x, W) =
Wx and a quadratic loss function. Actually, this is the multi-
variate ridge regression [37]. For other classifiers, the resulting
optimization problem could still be solved but will be much
more involved. Then the optimization problem (3) can be
written as follows:

min |H — WA|% + A|W|%,
W,D

1
st A=argmin|Y — DAJ} + a||A||1+§tr (ALAT),
IDill5 < 1, Vi € {1,2,--- k), “)
where H = [hy, hy, -+, h,] € R is the label matrix of

the data matrix ¥ and h; = [0,0,---,1,---,0,0]" € R® is
the label vector of the sample Y;, in which ¢ is the number of
classes and the position j of 1 in k; is the class label of Y;. The
term ||H — WA||12F denotes the classification error [5], [30].
By solving this optimization problem, a recognition-driven
dictionary D can be learnt.

B. Solving the Bilevel Optimization Problem

The stochastic subgradient descent algorithm [29] can be
used to solve the optimization problem (4), but its convergence
speed is relatively slow. Moreover, it is difficult to deduce the
subgradient of the upper level objective function with respect
to the dictionary D after implicitly representing W and A
with D. In this paper, we use ADM [32] to solve it after
some delicate reformulation.

We consider the lower level optimization:

1 2 B T
min SV = DAL} +all Al + 5w (ALAT). )

Let A = B — C, where B € RF" and € € RF*" are two
nonnegative matrices such that B takes all the positive entries
in A and the remaining entries of B are set to 0, while C does
the same for the negative entries in A (after negation). Then
problem (5) can be transformed into the following problem:

o1 » B T
min S |Y — D(B — O)lf} + S ((B _C)L(B - C) )
—+—aekT(B + C)ey,
stt. B>0, C=>0, (6)

where ¢, € R¥*! and ¢, € R"*! are two all-one vectors.
B > 0 denotes that all the elements in matrix B are nonneg-
ative. C > 0 has the same meaning. It should be pointed out
that these two problems are equivalent.

Let Z = [B;C] € R**" and P = [I,—1I] € R* in
which I € RF*k is the identity matrix, then we have A =
B — C = PZ. Problem (6) can be rewritten as follows:

1
min S| — DPZ|} +aej Ze, + gtr (PZLZTPT) ,
st. Z=>0, @)

where ey, € R2>1 js an all-one vector.

Problem (7) is a convex problem, since its objective function
is a sum of three convex functions and hence convex, and
its constraint is a convex set. On the other hand, for any
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convex optimization problem with differentiable objective and
constraint functions, KKT conditions are not only the nec-
essary condition but also the sufficient condition of optimal
solution [38]. Thus, if Z* is an optimal solution to problem (7),
Z* must meet the KKT conditions of (7). Conversely, if Z*
meets the KKT conditions, then it is an optimal solution. So
we can replace problem (7) with its KKT conditions. Write
down the Lagrangian function of problem (7):

1
L1(Z, M) = 5||Y — DPZ|% + gtr (PZLZTPT)

tael Zey +r (MT Z) , ®)

where M € R?*" is the Lagrange multiplier matrix and M
satisfies the constraint M < 0. Since the constructed L is a
symmetric matrix (please refer to Eq. (30)), we can obtain the
KKT conditions of problem (7) as follows:

©)

P'DTDPZ — PTDTY + aE+ BPTPZL+ M =0,
MOZ=0,72>0, M<0,

where E € R?**" 5 an all-one matrix.

Then we can replace the lower level optimization (5) with
its KKT conditions (9) and obtain the following equivalent
model:

min
W.,Z,M,D
s.t. P'D'DPZ—PT'DT'Y+aE+pPT PZIL+M =0,
MOZ=0, Z>0, M <0,
IDi|3 <1, Vie{l,2,---,k}.

IH —WPZ||3 + W%,

(10)

The above problem is a unilevel optimization, hence can be
solved by ADM. Since ADM does not enforce the constraints
in each iteration (the constraints are exactly fulfilled only
when convergence), this could be interpreted as that we do
not have to solve the lower level optimization exactly in
each iteration. As we can see, by ADM each variable can
be updated with a closed form solution, rather than iteratively
solving the lower level problem at a reasonably high precision
as the (sub)gradient descent method does. Moreover, it is
unnecessary to deduce the subgradient of the upper level
objective function with respect to the dictionary D. So our new
method is both faster and much simpler than the subgradient
descent method.

To apply ADM, we first introduce two auxiliary variables
X and S to update variables easily. The optimization prob-
lem (10) can be rewritten as

IH —WPZ||% + AIW|%,

min
W,Z,M,X,S,D
s.t. PT'D'DPZ—PTDTY+aE+SXL+M=0,
MoS=0, PTPZ-X=0,Z—-5=0,
§>0, M<O0,

ID;3 <1, Vi €{1,2,--- k). (11)
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The augmented Lagrangian function of problem (11) is:

£2(W’ Z’ M’ X’ S’ D’ Rl’ RZ’ R3) R4’ ILt)
= ||H - WPZ||} + AW}
+ <R1, PTDTDPZ — PTDTY + aE + BXL +M>

+ (R, M © 8) + (R, PTPZ = X) + (Ra, Z = )
+ %HPTDTDPZ —PTDTY + aE + BXL + M|%
U
+£ (1M O SIE+IPTPZ = XI3+1Z - SIF). (12)

where (A, B) =tr (ATB), R1 ~ R4 are Lagrange multipliers,
and x4 > 0 is the penalty parameter.

ADM updates the variables W, Z, M, S, X, and D alter-
nately in each iteration, by minimizing the augmented
Lagrangian function £ with other variables fixed. Firstly, we
update the parameter matrix W of the linear classifier.

w=HZ'PT(PzZTPT + D)7 (13)

Then, we update Z, M, S, and X in turn. More specifically,
the iteration goes as follows:

zZ= (2PTWTWP+2ﬂPTDTDDTDP+2,¢PTP+WI)*1
X [2PTWH —uP'D'DP(—PTDTY 4+ aE + XL

M + Ry/u) — PTP(Rs — uX) — Ra + ,US].
(14)
M=-0((SORy/u+P'D'DPZ—P'DTY +aE

X +PXL+Ri/u) @ (SOS+E)), 15)

where O(-) is an operator that projects a matrix onto the
nonnegative cone, which can be defined as follows:

Xij, if X =05

. (16)
0, otherwise.

0(X;j) = [

As for X and S, actually we can view (X, S) as a large
block of variables. We can update (X, S) by minimizing the
augmented Lagrangian function £, which naturally splits
into subproblems for X and S, respectively, since X and S
are independent on each other in this minimization problem.
Accordingly, we update these two variables as follows:

X = [PTPZ Y Ry/u—BPTDTDPZ — PTDTY
+aE+M+R1/,u)LT] (,BZLLT +1)71, (17)
S=0(Z+Rs/u—MOR/ )@ (M OM + E)). (18)

Now we focus on solving for D. We need to solve the
following problem:

D= in y (D). 19
argglelgw( ) (19)
where Q = (D | |D;|3 < 1,i=1,---,k} and

w(D) = |PTD"DPZ — PTDTY + aE + XL+ M
+ R/ pll (20)
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Algorithm 1 Solving the Bilevel Model for Discriminative
Dictionary Learning (BMDDL) via ADM

Input: The training data matrix Y, the label matrix H of Y,
the Laplacian matrix L of Y, the parameters A, o, and 33,
max_iter= 80, maximal number loops in Armijo is 10.

1: Initialize D°, Z°, S°, X© and M. Set RY =0, RY = 0,
R} =0, R} =0, u’ =1le — 3, timaz = le +8, p= 1.3,
g1 =1le—4,e9 =1e—5,and j = 0.

2: while not convergence do

3. Fix Z7,M7,X7, S/, and D’ to update W7*! by (13).

4 Fix Wit M3 X7 S, and D’ to update Z7 1 by (14).

5. Fix Wit zi+l X3 83, and D’ to update M7*+! by

(15).

6:  Fix Witl Zi+l A+l 83 and D7 to update X7+!
by (17).

7. Fix Wi+t Zi+1 M+l X3+1 and DJ to update S7+1
by (18).

8  Fix Wit zZi+l pp+l X+l and S9! to update
Di*! by (21).
9:  Update Lagrange multipliers:

R =Ry + w(R+ aB + BX7T L+ M7TY),
R§'+l :R% JrN(Mjﬂ o) Sj+1)’

Ry™ =R} + p(PTPZI — X7+,

R =R 4 p(Z9+! — githy,

where R = PT(Dit1)T pitl pzi+tl _ pT(Di+t1H)Ty,

10:  Update @+t p/ ™t = min(pp?, ttmaz )-

1n: j+j+1

122 Check convergence: if ||[PT(D)TDIPZ/ —
PT(DIYTY + aF + BXIL + MIJ|E] < e
and ||M7 ® S7||/|M7|| < e and ||PTPZI —
XI|/IX0]| < = and |20 — S7/|Z]] < e and
127 — 27|/ Z7]] < €2, then stop.

13:  if 7 >max_iter, then stop.

14: end while

Output: The learnt dictionary D7,

The problem (19) is a quartic polynomial minimization prob-
lem. It is difficult to compute its exact solution. So we use the
projected gradient descent method [39] to update D:

D =Tlg (D - yVy(D)), (1)
where D is the previously computed value of D, the step size
y is chosen by the Armijo rule [40], and Ilq is the projection
onto Q.

The detailed optimization procedure of BMDDL is pre-
sented in Algorithm 1. The detailed deductions of the updates
of W, Z, M, X, S, and D can be found in Supplementary
Material.

C. Classification

When (11) is solved, we obtain a recognition-driven dic-
tionary D and sparse codes A = PZ of training samples.
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Given a testing sample y, we first compute its sparse repre-
sentation:

1 B
a* = argmin ~|ly = Dallf +allali+5 > gila — Al
ieNs (y)
(22)

where N;(y) denotes the set of s nearest neighbors of y. Note
that the s nearest neighbors are chosen from training samples
Y. g; is the weight between training sample Y; and y. A; is the
sparse code of the ith sample Y;. @ and f are regularization
parameters. Actually, problem (22) is the vector form of the
lower level problem (5). The values of o and f in problem (22)
are the same as those in model (5), respectively. In this way,
the sparse code learning problems in the training and the
testing phases are consistent.
Problem (22) can be further written as follows:

! _ -
a*:argmalnEHOVDTa—O lngH%—i—aHaH], (23)

where O = (E[T)ED—i—,B > q,-I)%, 3=DTy+p > qidAi,
ieNs(y) i€Ng(y)

and UpXZp Vg is the full singular value decomposition (SVD)
of D. Therefore, we can apply any algorithm solving a LASSO
problem, such as [12], [41], and [42], to solve (23). As
LC-KSVD [5] and TDDL [30] did, we use the LARS [41]
algorithm to solve (23) in this paper. Finally, we simply use
the learnt linear classifier to estimate the label of a*:

jr= argm]ax (W*a™);, 24)

where W* is the parameter matrix of the learnt linear classifier.

D. Initialization

In Algorithm 1, we need to initialize DY 70 s9 X0 and
MO first. Following LC-KSVD [5] and TDDL [30], we use
several iterations of KSVD to learn a dictionary for each
class and combine these small dictionaries together to form
a dictionary DO,

However, initializing Z° needs a little more effort. We
initialize A® by solving problem (5), then we can compute
70 = PTAY. We also adopt the ADM method [32] to solve (5).
Firstly, we introduce two auxiliary variables J and G in order
to update variables easily:

B

Etr(GLGT),

(25)

min
AJG
s.t. A=J, A=G.

1
;w—Dﬂﬁ+mmm+

Then the augmented Lagrangian function of problem (25) can
be formulated as follows:

B
2
+M—LR9+§m—nﬁ

1
EﬂA,LCLR5R0==EHY—DJﬁ%ﬂHAm+-thLGﬁ

+m—aRa+%m—Gﬁ,@®

where Rs and Rg are Lagrange multipliers.
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Algorithm 2 Solving Problem (5) for Initializing Z° via ADM

Input: The training data matrix Y, the Laplacian matrix L of
Y, the parameters o > 0 and 8 > 0, max_iter= 150.
1: Set A =J° =G° = DY, 4 = 1e -2, fimaz = le+8,
p=12 RI=R}=0,e=1e—6,and j = 0.
2: while not convergence do
3. Fix J7 and G’ to update A7+ by (27).
4 Fix A7t and G7 to update J7*! by (28).
5. Fix A7t and J7*! to update G7*+! by (29).
6:  Update Lagrange multipliers: R5 = Rs + pu? (A7+! —
Jj-‘rl)’ Rs = Rg + Mj(Aj+1 _ Gj‘H).
Update p/1: p+t = min(pp?, pmaz)-
8 Jj+ji+1.
9:  Check convergence: if |47 — J7||/||A7]|| < e, [|AT —
G7||/IIA7|| < € and ||A7 — A7||/||A7]| < &, then stop.
10:  if 7 >max_iter, then stop.
11: end while
Output: Z° = Pt A7,

>

We update A, J, and G in turn. Note that we can also view
(J, G) as a large block of variables since J and G are indepen-
dent on each other in this minimization problem. Accordingly,
we can update these three variables in the following way:

1
A =Sa/) (E(J +G—(Rs+ R6)/#)), (27)
where S (x) = sgn(x)max(|x| — €, 0) is the hard thresholding
operator [43], and

—1
7=V (z[,z[, +u1) vl (DTY—i—,uA + Rs), (28)
G = (uA+ Re)VL (S +puD) ' V[, (29)

where UpXp Vg and VL X1 VLT are the full SVD of D and
B(L + LT)/2, respectively.

The procedure for solving problem (5) is described in
Algorithm 2. The detailed deductions of the updates of A,
J, and G can be found in Supplementary Material. After
initializing 79, we can initialize S° = Z9, X9 = pT pZ0,
and M° = PT(D)Ty — PT(DOTDPZ° — aE — pX L.

E. Convergence Analysis

There is no theoretical convergence support when we apply
ADM to solve problem (11). Typically, ADM for less than
three blocks of variables usually converges when the problem
is convex. Recently, some scholars propose theories to extend
the scope of the convergence of ADM. For example, Hong
and Luo [44] point out that ADM with K (K > 3) blocks
of variables can converge when minimizing the sum of two
or more nonsmooth convex separable functions which are
subject to linear constraints. Hong et al. [45] also prove
that ADM is convergent for a family of sharing problems,
regardless of the number of blocks or the convexity of the
objective function. Those works have extended the scope of
ADM with theoretical guarantee. However, as for more com-
plex optimization problems, which contain nonlinear equality
constraints, are nonconvex and have K (K > 3) blocks of
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Fig. 1. Two examples of BMDDL minimization process, on Extended YaleB
and Fifteen Scene Categories, respectively.

variables, there is no theory that supports the convergence of
ADM. But this does not mean that ADM cannot converge.
Boyd et al. [46] point out that when solving nonconvex
problems by ADM, ADM may not converge, but when it does
converge, it will possibly have better convergence properties
than other local optimization methods. On the other hand,
many scholars have also adopted ADM to solve nonconvex
problems with nonlinear equality constraints and more than
three blocks of variables, and they report state-of-the-art
experimental results, such as [7]. To illustrate the convergence
of ADM in solving problem (11), we conduct experiments and
report in Fig. 1 (a) and (b) the objective value £, on Extended
YaleB [47] and Fifteen Scene Categories [48], respectively.
We can see that the objective values reduce reasonably well.

IV. UNILEVEL, BILEVEL AND MULTI-LEVEL

In this section, we first discuss in more detail the advantages
of bilevel models over unilevel ones, then we generalize to
multi-level models.

As we have mentioned in Section II-B, most supervised
methods directly incorporate discriminative term F(D, A, S)
into the objective functions of unsupervised methods and
the general supervised dictionary learning model can be
formulated as (2). Such a mechanism leads to two
drawbacks.

1) Undoubtedly, in recognition tasks, the classification error
is our ultimate goal and we need to minimize it directly.
However, these unilevel model based supervised methods [4],
[5], [8], [18]—-[23] minimize combinations of the reconstruc-
tion error and the discriminative terms, such as the classi-
fication error. In this way, the learnt dictionary is an optimal
dictionary to the combined terms, rather than the classification
error. Accordingly, the performance on recognition tasks may
be compromised. On the contrary, bilevel models can over-
come this drawback as they directly minimize the classification
error. The upper level minimizes the classification loss, while
the lower level characterizes the intrinsic data structure. The
objective of lower level is subordinate to that of the upper
level. Therefore, bilevel models achieve an overall optimal-
ity in that the dictionary learning is directly connected to
recognition.

2) Another drawback of those unilevel model based meth-
ods [4], [5], [18], [20], [21], [23] is that the problems
for computing the sparse codes in the training and the
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testing phases are different, making the models inconsistent.
These methods for recognition tasks can be sketched in three
steps. Firstly, these supervised methods solve problem (2) to
learn a dictionary D, the sparse codes A;, of the training sam-
ples, and other variables S, such as the classifier parameters
in [4], [5], and [18]. Then, in the testing phase, since there
is no supervision information, those methods have to discard
the discriminative term F(D, A, S) in (2) and fix dictionary
D to compute the sparse codes A,y of testing samples. Finally,
these methods feed the feature A;, of training samples into a
classifier to learn its parameters W, then use W to identify
the feature A;s of testing samples. Or in [4], [5], and [18],
they directly use the previously learnt classifier S of (2) in
the training phase to classify testing samples. These methods
solve different problems to learn the sparse representations
Ay, of training samples and the sparse representations A;s; of
testing samples. By this way, the new feature A;; may not
be optimal for the classifier W or § which is learnt on the
feature A;, of training samples. In contrast, bilevel models do
not have the above problem. In the training phase, they solve
the lower level optimization problem to compute the sparse
representations A;, of training samples, and in the testing
phase, they still use the lower level model to compute the
feature A;g of testing samples. Thus, the classifier trained on
the feature A;- can perform on the feature A, of testing
samples. So, in bilevel models the problems for computing
the sparse codes in the training and the testing phases are
consistent.

One could easily think of models with multiple levels.
Then there are connections between bilevel models and super-
vised neural networks [49]-[51]. Both bilevel models and
supervised neural networks are multi-level recognition-driven
feature learning schemes. In recognition tasks, they both adopt
the classification loss as their optimization goal and at each
level, they both use a feature extractor, such as the lower
level problem (5) in BMDDL, to learn discriminative features
and feed them into the next level as input. But the feature
extractors used in bilevel models are much more complex
than those (linear mappings and nonlinear mappings) in neural
networks, so that there are no closed-form solutions for the
feature extractors. Please refer to Supplementary Material for
further details.

V. EXPERIMENTS

In this section, we evaluate our method on four different
types of databases: Extended YaleB [47] (for face recogni-
tion), Fifteen Scene Categories [48] (for scene classification),
Caltech 101 database [52] and Caltech 256 database [53] (for
object recognition), and UCF50 [54] and HMDBS51 [55] (for
action recognition). As for the three parameters 4, a, and f
in BMDDL, we select A from the set {0.0001, 0.001, ---, 1}
and choose a and g from the sets {0.001, 0.004, 0.008, 0.01,
.-+, 1} and {0.0001, 0.0005, 0.001, ---, 0.1}, respectively, in
all experiments. Following [5], the parameters in our model
are fixed for each database and determined by n-fold cross
validation on the training data. The detailed parameter settings
are presented in each experimental section. In the training
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phase, we construct the weight matrix Q as follows:

1, if samples ¥; and Y; belong to the same class,
0ij = . (30)
0, otherwise.

Then we compute its corresponding Laplacian matrix L =
T — Q, where T is a diagonal matrix and T;; = > Q;;. In

the testing phase, we find s nearest neighbors fromj training
set for a testing sample. We set s = 5 and the weight g; = 1
(Vi € Ng()) in all experiments.

In all the above recognition tasks, we compare our
method with supervised dictionary learning methods, including
D-KSVD [4], LRRDL [7], SLRRDL [7], TDDL [30],
LC-KSVD [5], DDL-PC [18], SRC [3], and unsupervised
methods, such as KSVD [1], LSC [17], and SDL [14].
In each specific task, we further compare with other state-
of-the-art methods with similar framework for that task,
such as the classic locality-constrained linear coding (LLC)
method [35]. The platform is Matlab 2013a under Windows 8
on a PC equipped with a 3.4GHz CPU and 16GB memory.
Our code will be released.

A. Face Recognition

In this subsection, we conduct face recognition experiments
on the widely used Extended YaleB [47]. It consists of 2,414
cropped frontal face images of 38 people. Every image has
192 x 168 = 32,256 pixels. There are between 59 and
64 images for each person. Following [5], we randomly
select half of the samples of each person for training and
the other half for testing. Since the dimension of the image
feature is too high, each image feature is projected onto a
504-dimensional vector with a randomly generated matrix [5].
We take the dimension-reduced feature to evaluate
D-KSVD [4], LRRDL [7], SLRRDL [7], TDDL [30],
LC-KSVDI1 [5], LC-KSVD2 [5], SRC [3], KSVD [1],
SDL [14] and our method. Note that both LSC [17] and
LLC [35] use SIFT descriptors [57], so we downsample
these images by 4 such that the downsampled images can
still produce a certain amount of SIFT features. LSC and
LLC are the original LSC and LLC, respectively, while
LSC* and LLC* use Laplacian sparse coding and sparse
coding to encode the dimension-reduced feature, respectively.
The dictionary size is 570. We set 4 = 0.001, @ = 1, and
£ = 0.005 in our method. Every experiment runs 10 times
and we report its average recognition rate.

The experimental results are summarized in Table IIL.
We can see that our method obtains the best recognition rate by
0.5% more than the runner-up. We also note that most super-
vised methods achieve better classification performance than
unsupervised methods, since supervised methods exploit the
class discriminative information to learn a more discriminative
dictionary for a specific task. Two of the discriminative sparse
codes extracted from the Extended YaleB are shown in Fig. 2.
We can see that the samples from the same class share a few
atoms in the dictionary to linearly approximate themselves,
which makes these features much easier to be identified.
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TABLE III

THE RECOGNITION RATES (%) ON THE EXTENDED YALEB DATABASE
(“SuP.” AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSU-
PERVISED”, RESPECTIVELY)

[ Type [ Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) | 95.5 KSVD [1] 93.1
D-KSVD [4] 94.1 Unsup. | LSC [17] 93.6
LRRDL [7] 91.3 LSC* [17] 93.2
Sup. | SLRRDL [7] 91.9 SDL [14] 94.2
TDDL [30] 94.6 LLC [35] 82.2
LC-KSVD1 [5]| 94.5 Others | LLC* [35]| 88.5
LC-KSVD2 [5]| 95.0 Xu [56] 94.3
SRC [3] 92.2
2500
1500 |- -
1000 |- -
o A L A L
o 100 200 300 400 500
()
1500 - -
a L AaA il A A !
(b)
Fig. 2. Examples of sparse codes extracted from the Extended YaleB

database. Each waveform denotes a sum of absolute sparse codes for different
samples from the same class. Figures (a) and (b) correspond to two different
classes.

A1 b"uuaiug‘v!j

Fig. 3. Examples of the Fifteen Scene Categories database.

B. Scene Classification

We use the Fifteen Scene Categories database [48] for scene
classification. As shown in Fig. 3, this database contains a wide
range of outdoor and indoor scenes, including office, kitchen,
street, and coast. The size of each image is roughly 250 x 300
pixels. Each category contains about 200 to 400 images.

When we evaluate our method and other related methods
on this database, we use the extracted features provided
by [5]. The features are computed as follows. Firstly, we
extract four-level spatial pyramid features, then encode these
features with a codebook of size 200. Since the feature dimen-
sion is too high, PCA is used to reduce the feature dimension
to 3, 000. As [5] and [48] did, we randomly select 100 sam-
ples per category as training data and use the remaining
samples for testing. For fairness, D-KSVD [4], LRRDL [7],
SLRRDL [7], TDDL [30], LC-KSVD [5], SRC [3],
KSVD [1], LSC* [17], SDL [14] and our method all use the
spatial pyramid features and dictionary size is set as 450. Note
that in [34], Lobel et al. use two kinds of features, HOG and
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TABLE IV

THE RECOGNITION RATES (%) ON THE FIFTEEN SCENE CATEGORIES
DATABASE (“SUP.” AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND
“UNSUPERVISED”, RESPECTIVELY)

[ Type [Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) 96.9 Unsup. | SDL [14] 88.1
D-KSVD [4] 89.1 LLC [35] 794
LRRDL [7] 90.1 LLC* [35] 89.2
SLRRDL [7] 91.3 Lazebnik [48] 81.4

Sup. | TDDL [30] 92.1 Gemert [58] 76.7
LC-KSVDI1 [5] 90.4 Yang [16] 80.3
LC-KSVD2 [5] 92.9 Others | Lian [59] 86.4
SRC [3] 91.8 Boureau [60] 84.3
Lobel [34] 86.3 Yang [61] 92.9
KSVD [I] 86.7 Wei [62] 91.8

Unsup. | LSC [17] 89.9 Song [63] 85.7
LSC* [17] 90.3

LBP. We set both the neighborhood size of LLC and LLC*
as 30. We set 4 = 0.0001, a = 0.001, and £ = 0.0001 in our
method.

The detailed comparison results are summarized in
Table IV. Our method outperforms all the competing dic-
tionary learning methods and other state-of-the-art methods.
Our method makes about 4.0% improvement over the runner-
up. The confusion matrix of our method can be found in
Supplementary Material. There is no class that are classified
badly and the worst recognition rate is as high as 90.7%.

C. Object Recognition

In our experiments, Caltech 101 [52] and Caltech 256 [53]
are used to evaluate our method for object recognition.

1) Caltech 101: This database contains 9,146 images in
total and includes 101 object categories (such as airplane,
camera, face, ant, and piano) and an additional background
category for a total of 102 categories. The number of each
object category is between 31 to 800. The size of each image
is roughly 300 x 200 pixels.

Following the same settings as in [5] and [7], we test
our method with spatial pyramid features. We can take the
following measures to extract these features. Firstly, we extract
SIFT descriptors of 16 x 16 over a grid with a spacing of
8 pixels. Then, with three kind of grids with size 1 x 1,
2 x 2, and 4 x 4, we extract three-level spatial pyramid features
based on the computed SIFT features. Finally, we encode the
three-level spatial pyramid features with a codebook of size
1,024. Since the feature dimension is too high, we reduce
the feature dimension to 1,500 with PCA. Following the
common setup, we randomly select 30 samples per category
as training data and use the remaining samples for testing. The
detailed comparison results are reported in Table V. D-KSVD
[4], LRRDL [7], SLRRDL [7], TDDL [30], LC-KSVD [5],
SRC [3], KSVD [1], LSC* [17], SDL [14] and our method
all use the extracted spatial pyramid features. The dictionary
size is 3,060. LLC and LLC* both have 30 neighborhoods.
In BMDDL, we set A =1, a = 0.008, and = 0.0001.

As Table V shows, our method achieves the best perfor-
mance and makes about 2.9% improvement over the second
best except Lobel [34]. Note that in [34], Lobel et al. use
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TABLE V

THE RECOGNITION RATES (%) ON THE CALTECH 101 DATABASE (“SUP.”
AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSUPERVISED”,

RESPECTIVELY)

[ Type [Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) 75.5 Unsup. | SDL [14] 70.2
D-KSVD [4] 71.2 LLC [35] 64.8
LRRDL [7] 70.1 LLC* [35] 70.8
SLRRDL [7] 71.0 Lazebnik [48] 64.6

Sup. | TDDL [30] 71.5 Gemert [58] 64.2
LC-KSVD1 [5] 71.6 Others | Geusebroek [64] 64.1
LC-KSVD2 [5] 72.0 Y. Ng [65] 72.6
SRC [3] 69.3 Malik [66] 56.6
Lobel [34] 75.4 Zhang [67] 73.5

Unsup. | KSVD [1] 69.9 Quan [68] 68.4
LSC [17] 69.2 Zhou [69] 75.2
LSC* [17] 70.8
TABLE VI

THE RECOGNITION RATES (%) ON THE CALTECH 256 DATABASE (“SUP.”
AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSUPERVISED”,

RESPECTIVELY)

[ Type [Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) 59.3 Unsup. | LSC* [17] 57.5
D-KSVD [4] 58.2 SDL [14] 57.8
LRRDL [7] 57.4 LLC [35] 41.9

Sup. |SLRRDL [7] 58.3 LLC* [35] 57.7
TDDL [30] 57.6 Bo [70] 50.7
LC-KSVDI1 [5] 57.8 Others | Liu [71] 45.7
LC-KSVD2 [5] 58.6 Gao [17] 35.7
SRC [3] 56.8 OverFeat [72] 56.4

Unsup. | KSVD [1] 57.3 Zhang [67] 46.3
LSC [17] 349 Gao [73] 42.1

two kinds of features, HOG and LBP, while BMDDL only
use SIFT. BMDDL still outperforms Lobel [34]. It is worth
noting that in BMDDL, there are a total of sixteen classes that
achieve the 100% recognition rate.

2) Caltech 256: This database consists of 30,607 images
and splits between 256 distinct objects and a background
category. Caltech 256 contains from 80 to 827 images per
category. Compared with Caltech 101, it is more difficult due
to its much higher intra-class and object location variability.
Thus, we evaluate our method and other related methods with
the OverFeat feature [72], which is 4,096 dimensional.

Following the common experimental settings, we randomly
select 30 training images from each class and the remain-
ing images are used for testing. For fairness, we evaluate
D-KSVD [4], LRRDL [7], SLRRDL [7], TDDL [30],
LC-KSVD [5], SRC [3], KSVD [1], LSC [17], SDL [14]
and our method with OverFeat features and set the dictionary
size as 3,855. LLC and LLC* have 30 and 15 neighborhoods,
respectively. We set A = 1, a = 0.001, and g = 0.001 in our
method.

The detailed comparison results are reported in Table VI, in
which we compare our method with D-KSVD [4], LRRDL [7],
SLRRDL [7], TDDL [30], LC-KSVDI [5], LC-KSVD?2 [5],
SRC [3], KSVD [1], LSC [17], LLC [35], SDL [14] and other
state-of-the-art object recognition approaches, [17], [70]-[72].
As can be seen from Table VI, our method outperforms the
second best method by more than 0.7%.
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(b)

Fig. 4. Samples of action recognition databases. (a) Samples of the UCF50
database. (b) Samples of the HMDBS1 database.

TABLE VII

THE RECOGNITION RATES (%) ON THE UCF50 DATABASE (“SUP.” AND
“UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSUPERVISED”,

RESPECTIVELY)

[ Type [ Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) 73.2 Unsup. | LSC* [17] 64.8
D-KSVD [4] 65.9 SDL [14] 64.2
LRRDL [7] 63.3 LLC* [35] 60.9

Sup. | SLRRDL [7] 64.5 Gist [74] 38.8
TDDL [30] 64.8 Others | Laptev [75], [76] 47.9
LC-KSVDI1 [5] 64.9 Action Bank [77] 57.9
LC-KSVD2 [5] 67.6 Zhang [78] 60.9
SRC [3] 62.9 Liu [79] 62.7
KSVD [1] 634

D. Action Recognition

Finally, we test our method and other related methods
for action recognition on the UCF50 database [54] and the
HMDB51 database [55].

1) UCF50: The UCF50 database is one of the largest action
recognition databases, consisting of realistic videos taken from
YouTube. It contains 50 action categories with a total of 6,617
action videos and the categories are Baseball Pitch, Basketball
Drumming, Biking, Diving, Tennis Swing, etc. Fig. 4 (a)
shows some examples from this database.

For the UCF50 database, we use the action feature repre-
sentations! [77] to evaluate our method and related methods.
As the dimension of action feature is very high, we use
PCA to reduce the feature dimension to 1,500. Then we
take the dimension-reduced feature to evaluate our method,
D-KSVD [4], LRRDL [7], SLRRDL [7], TDDL [30],
LC-KSVDI1 [5], LC-KSVD2 [5], SRC [3], KSVD [1],
LSC [17], and SDL [14]. We follow the common experiment
settings in [74]-[77] and test these methods with the five-
fold group-wise cross-validation methodology. The dictionary
size is 1,500. When we evaluate LSC* and LLC*, we use the
original LSC and LLC methods to encode the action feature,
respectively. The neighborhood number of LLC* is 30. In our
method, we set 4 = 0.001, a = 0.01, and g = 0.001.

The detailed comparison results are summarized in
Table VII. Our result is better than the competing dictio-
nary learning methods and other state-of-the-art methods. Our
method makes about 5.6% improvement over the runner-up.

1UCF50 feature:
actionbank.

http://www.cse.buffalo.edu/"jcorso/r/
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TABLE VIII

THE RECOGNITION RATES (%) ON THE HDBMS51 DATABASE (“SUP.”
AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSUPERVISED”,

RESPECTIVELY)

[ Type [Method [Accuracy [[ Type [Method [ Accuracy |
BMDDL (ours) 39.3 Unsup. | SDL [14] 36.1
D-KSVD [4] 36.4 LLC* [35] 30.6
LRRDL [7] 34.9 Kuehne [55] 20.0

Sup. |SLRRDL [7] 35.8 Action Bank [77] 26.9
TDDL [30] 36.7 Others | Kliper-Gross [80] 29.2
LC-KSVDI [5] 36.9 Solmaz [81] 29.2
LC-KSVD2 [5] 37.3 Wang [82] 33.7
SRC [3] 29.4 Zhang [83] 33.1

Unsup. | KSVD [1] 34.7 Sapienza [84] 37.2
LSC* [17] 35.5

2) HMDB51: The recently released HMDBS5]1 is another
large dataset for action recognition. It contains 6,849 clips
divided into 51 action categories and each category contains
a minimum of 101 clips. As shown in Fig. 4 (b), it consists
of not only body movements but also facial actions, such as
smile, laugh, chew, talk, and eat, which make it more difficult
to be recognized.

We also employ the dimension-reduced action feature rep-
resentations? [77] to evaluate D-KSVD [4], LRRDL [7],
SLRRDL [7], TDDL [30], LC-KSVDI1 [5], LC-KSVD2 [5],
SRC [3], KSVD [1], LSC [17], SDL [14], and our method.
The feature dimension is also 1,500. We follow the evaluation
protocol of [55], [77], and [80]-[82], i.e., use three train/test
splits, each with 70 training and 30 testing samples per class.
The neighborhood number of LLC* is 30. The dictionary size
is 1,530. We set 4 = 0.01, & = 0.01, and £ = 0.0005 in our
method. From Table VIII, we can see that our method obtains
the best recognition rate by 2.0% more than the second best.

We also conduct experiments on the six testing databases to
evaluate the performance of our method with different dictio-
nary sizes. The experimental settings are as described in the
above subsections, respectively. In the experiments, we evalu-
ate our method, D-KSVD, TDDL, LC-KSVD1, LC-KSVD2,
SRC, and KSVD. The experimental results are summarized
in Fig. 5. We can see that with different dictionary sizes, our
method consistently outperforms other six competing methods
on all the six databases. These results clearly demonstrate that
BMDDL is able to learn a more discriminative dictionary.
Fig. 5 also demonstrates that supervised methods usually
achieve better classification performance than unsupervised
methods, especially when the dictionary size is small and the
testing database is challenging. We also note that when the
dictionary size reaches a certain scale, the recognition rate will
not have a noticeable increase. However, the computing would
be expensive when the dictionary size becomes large. There-
fore, choosing an appropriate scale of dictionary is important
for both achieving a good recognition performance and saving
computation time. Note that TDDL [30] is also a bilevel model
based dictionary learning method and it replaces the Laplacian
term tr(ALAT) in problem (4) with a regularization ||A||%.
From Tables III~VIII and Fig. 5, BMDDL achieves better

2HMDB5I feature: http://www.cse.buffalo.edu/"jcorso/r/
actionbank.
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TABLE IX
THE AVERAGE TRAINING TIME (SECONDS) ON THE SIX DATABASES (“SUP.” AND “UNSUP.” ARE SHORT FOR “SUPERVISED” AND “UNSUPERVISED”,
RESPECTIVELY)

[Type [Method | Extended YaleB [15 Scene Categories|  Caltech 101 Caltech 256 UCF50 HMDB51 |
BMDDL (ours) 0.086 0.152 2.274 2.862 0.267 0.335
D-KSVD [4] 0.474 4.524 8.630 12.411 6.037 6.185
LRRDL [7] 0.761 1.445 4.471 6.418 2.504 3.854

Sup. SLRRDL [7] 0.809 1.665 5.101 7.328 2.974 3.689
TDDL [30] 1.785 2.827 6.491 8.726 5.250 5.607
LC-KSVDI [5] 0.087 0.145 1.711 2.563 0.243 0.321
LC-KSVD2 [5] 0.092 0.149 1.807 2.621 0.254 0.343

Unsup. | KSVD [1] 0.330 3.642 7.301 11.105 3.923 4.095
SDL [14] 0.168 0.896 5.392 7.241 2.556 3.152

TABLE X
THE AVERAGE TESTING TIME (SECONDS) ON THE SI1X DATABASES (“SUP.” IS SHORT FOR “SUPERVISED”)
[ Type [ Method [ Extended YaleB |15 Scene Categories | Caltech 101 | Caltech 256 | UCF50 | HMDB51 |
BMDDL (ours) 0.021 0.044 0.438 0.521 0.254 0.275
Sup. | LRRDL [7] 0.104 0.117 0.904 1.162 0.676 0.714
SLRRDL [7] 0.107 0.123 0.933 1.235 0.727 0.753
SRC [3] 0.110 0.137 7.102 10.059 3.521 3.437

performance than TDDL on the six benchmarks, which also
demonstrates the advantages of the Laplacian regularization
that encourages similar samples to have similar sparse codes.

E. Comparison of Computation Time

In the above subsections, we have compared our method
with other state-of-the-art methods in terms of the recognition
rate. In this subsection, we compare the average training
and testing time of our method with those of D-KSVD [4],
LRRDL [7], SLRRDL [7], TDDL [30], LC-KSVDI1 [5],
LC-KSVD2 [5], SRC [3], KSVD [1], and SDL [14] on
the six testing databases. It should be pointed out that the
experimental settings in this subsection are as described in the
above subsections, respectively. The training time is defined
as the time spent on training parameters of a model (it mainly
contains the time for learning a dictionary). The testing time
is the time from inputting a test sample to outputting its label.
The average training time and testing time are computed as the
training and testing time divided by the numbers of training
samples and testing samples, respectively. Note that SRC has
no training time and only has testing time, since it only
needs to represent a testing sample as a linear combination
of dictionary atoms, then uses the representation coefficients
for recognition.

Table IX reports the average training time of these methods.
LC-KSVD1, LC-KSVD2, and our method are the three fastest

approaches. These three methods are about four times faster
than the fourth fastest method on the Extended YaleB and
roughly two times faster than the fastest of other methods on
Caltech 101 and Caltech 256. They are also at least more
than ten times faster than other compared methods on the
remaining three databases. Note that all the methods cost much
more training time on Caltech 101 and Caltech 256 than other
databases. The reason is that the size of these two databases is
large and it will be much more computationally expensive for
each iteration. Note that TDDL [30] replaces the Laplacian
term tr(ALAT) in problem (4) with a regularization ||A||%,
which results in a subproblem that is easier to solve for the
subgradient with respect to D via implicit differentiation. From
Table IX, we can see that though our optimization method
solves a more complex problem, our method is still faster than
TDDL, which demonstrates that our optimization method runs
faster than the stochastic subgradient descent algorithm.

The average testing time on the six databases are summa-
rized in Table X. The testing phases of D-KSVD, LC-KSVDI,
LC-KSVD2, TDDL, KSVD and SDL are similar to ours.
Namely, these methods and our method all need to solve a
LASSO problem when they compute the sparse representation
of a testing sample. Since the testing databases are not very
large, compared with the time for solving a LASSO problem,
the time for computing k nearest neighbors in our method can
be negligible. So we only select LRRDL, SLRRDL, and SRC
as our competitors. Table X shows that our method is the
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TABLE XI

THE COMPARISON OF RECOGNITION RATES (%) BETWEEN UNILEVEL
AND BILEVEL ON FOUR DATABASES (“UNI.” AND “BI1.” ARE SHORT
FOR “UNILEVEL” AND “BILEVEL”, RESPECTIVELY. “YALEB” AND
“15 SCENE” DENOTE “EXTENDED YALEB” AND “15 SCENE
CATEGORIES”, RESPECTIVELY)

[Type [Method [YaleB] 15 Scene [ Caltech 101 [Caltech 256]

Uni. [DDL-PC [18] 95.3 92.0 71.3 58.3
Uni. [UMDDL (ours) | 95.2 93.3 72.4 58.7
Bi. |[BMDDL (ours) | 95.5 96.9 75.5 59.3

fastest. It is about two times faster than the second fastest
method, LRRDL, on the six testing databases. It is more
than two times faster than SRC on the Extended YaleB and
15 Scene Categories database and at least ten times faster than
SRC on the remaining four databases.

F. Comparison Between Unilevel and Bilevel

To verify the advantages of bilevel model based method,
we compare BMDDL with DDL-PC [18], and our unilevel
model UMDDL, whose objective function is a combination
of those of BMDDL. As previously mentioned, DDL-PC also
incorporates a Laplacian term with a linear classifier to jointly
learn a discriminative dictionary and a classifier. However,
DDL-PC is unilevel. Its training model can be found in Table II
in Section II-B, and its testing model is problem (22) after
discarding the Laplacian term, i.e., setting f = 0. The training
model of UMDDL is the same as DDL-PC, while the testing
model is problem (22). DDL-PC uses the feature-sign search
algorithm [12] to optimize its model, while UMDDL employs
ADM. We summarize their experimental results on Extended
YaleB, 15 Scene Categories, Caltech 101, and Caltech 256 in
Table XI. The experimental settings in this subsection are as
described in the above subsections, respectively. We can see
that BMDDL outperforms both DDL-PC and UMDDL, since
as we mentioned in Section IV, our bilevel model, BMDDL,
directly minimizes the classification loss and its models for
computing sparse codes in the training and the testing phases
are consistent.

VI. CONCLUSIONS AND FUTURE WORK

We propose a novel bilevel model based discriminative
dictionary learning method for recognition tasks. Unlike other
supervised dictionary learning methods that optimize the com-
bination of the reconstruction error, the sparsity of represen-
tation, and other discriminative terms, our method directly
minimizes the classification error at the upper level. The lower
level optimizes the reconstruction error and group sparsity of
representation. The lower level is subordinate to the upper
one, rather than in parallel. In this way, the learnt dictionary
may be optimal for recognition and it preserves the structure
information of data at the same time. Moreover, the problems
for computing the sparse codes in the training and the testing
phases can be the same, making a consistent learning model.
Finally, we propose a novel method to solve our bilevel opti-
mization problem. We utilize the KKT conditions and ADM
to reformulate our model and solve the equivalent model,
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respectively. Extensive experimental results demonstrate that
our method obtains better classification results than other dic-
tionary learning methods and some task-specific recognition
methods, even with a simple linear classifier.

In the future, in the same spirit we will use more sophisti-
cated classification losses, instead of the ridge regression clas-
sification error, at the upper level to learn more discriminative
dictionaries for recognition tasks. We will also explore the
convergence issue of ADM when applying it to nonconvex
optimization problems that have nonlinear linear constraints
and K > 3 blocks of variables.
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