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The Shape Interaction Matrix-Based Affine
Invariant Mismatch Removal for
Partial-Duplicate Image Search

Yang Lin, Zhouchen Lin, Senior Member, IEEE, and Hongbin Zha, Member, IEEE

Abstract— Mismatch removal is a key step in many computer
vision problems. In this paper, we handle the mismatch removal
problem by adopting shape interaction matrix (SIM). Given the
homogeneous coordinates of the two corresponding point sets,
we first compute the SIMs of the two point sets. Then, we detect
the mismatches by picking out the most different entries between
the two SIMs. Even under strong affine transformations, outliers,
noises, and burstiness, our method can still work well. Actually,
this paper is the first non-iterative mismatch removal method
that achieves affine invariance. Extensive results on synthetic
2D points matching data sets and real image matching data sets
verify the effectiveness, efficiency, and robustness of our method
in removing mismatches. Moreover, when applied to partial-
duplicate image search, our method reaches higher retrieval
precisions with shorter time cost compared with the state-of-
the-art geometric verification methods.

Index Terms— Image matching, mismatch removal, shape
interaction matrix, affine invariance, image retrieval.

I. INTRODUCTION

REMOVING the mismatches from two given correspond-
ing point sets is a fundamental problem in computer

vision. For many applications in this field, such as structure-
from-motion recovery [1], [2], registration [3], [4], stereo
matching [5], object recognition [6], tracking [7], and partial-
duplicate image search [8]–[13], the first step is to compute
the point correspondences of two point sets, which can also be
regarded as a matching problem. The more accurate matching
result we obtain, the better performance of the subsequent
computer vision task we will achieve.

The point sets could be extracted from two dimensional
images (e.g., SIFT [14], SURF [15], ASIFT [16]), or three
dimensional depth surfaces (e.g., MeshDoG [17]). After
detecting the feature points, the next step is to determine
the putative matches between the two point sets. There are
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two constraints that putative matches should satisfy. One
is the descriptor consistency, which enforces that only the
features having similar descriptors are matched; the other is
called the geometric invariance, which assumes that the true
matches share a unified spatial transformation. The above
two constraints are usually combined to filter the mismatches.
More specifically, by utilizing the descriptor consistency,
we can acquire enough putative matches first. However, the
descriptor consistency can only be treated as a sufficient
constraint, because a point could be matched with more than
one points in different locations that share similar descriptors,
which leads to 1-vs-N mismatches. To remove the ambiguities
of the descriptors, the second step is to filter mismatches
from the putative matches which do not satisfy the geometric
invariance, and keep the remaining true matches for further
processing. There are mainly three difficulties in mismatch
removal, including the deviation of the feature location caused
by the detector, a large percentage of unmatched features intro-
duced by partial occlusions or the limitation of the detectors,
and unknown type of geometric relation between two images.
A good mismatch removal approach should overcome noises
and outliers under different geometric transformations.

A typical application of mismatch removal is partial-
duplicate image search based on Bag-of-Features (a.k.a.,
BoF) [19], [20]. The idea is that although using BoF to index
the SIFT descriptors can reduce the matching cost dramati-
cally, it will certainly introduce repetitive visual regions,
i.e., the “burstiness” phenomenon observed in [18]. The
“burstiness” means some visual features appear many times
in both two matched images, which will cause 1-vs-N
mismatches. Such 1-vs-N mismatches happen prevalently in
man-made and natural scenes (see Figure 1). For many large
scale image search systems, the total number of the matches
is commonly used as a similarity for re-ranking. If an irrele-
vant image shares many 1-vs-N mismatches with the query
image, it will be unsatisfactorily ranked at the top of the
retrieval result. Hence, mismatch removal can be utilized to
filter the 1-vs-N mismatches from the putative matches and
re-rank the coarse retrieval result by the number of remaining
true matches. The above process is also called the geometric
verification in the image search area.

There are mainly two categories of mismatch removal
methods. One is iterative fitting methods, and the other is
non-iterative filtering methods. The iterative fitting methods
are able to estimate complicated transformations, but have
to spend much time on iterative fitting. Different from the

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



562 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2017

Fig. 1. Examples of the burstiness [18], i.e., 1-vs-N visual word mismatches.
Lines of the same color represent 1-vs-N mismatches that share the same
visual word (best viewed in color). The images on the left column are the
query images, and the compared images are on the right column. One can see
that 1-vs-N mismatches exist in both (a) relevant and (b) irrelevant images,
and in both (a) man-made and (b) natural scenes.

iterative fitting methods, the non-iterative filtering methods try
to directly and efficiently filter the mismatches without esti-
mating a unified geometric transformation model. However,
such methods may fail when affine transformations exist.

Motivated by the above state-of-the-arts, our goal in this
paper is to make a trade-off between geometric invariance
and time cost. More specifically, we try to find a global
spatial representation of a point set with affine transformation
invariance that can be compared easily without expensive
iterations. In the following we review some previous works
about affine invariant spatial representation.

Many works have been done to define an affine invariant
expression of a set of points. Werman and Weinshall [21]
give a distance up to 2D affine transformations between two
point sets. Zhang et al. [22] propose a genetic algorithm
based method under general affine transformations by using
partial Hausdorff distance. Begelfor and Werman [23] propose
a Riemannian geometric framework to compute mean and
distributions of point sets so that different configurations up
to affine transformations are considered to be the same. The
above mentioned methods give us a way to compute an affine
invariant global similarity between two point sets, but none of
them are able to distinguish the mismatches. Based on complex
numbers, Ha and Moura [24] and Ho et al. [25] propose
two affine matching algorithms that can handle mismatches,
but they are only applicable to 2D point sets. Recently,
Guo and Cao [26] propose a method to find more true matches
which is robust to affine changes. They first select some
features by Bi-matching as seed points, and organize them
by adopting the Delaunay triangulation algorithm. Then the
true matches are explored by utilizing a triangle-constraint.
Here the triangle-constraint means that two matched points
are true match if only they share the same linear combination
parameters when adopting the vertexes of their neighbor
triangle as the linear bases. Motivated by their idea, instead
of utilizing only the three vertexes as bases, we try to find a
more global way to represent the feature by considering the
whole point set under any affine transformations.

A. Our Contributions and Advantages

In this paper, we address the mismatch removal problem
by using the shape interaction matrix (SIM), which was
first introduced by Costeira and Kanade [27] for multi-body

segmentations. The SIM has been widely used for sub-
space segmentation to characterize the geometric relationship
between data points. Given putative matches, we first compute
SIMs of the two point sets to characterize the affine invariance
of each point set. Then we compare the obtained two SIMs.
The mismatches can be easily determined by picking out the
most inconsistent entries between the two SIMs. We illustrate
our work-flow in Figure 2. The main contributions of our
method can be summarized as follows:

• We discover that the shape interaction matrix is affine
invariant.

• We apply the shape interaction matrix to mismatch
removal to achieve affine invariance. To the best of our
knowledge, we are the first to achieve affine invariance
without iterations for the mismatch removal problem.

• We design an effective and simple algorithm to detect
the mismatches robustly when outliers and burstiness
phenomenon exist.

Compared with the state-of-the-arts, our method has three
advantages:

• Our method is simple. We only utilize the location of
features as input to filter the mismatches, while most of
the traditional geometric verification methods need extra
spatial prior (e.g., scale and orientation of SIFT features).

• Our algorithm avoids expensive iterative fitting. The SIMs
of the two point sets can be independently computed
by a closed-form solution. The following matching step
is also quite simple and effective, which is suitable for
partial-duplicate image search as a geometric verification
step. On the contrary, most of the state-of-the-arts need
iterative matching steps, which are time-consuming.

• Our model is robust to affine changes. The SIM model we
adopt provides a theoretical guarantee to exactly obtain
the same representations from two corresponding point
sets under any affine transformations (e.g., rotation, scale,
and skew changes).

II. RELATED WORK

Before introducing our model, we first review the recent
development of mismatch removal. We classify the mismatch
removal methods into two categories. One is iterative fitting
methods, the other is non-iterative filtering methods.

A. Iterative Fitting Methods

To handle more complex transformations, such as affine,
perspective, and non-rigid transformations, the iterative fitting
methods alternately estimating the geometric transformation
model and the true matches by several iterations. The putative
matches can be first utilized to compute a hypothetical geo-
metric transformation model. Once the model is acquired, the
fitting error of each correspondence is computed to determine
whether it belongs to true matches or mismatches. Some
iterative fitting methods are introduced as follows.

RANSAC As a classical method, RANSAC [28] and its
variants (e.g., MLESAC) [29]) tried to iteratively estimate
the perspective transformations relationship between the true
matches. Instead of maximizing the number of true matches



LIN et al.: SIM-BASED AFFINE INVARIANT MISMATCH REMOVAL 563

Fig. 2. The work-flow of our mismatch removal method. (a) Putative local feature matches between two images with affine changes. (b) Computed shape
interaction matrices (SIM) of the two feature point sets. (c) Corruptions between the two SIM. (d) Detected mismatches. Compared with the other feature
pairs, the locations of the feature pair No. 5 in two images are inconsistent with each other, which do not satisfy the geometric invariance constraint. With
our method, the inconsistently matched feature pair No.5 is correctly detected as a mismatch, represented by the red dashed line.

adopted by RANSAC, MLESAC estimated the inliers by
maximizing a likelihood function, which is more general.
However, the above two methods are time-consuming,
non-deterministic, and sensitive to the percentage of outliers.

ICF Li and Hu [30] introduced support vector machine to
learn a pair of correspondence functions that mutually map
one point set to the other, then rejected the mismatches by
checking whether they are consistent with the two estimated
correspondence functions. Since they use a radial basis kernel,
it is applicable to non-rigid deformations.

VFC Zhao et al. [31] and Ma et al. [32] investigated a vector
field learning method. It learns an interpolated vector motion
field that fits the putative matches based on the Tiknonov
regularization in a vector-valued reproducing kernel Hilbert
space, and simultaneously estimate the true matches by the
EM algorithm. They also provided a linear time complexity
version called FastVFC and a sparse approximation one named
SparseVFC, which speeds up significantly without large
performance degradation.

Compared with RANSAC and MLESAC, ICF and VFC can
handle affine, perspective, and even non-rigid deformations
when large percentage of outliers exist. However, they are
still not very efficient when applied to partial-duplicate image
search as a geometric verification step. In particular, ICF esti-
mates two non-parametric model correspondence functions,
and VFC learns a vector field mapping, whose time cost is
unacceptable when applied to partial-duplicate image search.

B. Non-Iterative Filtering Methods

As a key step to achieving high precision, in the partial-
duplicate image search area, a number of non-iterative filter-
ing methods are proposed to efficiently verify the geometric
invariance after BoF matching. Such methods are based on the
following similarity transformation model:[

x2
y2

]
= s ·

[
cos θ − sin θ
sin θ cos θ

]
·
[

x1
y1

]
+

[
tx

ty

]
, (1)

where (x1, y1) and (x2, y2) are the locations of matched
feature points, s is a scaling parameter, θ is a rotation
parameter, and (tx , ty) is the translation vector.

WGC Jegou et al. [8] proposed a simple way to estimate
the two parameters:

s = ŝ2/ŝ1, θ = θ̂2 − θ̂1, (2)

where ŝ1, ŝ2, θ̂1, and θ̂2 are the scales and dominant
orientations of two matched SIFT features. The idea of WGC
is that most of the true matches share unified similarity
transformation, so the scale parameter s and the rotation
parameter θ of the true matches should be close to each other.
In detail, the peak value of the histograms of scale parameter
and rotation parameter are used to measure the similarity
between two images, and the matches within this range are
true matches.

EWGC Instead of using s and θ , Zhao et al. [9] utilized
the l2 norm of the translation vector (tx , ty) as the statistic to
compute the peak value of the histograms. Given the locations,
scales, and dominant orientations, the translation vector (tx , ty)
can be computed by (1) and (2).

SGC Unlike WGC and EWGC, Wang et al. [12] proposed to
group the matches by rotation first. Then for each group, they
computed the peak values in the histogram of the translation
vectors (tx , ty) as the similarity to filter mismatches.

With scales and dominant orientations in SIFT, the above
three approaches try to estimate a similarity transformation
model from the aspect of isolated feature patches, hence they
cannot make use of the geometric prior beyond the isolated
features. Another set of methods, instead, focus on how to
build a relatively strong similarity transformation model from
the aspect of the global spatial relationship. Such global
methods are described as follows.

GC Zhou et al. [10], [13] designed a similarity invari-
ant geometric coding map to encode the spatial relationship
between features. The coding map consists of geometric square
coding and fan coding, which can achieve scale and rotation
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invariance. The mismatches can be identified and removed by
comparing the inconsistency between two coding maps.

LRGGC Inspired by GC [10], [13], Yang et al. [33] utilized
the squared distance matrix as a coding map, which is robust
to rotation and translation changes. Based on robust principal
component analysis [34], the coding map can be decomposed
into two parts. One is a low rank matrix representing the true
matches, and the other is a sparse matrix representing the
mismatches. The scale invariance can be naturally achieved
based on the property of low-rankness.

L1GGC Lin et al. [35] proposed an accelerated version of
LRGGC. In order to achieve scale invariance, after computing
the two squared distance matrices, they solved a one-variable
�1-norm error minimization problem by adopting the golden
section search method. L1GGC is simpler than LRGGC [33].

PGM Compared with WGC, EWGC, and SGC, which
focus on individual correspondences, Li et al. [36] considered
the pairwise geometric relations between correspondences.
By proposing a strategy to combine the geometric information
from both the individual matches and pairs of correspon-
dences, they further improved the verification accuracy without
high computational cost.

Although the above four methods are efficient on filtering
mismatches under similarity transformations when applied to
partial-duplicate image search, they may fail when affine or
perspective transformations exist, which is more common in
retrieving photos taken for the same place at different views.

To conclude, RANSAC, MLESAC, ICF, and VFC are time
consuming for partial-duplicate image search. WGC, EWGC,
SGC, GC, and PGM need extra prior about the scales and
dominant orientations of SIFT features, which limit their
applications. And LRGGC and L1GGC cannot handle more
complex geometric changes very well.

III. OUR APPROACH

In the following subsections, we will introduce our SIM
based mismatch removal method in four parts: the first part
is about how to represent the features by SIM; the second
part focuses on the proof about the affine invariance of our
method; the third part discusses the geometric interpretation
of SIM; and the last part introduces our mismatch detection
approach.

A. Feature Spatial Representation by SIM

Note that our method can handle any dimensional point
matching problems. Without loss of generality, we take the
two-dimensional image features as an example. Given two
matched feature point sets extracted from two images, let
X ∈ R

3×n be one of the homogeneous coordinate of the
two point sets (∀i, [X]3,i ≡ 1). The Shape Interaction Matrix
(SIM) [27] is defined as follows:

Z = X†X, (3)

where (·)† denotes the Moore-Penrose pseudo-inverse [37].
When X has linearly independent rows, Z can be computed as:

Z = XT (XXT )
−1

X. (4)

When the number of points is relatively small, Z can be
efficiently computed by using economic-size QR factorization:

XT = QR, Z = QQT , (5)

where Q ∈ R
n×3 is a matrix with orthonormal columns, and

R ∈ R
3×3 is an upper triangular matrix.

Mathematically, the SIM is the orthogonal projection matrix
that projects n dimensional vectors to the subspace spanned
by the rows of X (i.e., ran(XT )).

B. Affine Transformation Invariance of SIM

Given the closed-form solution in (3), we can derive a
theorem that the SIM remains invariant under affine transfor-
mations. The theorem and its proof are described as follows:

Theorem 1: Let X1, X2 ∈ R
3×n be two point sets with

homogeneous coordinates (∀i, [X]3,i ≡ 1). Assuming that
there exists an affine transformation T ∈ R

3×3 such that

X2 = TX1, (6)

where T is of full rank, then the shape interaction matrix of
X1 and X2 satisfies

Z1 = Z2. (7)
Proof: For self completeness, we first introduce some

properties of pseudo inverse [38].
Let C ∈ R

m×t and D ∈ R
t×n be two matrices of rank t and

B = CD. We have

B† = D†C†. (8)

Furthermore,

C†C = I, DD† = I. (9)

For the point sets X1, there always exists a decomposition
X1 = MN, where M ∈ R

3×r and N ∈ R
r×n is of rank r .

Then

Z1 = X1
†X1

= (MN)†MN

= N†M†MN

= N†N, (10)

where the third equality is derived from (8) and the last
equality is derived from (9).

As T is of full rank, TM remains the same rank as M.
Following the same deduction of (10), we have

Z2 = X2
†X2

= (TX1)
†TX1

= (TMN)†TMN

= N†(TM)†(TM)N

= N†N. (11)

Thus (7) holds. �
Denote the two subspaces S1 = ran(XT

1 ) and S2 =
ran(XT

2 ). Theorem 1 indicates that if all the correspondences
are true matches under an affine transformation, the orthogonal
projection matrices onto the subspace S1 and S2 (i.e., the SIMs
Z1 and Z2) remain the same. Since the orthogonal projection
matrix for a subspace is unique [39], the subspace S1 and S2
are also the same in this case.
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C. Geometric Interpretation of SIM

The SIM has been widely used for subspace segmentation,
especially on solving the low rank representation problem [40]:

min
Z

‖Z‖∗, s.t. X = XZ, (12)

where ‖ · ‖∗ denotes the nuclear norm (i.e., the sum of the
singular values of a matrix, which is also the convex surrogate
of the rank function), X ∈ R

m×n is the data matrix, and Z ∈
R

n×n is the coefficient matrix. Liu et al. [41] prove that the
unique solution to (12) is exactly the SIM:

Z = X†X. (13)

Moreover, according to the constraint of (12) and the fact
that ∀i, [X]3,i ≡ 1, the sum of each column of Z satisfies:∑

i

[Z]i, j = 1. (14)

where [·]i, j means the element in the i th row and the
j th column.

According to the above analysis, each column of the SIM
can be seen as the linear combination coefficients of the corre-
sponding point when taking account of all the points in this set
as linear bases. Unlike the SIM, Guo and Cao [26], [42] only
involve the three vertexes of the neighboring triangle around
the point as the linear bases to compute the linear combination
coefficients, whose triangles are determined by Delaunay
triangulation on some sampled seed points. By comparing
the above two methods, we find out that both of the linear
combination coefficients in the two methods are actually the
barycentric coordinates of the data points obtained from
the Cartesian coordinates. Specifically, [26], [42] computes
the coefficients with respect to a triangle, which is also
known as the area coordinates, while the coefficients of SIM
can be regarded as the normalized generalized barycentric
coordinates, which are determined with respect to a polytope.

D. Mismatch Detection Approach Based on SIM

According to the result in Subsection III-B, when all
the matches are true, the SIMs and the two corresponding
subspaces S1 and S2 remain the same. If there exist mis-
matches, they will be different from each other. Based on the
one-to-one correspondence between the orthogonal projection
matrix (i.e., the SIM) and their subspace, Golub and Loan [39]
and Werman and Weinshall [21] define the distance between
the two subspaces:

dist (S1, S2) = ‖Z1 − Z2‖F , (15)

where Z1 and Z2 are the orthogonal projection matrices
(i.e., the SIMs) onto to S1 and S2, ‖ · ‖F is the Frobenius
norm.

Based on the analysis in Subsection III-C, we further infer
that if the two given corresponding points are true match, their
barycentric coordinates (i.e., the corresponding column of Z),
should be close to each other, whose difference gives small
contribution to dist (S1, S2). On the contrary, the barycentric
coordinates of two mismatched points cannot be very similar,
whose difference gives major contribution to dist (S1, S2).

Fig. 3. Mismatch detection. The big dot indicates a “turning point” of the
curve, which is the closest one to the origin. We take the distance value of
this “turning point” (i.e., {dsort }it ) as a threshold to pick out the mismatches
whose distance value is larger than it.

Therefore, we may detect the mismatches by finding the
difference between the two barycentric coordinates of the
matched points that account for the majority of dist (S1, S2).

We adopt the Euclidean distance between the two barycen-
tric coordinates as a similarity measure to detect mismatches:

di = ‖[Z1]:,i − [Z2]:,i‖2, (16)

where di is the Euclidean distance between the i th correspond-
ing point pair, and [·]:,i means the i th column.

After computing Euclidean distances of all the matching
pairs, we sort it in a descending order:

dsort = sor t (d), (17)

where d = [d1 d2 · · · dn]. Then the mismatches can be easily
detected. As shown in Figure 3, there always exist a turning
point in dsort whose distance value can be set as a dynamic
threshold to pick out the mismatches whose corresponding
distances in (16) are larger than this threshold. Since the ideal
turning point is usually very close to the origin, based on this
observation, we determine the index of the turning point as
follows:

it = arg min
i

√(
i − 1

n

)2

+
( {dsort}i − {dsort }min

{dsort}max − {dsort }min

)2

,

(18)

where i, j ∈ {1, 2, 3, · · · , n} are the indices of the sorted
distances, n is the total number of the matches, {dsort }min =
mini {dsort}i , {dsort}max = maxi {dsort}i , and it denotes the
index of the turning point we find. The meaning of (18) is to
find the turning point which is the closest to the origin of the
coordinate system in Figure 3 under Euclidean distance. More
specifically,

( i−1
n

)
means the normalized distance between the

putative turning point and the origin on the x-axis in Figure 3,
and

( {dsort }i −{dsort }min{dsort }max −{dsort }min

)
means the normalized distance on

the y-axis in Figure 3.
1) An Extra Step to Deal With Outliers: we design an

extra step to refine the sorted Euclidean distance to weaken
the effect of outliers. When the percentage of outliers or the
level of outliers becomes large, the barycentric coordinates
of the true matches will be disturbed by the large number
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Algorithm 1 Process of Computing the Refined Sorted
Euclidean Distance Between the Two Barycentric Coordinates

of mismatches. So that their corresponding Euclidean distances
will be as large as the mismatches’. In this case, the curve of
the sorted distance value dsort will be flat, which is hard to
determine the turning point. Obviously, we cannot distinguish
the true matches from the false matches in such cases, unless
we weaken the effect of mismatches on the above defined
Euclidean distances. Based on this idea, our solution is to cut
off the component of the mismatches from the above defined
Euclidean distances. More specifically, the Euclidean distances
could be decomposed by two components. One is di T from
the true matches, and the other is di M from the mismatches:

di =
√

‖[Z1]JT ,i − [Z2]JT ,i‖2
2 + ‖[Z1]JM ,i − [Z2]JM ,i‖2

2

=
√

di
2
T + di

2
M , (19)

where JT is the set of indices from the true matches, and JM is
the set of indices from the mismatches. Since the true JT and
JM are unknown, for the i th matches, its JM are determined
by those whose original Euclidean distances are larger than
the current one, which is more likely to be the mismatches:

JM = { j |d j >= di }, (20)

and its JT are determined as follows:

JT = { j |d j < di }. (21)

Following the above idea, to weaken the effect of outliers, we
recompute a {d′

sort }i by only considering {dsort }i T , which is
the true matches’ components of {dsort}i :

{d′
sort}i = {dsort}i T

=
√ ∑

t∈{ j |{dsort } j <{dsort }i }

([Z1]t,i − [Z2]t,i
)2

, (22)

where [·]t,i means the element in the t th row and the i th

column. We further design an algorithm to compute {d′
sort}

with a complexity of O(n), as described in Algorithm 1.
2) An Optional Step to Deal With Burstiness: when the

strong burstiness phenomenon exists, we further design an
optional step to completely remove 1-vs-N mismatches.
Assume that there exist m corresponding point pairs that are

1-vs-N mismatches, and the true matches are unique among
these mismatches. Since the barycentric coordinates of the true
match should be close to each other, the index of the true
match can be determined by finding the minimum distances:

ir = arg min
i

{dsort}i , (23)

where ir is the index of the true match among the 1-vs-N
matches. And all the other matches will be mismatches.

3) An Alternative Way for Real Time Image Search Tasks:
we also design an even simpler and faster technique called
cosine similarity based technique, which is more suitable for
real time image search without large performance drop. The
cosine similarity is defined as:

si = −[Z1]:,i [Z2]:,i
‖[Z1]:,i‖2‖[Z2]:,i‖2

. (24)

Note that si ∈ [−1, 1]. If si is close to 1, the barycentric
coordinates of the two matched points will be similar to each
other, which indicates a true match between these two points.
We simply choose a fixed threshold τ (the empirical value of
τ is around 0.6), and pick out the mismatches whose si < τ .

IV. EXPERIMENTS

In this section, we compare our method with thirteen state-
of-the-arts which also focus on removing mismatches from
putative matches, including RANSAC, MLESAC, ICF, VFC,
FastVFC, SparseVFC, WGC, EWGC, SGC, GC, LRGGC,
L1GGC, and PGM. We first use both synthetic and real
datasets to verify the validity and robustness of all the methods
in removing mismatches, then we apply all the methods to
image search to see how they improve the retrieval perfor-
mance. All the experiments are tested on a server with an Intel
Xeon E7-4820 CPU at 2.00GHz and with 64GB of memory,
running Windows Server 2008 and Matlab version R2012a.
For all the state-of-the-arts, we implement them based on the
publicly available codes or algorithms. All the parameters are
optimized and fixed during the whole experiments.

Precision and recall are commonly used measurement to
evaluate the performance of all the methods on detecting
mismatches. Precision is defined as the number of true pos-
itive matches divided by the number of all positive matches
detected, and recall is defined as the number of true positive
matches divided by the total number of true matches. To com-
bine precision and recall with an equal weight, we adopt
F-score to evaluate the performance [43] defined as the
harmonic mean of precision and recall:

F = 2 · Precision · Recall

Precision + Recall
. (25)

A. Mismatch Removal on Synthetic Dataset

In this subsection, we compared our method with the state-
of-the-arts on the synthetic data in four aspects: robustness
to noises, robustness to outliers, robustness to burstiness, and
affine invariance. Note that we cannot compare with WGC,
EWGC, SGC, GC, and PGM on synthetic data, because they
need scale and orientation of SIFT features as the input.
We will compare with them later on real image datasets.
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We totally generate 500 samples for testing. For each
example, we first randomly generate a point set including
100 points within a range of 800 × 600 pixels. Second, we
make a duplication of the first point set to simulate the true
matches. Next, for different examples, we add Gaussian noises
with different levels, outliers with different percentages, and
multiple mappings with different burstiness degrees on the
second point set. Then we transform the second point set with
different types of affine transformations.

Now we analyze the performance on synthetic data.
1) Comparison at Different Levels of Noises: to test the

robustness to noises, we add different levels of noise to the
data. The standard deviation of Gaussian noises are set to be
1%, 3%, 5%, 7%, and 9% of the image size, respectively.
As shown in Figure 5(a), our method always achieves the
highest F-score among all the state-of-the-arts when the level
of Gaussian noises increases. One can see that only our method
can achieve an average F-score higher than 0.65 when the level
of Gaussian noises is 9% of image size.

2) Comparison at Different Percentages of Outliers: to test
the robustness to the number of mismatches, we set the
percentage of outliers to be 5%, 25%, 45%, 65%, and 85%,
respectively. As shown in Figure 5(b), our method achieves the
highest F-score among all the methods at different percentages
of mismatches. The performances of L1GGC and LRGGC
drop quickly with the percentage of outliers increases. Please
notice that when the percentage of outliers increases to 85%,
only our method can keep an average F-score larger than 0.5.

3) Comparison at Different Burstiness Degrees: as we men-
tioned in the Introduction, the widely existing “burstiness”
phenomenon, namely, the 1-vs-N mismatches, will greatly
reduce the retrieval precision when applied to large scale
image search. Therefore, we need to test the robustness
of all the methods in filtering this kind of specific 1-vs-N
mismatches. To this end, we must define a variable to define
the difficulty of the tasks on 1-vs-N mismatches removal.
For two extreme examples, if all the matches are 1-vs-1
matches (Figure 4(a)), it’s relatively simple to solve, because
no burstiness phenomenon occurs. On the other hand, if all
the features in one set are fully matched with the other set
(Figure 4(c)), the removal task becomes extremely difficult.
Following the above examples, we define a novel variable
called “burstiness degree”, which measures the difficulty of
removing 1-vs-N mismatches by the percentage of 1-vs-N
mismatches that occur:

η = p − q

n1n2 − min(n1, n2)
∈ [0, 1], (26)

where p is the total number of putative matches, q is the total
number of 1-vs-1 true matches in the putative matches, n1 and
n2 are the number of points in the two sets. The numerator
of (26) means the total number of 1-vs-N mismatches in
the current putative matches, and the denominator of (26)
means the maximum number of 1-vs-N mismatches that
the current two point sets could possibly have, and finally
η means the percentage of 1-vs-N mismatches that occur.
An illustration of computing burstiness degree can be found in
Figure 4.

Fig. 4. An illustration of the burstiness degree of the correspondence between
the two point sets. The burstiness degree of (a)-(c) is: ηa = 3−3

12−3 = 0,

ηb = 5−2
12−3 ≈ 0.33 (here the total number of possible 1-vs-1 true matches

is 2, one from the matches No. 1-3, the other from the matches No. 4-5), and
ηc = 12−3

12−3 = 1, respectively. With the burstiness degree increases from 0 to 1,
the task of filtering the 1-vs-N mismatches changes from the easiest case to
the most difficult one, which indicates that the burstiness degree measures the
difficulty of 1-vs-N mismatches removal task.

To test the robustness to burstiness, we add different num-
bers of the 1-vs-N mismatches to the original 1-vs-1 true
matches, the corresponding burstiness degrees are 1.68×10−4,
3.37 × 10−4, 5.05 × 10−4, 6.73 × 10−4, and 8.42 × 10−4,
respectively. As shown in Figure 5(c), our method achieves
the highest F-score among most of the state-of-the-arts when
the burstiness degree increases.

Besides, with increasing burstiness degree, the average
F-scores of ICF and LRGGC go down and up. One possible
reason is that, most of the methods are designed for the
spatial consistency satisfied mismatch removal task, but not
for the particular 1-vs-N mismatch removal. Especially for
these two methods, when 1-vs-N mismatches exist, the set
of feasible true correspondences under their own geometric
prior is enlarged. In this case, the probability of finding the
correspondence that is close to the ground truth is lower than
that of the case when all the putative matches are 1-vs-1
matches. As a result, these two methods become unstable, and
their average F-scores are likely to oscillate.

4) Comparison Under Different Affine Transformations:
to make the test more challenging, we use three types of
affine transformations to test the affine invariance of all the
methods, including rotations, scale changes, and skew changes,
respectively. The settings and results are specified as follows.

The rotation angle θ is set to be π
18 , π

6 , 5π
18 , 7π

18 , and π
2 ,

respectively. As shown in Figure 5(d), the F-score we obtained
is still higher than other methods under different degrees of
rotation, while VFC achieves lower F-scores when the rotation
angle increases to π

2 .
The scale factor on x-axis and y-axis (scx and scy) are

simultaneously set to be 0.56, 1.67, 2.78, 3.89, and 5.00,
respectively. In Figure 5(e), the F-score of VFC and our
method is the highest among all the methods under differ-
ent degrees of scale change. On the other hand, MLESAC,
RANSAC, and ICF are obviously not robust to scale changes.

The skew transformation matrix is defined as follows:

Tskew =
⎡
⎣ 1 skx 0

sky 1 0
0 0 1

⎤
⎦. (27)

where skx and sk y are simultaneously set to be 0.56, 1.67,
2.78, 3.89, and 5.00, respectively. Please notice that the
robustness to skew changes play a key role in achieving
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Fig. 5. The average F-score statistics of all the methods on synthetic dataset under different (a) standard deviations of Gaussian noises, (b) percentage of
outliers, (c) burstiness degrees, (d) degrees of rotations, (e) degrees of scale changes, and (f) degrees of skew changes.

TABLE I

AVERAGE F-SCORE AND AVERAGE TIME COST COMPARISON OF ALL

THE METHODS ON THE SYNTHETIC DATASET

affine invariance. In Figure 5(f), our method is very robust
and achieves the highest F-score under skew changes, while
MLESAC, RANSAC, and ICF are sensitive to skew changes.

In summary, when the degree of affine changes increases,
our method is very robust and achieves higher F-scores than
other methods do, while all the state-of-the-arts are sensitive
to some types of affine transformations.

5) Comparison on Time Efficiency: Table I is the compar-
ison on the average time cost and the average F-score on
synthetic dataset under all kinds of distortions. As shown in the
table, our method achieves the best performance on detecting
true matches with the lowest time cost.

Besides, in Table I, we give a comparison between our
original Euclidean based method called “Ours-Ori” and its
robust version named “Ours” which we used in the above
six comparisons. Compared with “Ours-Ori”, the average

F-score of “Ours” is improved by 17.72% with approximately
the same time cost, which can be attributed to its robustness
in dealing with large percentage of outliers.

B. Mismatch Removal on Real Image Dataset

In this subsection, we test our method on a standard
dataset named Mikolajczyk and Schmid [44] to evaluate the
robustness and invariance of our method to several types of
distortions. The distortions in this dataset include near-affine
viewpoint changes, similarity transformations, blurs, lighting
conditions, and JPEG compressions. There are totally eight
groups in the dataset. Each group includes five image pairs
with increasing levels of different types of distortions. The
dataset also provides the ground truth perspective transforma-
tion matrix between each image pair to help determining the
true feature matches.

We use ASIFT [16] as the feature detector and descriptor.
It performs well when detecting features under large affine
transformation distortions, while most of the state-of-the-arts
fail (e.g., SIFT [14], Harris-Affine [45], Hessian-Affine [45],
and MSER [46]). We use the executable code of ASIFT on
Yu’s website [47] to detect the features and obtain putative
matches. All the input images are resized to 800×600 pixels to
limit the time cost. We must mention that, by adopting ASIFT
uniformly, all the state-of-the-arts and our method use exactly
the same location and descriptor of each detected feature as
input.

After detecting the features, the ground truth transformation
matrix is used to compute the true matches. A match is
regarded as true if only the reprojection error is withi 5 pixels.
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TABLE II

AVERAGE F-SCORE AND TIME COST COMPARISON OF ALL THE METHODS
ON THE MIKOLAJCZYK DATASET

The average percentage of the true matches is 85.86%.
And the average number of matches is about 2600.

We compare our method with thirteen state-of-the-arts.
Table II is the average F-score and average time cost com-
parison of all the methods. According to Table II, WGC and
EWGC are the two fastest methods, but their performance is
much inferior. The average F-scores of FastVFC, VFC, GC,
MLESAC, L1GGC, LRGGC, and RANSAC are acceptable,
but they are not very efficient. Our method is a good trade-off
between time cost and performance. It is highly competitive
with SparseVFC on speed, and obtains the highest F-score
among all the methods.

Here we also provide our original Euclidean based method
called “Ours-Ori” in Table II. Compared with “Ours-Ori”, the
average F-score of “Ours” is improved by 0.92% with approx-
imately the same time cost, possibly due to its robustness to
outliers.

C. Mismatch Removal for Partial Duplicated Image Search

In this subsection, to test the effectiveness and efficiency
of our mismatch removal approach, we apply it to partial-
duplicate image search as a geometric verification step.
In detail, we utilize BoF [20] to obtain the coarse retrieval
results, and the putative visual word matches are also available.
After applying all the methods to remove the mismatches,
the remaining true matches can help to refine the retrieval
results.

We adopt three popular benchmark datasets for evaluation,
including the GCDup dataset [11], the Holiday dataset [8], and
the Oxford5k dataset [6]. The GCDup dataset has 1104 partial-
duplicate images in 33 groups, which are collected from
the Internet. Most of the images are man-made compos-
ite images, whose resolution is relatively low. The Holiday
dataset are mainly personal photos taken on a large number
of scenes (natural, man-made, water, fire effects, etc.). The
images are in high resolution. It has 1491 near-duplicated
images in 500 groups. The Oxford5k dataset consists of
5062 high resolution photos collected from Flickr by searching
for some famous landmarks in Oxford. There are totally
55 groups in the dataset (eleven landmarks, each having five
queries), which is manually annotated by the author.

Fig. 6. Examples of the images and their relevant ones with strong
affine (or perspective) transformations from the three benchmark datasets.

To make the experiment more challenging and realistic, we
also use the MIRFlickr1M [48] dataset as a distractor dataset.
It contains one million unrelated images from Flickr. It is often
utilized as a distractor dataset. By adding increasing numbers
of images from this dataset to the benchmark datasets, we can
examine the robustness and scalability of a method.

The first five images of each group on the three benchmark
datasets are used as the query images, and the expected
retrieval results are all the remaining ones in the same group.

We use ASIFT [16] as the feature detector and descriptor.
Here we must mention that for all the state-of-the-arts and our
method, we utilize exactly that same location and descriptor of
each detected feature as input by adopting ASIFT uniformly.
After feature extraction, we train a codebook with one million
visual words on the three benchmark datasets by using the
hierarchical k-means clustering method [20]. With the trained
codebook, we quantize each 128-dimension feature descriptor
into a visual word. We follow the stop list technique from
Sivic and Zisserman [19] to avoid frequent and uncommon
visual words. The top 5% and bottom 10% visual words are
stopped. So finally there are 850, 000 visual words remaining.
All the features pairs that belong to the same visual word
are determined as putative matches. Then, we applying all the
mismatch removal approaches to filter the mismatches, and
use the number of remaining true matches as the similarity
measurement to re-rank the baseline retrieval results. For the
re-ranking step, the re-ranking range is set to be the top
5000 images of the coarse retrieval results.

Mean average precision (mAP) [11] and average time cost
are adopted to evaluate the accuracy and speed of all the
methods. The average precision is defined as the area under
the precision-recall curve:

AP =
∑
i∈R

NR/ i

NA
, (28)

where i means the i th ranked images, R is the set of all the
true relevant images, NR is the total number of R, and NA is
the number of all the images. The mAP is computed as:

m AP =
NQ∑

q=1

APq

NQ
, (29)
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Fig. 7. The mAP benefit after applying all the geometric verification methods with different number of distractor images on the three benchmark datasets
and sample images with strong affine or perspective transformations. The dash line indicates the iterative fitting methods, and the solid line represents the
non-iterative filtering methods. Our method achieves higher mAP on most of the three datasets with different number of distractor images. Moreover, our
method also achieves the highest mAP with large performance gap on the sample images with strong affine or perspective transformations. (a) GCDup dataset.
(b) Holiday dataset. (c) Oxford5k dataset. (d) Sample images with strong affine or perspective transformations.

where NQ is the number of queries, and APq is average
precision of the qth query.

As described in Subsection III-D, compared with cosine
similarity based technique, our Euclidean based technique
can achieve more accurate correspondence, which is more
suitable for precise image matching tasks. However, for large
scale real time image search tasks, the retrieval time cost is
more important than the matching accuracy, because merely
improving the matching accuracy between the query image and
each retrieved image will not improve the retrieval mAP a lot,
but costs more time. For this reason, we choose to use cosine
similarity based technique for the following large scale image
search experiments to make a trade-off between retrieval time
and mean average precision.

Figure 7 shows the mAP benefits after using geometric
verification methods under different numbers of distractor
images. Compared with the baseline, it is obvious that the

mAPs on the three benchmark datasets are improved greatly
by applying mismatch removal approaches, as shown in
Figure 7(a), 7(b), and 7(c). In particular, our method achieves
the highest mAPs on most of the three datasets with different
numbers of distractor images. When there exist strong affine
(or perspective) transformations between the query image
and its relevant ones, geometric verification becomes tougher.
To compare the performance of all the methods on such a
case, as shown in Figure 6, we take images from the three
benchmark datasets that have strong affine or perspective trans-
formations between them. The mAP results on the selected
images are shown in Figure 7(d). Our method achieves higher
mAP than other methods with a large performance gap.

In Figure 8, we provide some retrieval results on
the three benchmark datasets with one million distractor
images, our method greatly enhances the retrieval accu-
racy. On the GCDup dataset, our method improves AP by
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Fig. 8. Sample retrieval results of (a) GCDup dataset, (b) Holiday dataset, and (c) Oxford5k dataset with one million distractor images. The query images
are on the left of the dash line and the top-ranked images are on the right of the dash line. For each query, the first row is the original retrieval results of the
baseline method, and the second row is the re-ranking results after applying our method. The green and red box indicate the relevant and irrelevant images,
respectively. One can see that all the relevant images are ranked at the very top after applying our method on Holiday and Oxford5k. The Precision-Recall
curves for the three queries are shown in (d)-(e). Among the three examples, AP increase from 0.21 to 0.65 (+0.44) on GCDup, AP from 0.13 to 1 (+0.87)
on Holiday, and AP from 0.46 to 1 (+0.54) on Oxford5k, respectively.

+0.44(from 0.21 to 0.65). And on Holiday and Oxford5k
dataset, APs are both increased to 1, which means that all
the relevant images are ranked at the top.

Table III is the average mAP and average time cost
comparisons of all the methods on the three datasets with
1K distractors. Note that we only count the on-line query
time, while all the common steps, such as feature extraction,
codebook training, feature matching, and other off-line
procedures, are not included. As shown in the table,

our method is the third fastest method. Although WGC
and EWGC are slightly faster than ours, they both achieve
lower mAPs. Moreover, we give a comparison between our
Euclidean distance based robust method called “Ours-Euc” and
the cosine similarity based method named “Ours”. Compared
with “Ours-Euc”, “Ours” achieves the same average mAP
with lower time cost, which verifies that the cosine similarity
based method is more suitable for large scale image search
system.
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TABLE III

THE AVERAGE MAP AND AVERAGE TIME COST COMPARISON OF ALL
THE METHODS ON THE THREE DATASETS WITH 1K DISTRACTORS

To sum up, our method is a good trade-off between effec-
tiveness and efficiency on mismatch removal when applied to
partial-duplicate image search as a geometric verification step.

V. CONCLUSIONS

We propose a novel mismatch removal method based on
the shape interaction matrix (SIM). Given two corresponding
point sets, we only use the coordinates of the feature points to
compute the SIMs of the two point sets. The underlying
SIM model provides a theoretical base to ensure the affine
invariance of our method, the provided geometric interpreta-
tion further helps picking out the mismatches by finding the
most inconsistent entries of the two SIMs. Compared with
other state-of-the-arts, our method is simple, fast, and robust
to affine changes, outliers, noises, and burstiness. Experiments
on synthetic 2D points matching datasets and real images
matching datasets show that our method is effective, efficient,
and robust in mismatch removal. The experiment on partial-
duplicate image search further verifies that our method, as
a geometric verification step, gets better performance than
state-of-the-arts on the three benchmark datasets with a large
number of distractor images. In the future, we will target on
improving our method to handle more complex transforma-
tions, such as perspective transformation, articulated motion,
and non-rigid deformation.
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