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Optimized Color Filter Arrays for Sparse
Representation-Based Demosaicking
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Abstract— Demosaicking is the problem of reconstructing
a color image from the raw image captured by a digital
color camera that covers its only imaging sensor with a color
filter array (CFA). Sparse representation-based demosaicking
has been shown to produce superior reconstruction quality.
However, almost all existing algorithms in this category use the
CFAs, which are not specifically optimized for the algorithms.
In this paper, we consider optimally designing CFAs for sparse
representation-based demosaicking, where the dictionary is well-
chosen. The fact that CFAs correspond to the projection matrices
used in compressed sensing inspires us to optimize CFAs via
minimizing the mutual coherence. This is more challenging
than that for traditional projection matrices because CFAs have
physical realizability constraints. However, most of the existing
methods for minimizing the mutual coherence require that
the projection matrices should be unconstrained, making them
inapplicable for designing CFAs. We consider directly minimizing
the mutual coherence with the CFA’s physical realizability
constraints as a generalized fractional programming problem,
which needs to find sufficiently accurate solutions to a sequence
of nonconvex nonsmooth minimization problems. We adapt the
redistributed proximal bundle method to address this issue.
Experiments on benchmark images testify to the superiority
of the proposed method. In particular, we show that a simple
sparse representation-based demosaicking algorithm with our
specifically optimized CFA can outperform LSSC [1]. To the
best of our knowledge, it is the first sparse representation-based
demosaicking algorithm that beats LSSC in terms of CPSNR.

Index Terms— Color filter array (CFA), demosaicking, sparse
representation, mutual coherence, generalized fractional pro-
gramming, redistributed proximal bundle method, linearized
alternating direction method with parallel splitting and adaptive
penalty (LADMPSAP).
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I. INTRODUCTION

AT EACH pixel color images usually consist of three
color components, e.g., red (R), green (G), and blue (B),

or cyan (C), magenta (M), and yellow (Y). Consequently,
a digital color camera needs three separate sensors, one for
each color component. However, it is expensive to use three
sensors and it is difficult to precisely align all sensors. So most
digital color cameras utilize only a single sensor and place a
color filter array (CFA) (see Fig. 1) in front of the sensor,
which results in the captured images having only one color
component at each pixel. Such images are called raw images.
One has to use a demosaicking algorithm to reconstruct color
images from raw images. Accordingly, the quality of the
finally produced color images depends on both the CFA and
the demosaicking algorithm.

On the one hand, developing a tailored demosaicking
algorithm for a given CFA to well exploit its characteristics
has been studied extensively [2]–[4]. For example, directional
interpolation based demosaicking [5]–[8] interpolates along
multiple directions to efficiently utilize both the interchan-
nel and the intrachannel correlations. Frequency selection
based demosaicking [9]–[11] takes advantage of the spectral
characteristics of raw images. Sparse representation based
demosaicking [1], [12], [13] considers demosaicking as an
inverse problem and exploits sparsity prior by decompos-
ing each image patch into a sparse representation over a
dictionary. However, these demosaicking algorithms usually
use the predefined CFAs, which are designed empirically
with different preferences. For instance, the most popular
Bayer CFA [14] was designed to mimic human visual sys-
tem’s greatest response to green light (Fig. 1(a)). Sony com-
pany [15] replaced a green component of the Bayer CFA
pattern with an emerald (E) component, which is claimed to be
closer to human color perception. Lukac and Plataniotis [16]
developed the Lukac CFA using only R, G, and B, where
green pixels are in pairs and vertically adjacent in each
pair (Fig. 1(b)). As the panchromatic pixel does not block the
visible light, Compton and Hamilton [17] included panchro-
matic pixels in the CFA to improve light sensitivity (Fig. 1(c)).
The recently designed Fujifilm X-Trans CFA [18] was
inspired by the claim that the irregular arrangement of par-
ticles in traditional film is advantageous in reducing Moiré
artifacts.

On the other hand, different types of demosaicking
algorithms provide different compromises between reconstruc-
tion efficiency and accuracy [24], [25]. So they have different
application scenarios. To enhance the performance of a given
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Fig. 1. Eight representative CFA patterns. They are the (a) Bayer CFA [14], (b) Lukac CFA [16], (c) Compton CFA [17], (d) Hirakawa CFA [19],
(e) Condat CFA [20], (f) Hao CFA [21], (g) Diag7 CFA [22], and (h) Chakrabarti CFA [23], respectively. The sum across color channels of every CFA is
normalized to be an all-one matrix. Images in this paper are best viewed on screen!

Fig. 2. The spectra of raw images by six CFAs. They are the average spectra of all raw images from the Kodak dataset [32] and their corresponding CFAs
are the (a) Bayer CFA [14], (b) Hirakawa CFA [19], (c) Condat CFA [20], (d) Hao CFA [21], (e) Diag7 CFA [22], and (f) Chakrabarti CFA [23], respectively.
In each image, the luminance component is located in the center and on the horizontal and the vertical axes, which is denoted by the black dashed circle,
while the chrominance components are denoted by the white dashed circles.

type of demosaicking algorithms, one can design specific
CFAs for it, where the demosaicking process is fully con-
sidered in the CFA design. For example, frequency selection
based demosaicking is very attractive for its linearity, which
gives a good trade-off between computational complexity and
reconstruction quality. Accordingly, the CFA design in the
frequency domain [19]–[22], [26] optimizes CFAs specifically
for it. Spectral characteristic analysis [9], [19], [21] shows
that a raw image by a periodic CFA can be interpreted in the
frequency domain as the sum of a nonsubsampled component
at the baseband and multiple subsampled replicas of compo-
nents at the high frequency bands, where the nonsubsampled
component is called luminance component (denoted by the
black dashed circle in Fig. 2) and the subsampled components
are called chrominance components (denoted by the white
dashed circles in Fig. 2). The different locations of frequency
components lead to frequency selection based demosaicking.
Frequency selection based demosaicking first uses appropriate
bandpass filters to estimate all frequency components. Then
according to the transformation from luminance/chrominance
basis to RGB basis, it recovers the color image in RGB
format from the frequency components. So the CFA design in
the frequency domain needs to minimize spectral overlap to
obtain more accurate estimations of all frequency components.
Also, it needs to maximize the numerical stability of color
transformation. These two design criteria have been discussed
in detail [22]. We show the spectra of raw images by the
Bayer CFA and four optimized CFAs for frequency selection
based demosaicking in Fig. 2(a) and 2(b)-2(e), respectively.
We can see that the luminance and chrominance components
of the Bayer CFA overlap on the horizontal and the vertical
axes, while those of the four optimized CFAs have no spectral
overlap.

Recently, the Chakrabarti CFA [23] was proposed
specifically for its associated inpainting and colorization
reconstruction algorithm. In order to be compatible with

inpainting and colorization techniques, the 6 × 6 Chakrabarti
CFA pattern embedded the 2 × 2 Bayer CFA pattern in
the center and set the remaining pixels be panchromatic
ones (see Fig. 1(h)). Accordingly, the reconstruction algorithm
first recovered the missing panchromatic values at the Bayer
CFA pattern, which is an inpainting task. Then it estimated
color information from the Bayer CFA pattern and propagated
the color information to panchromatic pixels, which is a
scribble based colorization problem. The Chakrabarti CFA
demosaicked by its associated reconstruction algorithm has
been shown to reduce noise and aliasing artifacts in low-light
conditions. However, from the average spectrum of raw images
by the Chakrabarti CFA shown in Fig. 2(f), we can see that
there is severe spectral overlap. So the Chakrabarti CFA is
not a favorable one for frequency selection based demosaick-
ing. Conversely, the optimized CFAs for frequency selection
based demosaicking (Fig. 1(d)-1(g)) are not preferred by the
reconstruction algorithm associated with the Chakrabarti CFA
either. So in order to enhance the performance of a type
of demosaicking algorithms, we need to optimize the CFAs
it uses.

Sparse representation based demosaicking has been shown
to produce superior reconstruction quality [1], [12], [13].
However, almost all existing algorithms in this category
concentrate only on dictionary design and directly use the
predefined CFAs which are not specifically optimized for
the demosaicking algorithms. For instance, Mairal et al. [12]
extended the grayscale K-SVD denoising algorithm [27] to
demosaick raw images by the Bayer CFA. They learned the
dictionary on the vectorized color image patches. To reduce
false color artifacts, they also proposed a new inner product
used in the orthogonal matching pursuit (OMP) [28]. A simul-
taneous sparse representation based demosaicking algorithm
was presented in [1], which encourages similar patches to
have similar sparse representations. It also online learned an
adaptive dictionary for every test image to further improve
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demosaicking performance. Instead of learning a dictionary,
Moghadam et al. [13] manually constructed the dictionary
to reduce both the interchannel and the intrachannel corre-
lations of color images. It is claimed to generate sparser
representations and hence improves the performance of sparse
representation based demosaicking. They also showed that
their demosaicking algorithm with the Hirakawa CFA per-
forms better than that with the Bayer CFA. However, like all
existing sparse representation based demosaicking algorithms,
their demosaicking algorithm also used the predefined CFAs
and did not specifically optimize the CFAs they used. Note that
the sparse representation based demosaicking discussed in the
paper is based on conventional color cameras, where the only
component of every pixel of a raw image is a combination of
the RGB components of the corresponding color image at the
same pixel. For those based on single-pixel color cameras [29],
where each sequential measurement is a different combination
of the RGB components of the color image at all pixels,
we refer the readers to [30] and [31].

The newly emerged compressed sensing (CS) [33], [34] is
a technique for joint signal sampling and compression. The
CS theory shows that a signal which has a sparse repre-
sentation over an appropriate overcomplete dictionary can be
recovered from fewer linear projections than required by the
traditional sampling theorem. The linear projections of a signal
are the inner products between it and a set of projection
vectors, arranged as the rows of a projection matrix. The
product of a projection matrix and a dictionary is called the
effective dictionary. The CS theory also shows that for a given
number of linear projections and an appropriate dictionary,
designing the projection matrix via minimizing the mutual
coherence [35] of the effective dictionary could substantially
improve recovery accuracy. Since sparse representation based
demosaicking is a specific CS problem, based on the above
theory, in this paper we consider optimizing CFAs specif-
ically for it via minimizing the mutual coherence. This is
more challenging than optimizing traditional CS projection
matrices, which are usually assumed to be unconstrained.
Most of the existing methods for optimizing CS projection
matrices [36]–[40] work with the column normalized effective
dictionaries. However, CFAs have constraints on their physical
realizability, which conflict with the column normalization
of effective dictionaries (see subsection II-B). As a result,
these methods for optimizing CS projection matrices cannot
be directly used to design CFAs.

The contributions of this paper are:
• Based on the theory of CS, we propose a new CFA design

method for sparse representation based demosaicking,
where the dictionary is well-chosen and fixed. To the
best of our knowledge, it is the first CFA design method
specifically for sparse representation based demosaicking,
which is also theoretically grounded.

• We develop a new method to directly minimize the
mutual coherence with the constraints of CFA’s physical
realizability, which is more challenging than that for
unconstrained CS projection matrices.

• We demonstrate that a simple sparse representation based
demosaicking algorithm with our specifically optimized

TABLE I

SUMMARY OF THE MAIN NOTATIONS USED IN THIS PAPER

CFA can outperform LSSC [1]. To the best of our
knowledge, we present the first sparse representation
based demosaicking algorithm that beats LSSC in terms
of CPSNR. Our demosaicking algorithm is also much
more efficient.

The rest of the paper is organized as follows. In Section II,
we introduce our model to design CFAs for sparse repre-
sentation based demosaicking. Then we describe the solving
process of our CFA design model in Section III. In Section IV,
we conduct experiments to test our design method. Finally,
we conclude the paper in Section V.

II. OUR CFA DESIGN MODEL

In this section, we first introduce sparse representation based
demosaicking, as we will design CFAs for it. Then we present
our CFA design model, which is specifically for the sparse
representation based demosaicking with a given dictionary.

We focus only on periodic CFAs defined on the square
lattice, where the minimum periodic array is called the CFA
pattern. For extensive reviews of nonperiodic CFAs, we refer
to [41]. As color images are usually stored and processed in
RGB format, we use the RGB color model to represent colors,
i.e., every color is decomposed into a mixture of R, G, and B.
Then designing a CFA pattern is to optimize the three mixing
coefficients of every pixel of the CFA pattern. We use upper
case boldface letters for matrices, lower case boldface letters
for vectors, and lower case letters for scalars, respectively,
where vectors are all column ones. Color image patches are
rearranged as column vectors in the order of R, G, and B.
The main notations used throughout the paper are summarized
in Table I.

A. Sparse Representation Based Demosaicking

In the noiseless case, the model of color imaging with a
CFA is as follows:

y = Px = (PR,PG ,PB)(xT
R, xT

G , xT
B)

T , (1)
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where y ∈ R
m×1 is the raw image patch, x ∈ R

3m×1 is
the color image patch, with xR , xG , and xB being its red,
green, and blue channels, respectively, P ∈ R

m×3m is the
mosaicking matrix, and PR , PG , and PB are diagonal matrices
whose diagonal elements are specified by the red, green,
and blue channels of the CFA, respectively. Formally, let the
CFA be C ∈ R

√
m×√

m×3, then PR = Diag(vec(C(:, :, 1))),
PG = Diag(vec(C(:, :, 2))), and PB = Diag(vec(C(:, :, 3))).

On the other hand, natural image statistics shows that a nat-
ural image patch can be sparsely represented by an appropriate
overcomplete dictionary [42], which can be described as:

x = Dααα, (2)

where D = (d1, · · · ,dn) ∈ R
3m×n is the dictionary, which

is overcomplete (i.e., n > 3m) and column normalized to
Euclidean unit length (i.e., ‖di‖2 = 1, i ∈ {1, · · · , n}),
and ααα ∈ R

n×1 is the representation coefficient and satisfies
‖ααα‖0 � n. Then according to the CS theory [33], [34],
the color image patch x can be recovered from the raw image
patch y in (1) by using the sparse representation in (2),
i.e., y = PDααα with the sparest ααα. More formally, for each
raw image patch y, sparse representation based demosaicking
requires solving the following problem [1], [12], [13]:

ααα∗ = argmin
ααα

‖ααα‖0, s.t. y = PDααα. (3)

It can be solved efficiently by using OMP [28] and the color
image patch x can be reconstructed as x̂ = Dααα∗. To demosaick
a large raw image, sparse representation based demosaicking
first demosaicks all the overlapping

√
m × √

m patches of the
raw image. Then it fuses the overlapping demosaicked image
patches to get the demosaicked image.

B. Proposed Formulation

The recent work on CS demonstrates that using a well
designed projection matrix rather than a random one, can
improve the performance of signal recovery [36], [40]. For the
sparse representation based demosaicking in (3), the mosaick-
ing matrix P is a specific CS projection matrix. Based on
the CS theory, the mutual coherence [35] of PD should
be minimized. This enhances the uniqueness of the sparse
solution to problem (3) and hence improves demosaicking
performance. The mutual coherence of a matrix is defined as
follows:

Definition 1: Given a matrix A = (a1, · · · , an) ∈ R
m×n, its

mutual coherence μ(A) is defined as the largest correlation (in
absolute value) between different columns of A. Formally,

μ(A) = max
1≤i< j≤n

∣
∣〈ai , a j 〉

∣
∣

‖ai‖2‖a j‖2
. (4)

CS commonly assumes that the dictionary D is fixed while
the projection matrix P is unconstrained. We denote M = PD
as the effective dictionary and M̃ as the normalization of M
with all Euclidean unit columns. Then the largest absolute
off-diagonal element of the Gram matrix M̃T M̃ will be μ(M).
Accordingly, most of the existing methods [36]–[40] use the
Gram matrix M̃T M̃ to optimize the unconstrained projection
matrix P. However, the mosaicking matrix P is derived from a

physically realizable CFA. So it has the following constraints.
First, P should be real, nonnegative, and formed by three
diagonal matrices. This requires that P ≥ 0m×3m and P ◦ Q =
0m×3m , where Q = 111m×3m − (Im×m , Im×m , Im×m), and ≥
and ◦ stand for the componentwise greater than or equal to
and product, respectively. Second, the sum across the color
channels of a CFA should be an all-one matrix [19]–[22].
So we have P1113m×1 = 111m×1. The two constraints together
ensure that P is a valid mosaicking matrix. Then there are only
2m unknowns to finally determine the mosaicking matrix P.
However, that all columns of PD are Euclidean unit will
generate n (n > 3m) equations, which are more than the
unknowns. This is an overdetermined problem and may not
have a solution. Thus we cannot use the Gram matrix to find
the optimal mosaicking matrix, making most of the existing
methods for minimizing the mutual coherence [36]–[40]
inapplicable.

We further assume that the CFA pattern is smaller than
an image patch, i.e., r ≤ √

m and c ≤ √
m, where r × c

and
√

m × √
m are the sizes of the CFA pattern and image

patch, respectively. So we need to consider the periodicity
of the CFA covering a

√
m × √

m image patch. Without
loss of generality, we assume that

√
m is divisible by both

r and c. Then we have 111T PR = 01×3(m−rc), where R =
T (I(:, 1 : 3(m − rc))− I(:, 3rc + 1 : 3m)) ∈ R

3m×3(m−rc),
111 ∈ R

m×1, I ∈ R
3m×3m , and T ∈ R

3m×3m is a permutation
matrix. Right multiplying the row vector 111T P by T will per-
mute its columns to obtain a new row vector whose elements
are rearranged CFA-pattern-wise.

According to the above discussion, we formulate our CFA
design model as:

min
P

max
1≤i< j≤n

{ |〈Pdi ,Pd j 〉|
‖Pdi‖2‖Pd j ‖2

}

s.t. P ≥ 0,P ◦ Q = 0,P111 = 111,111T PR = 0. (5)

It is a generalized fractional programming problem [43].

III. SOLVING OUR CFA DESIGN MODEL

In this section, we first briefly introduce generalized frac-
tional programming. Then we detail the solution process of
our CFA design model in (5).

A. Generalized Fractional Programming

The generalized fractional programming considers the
following problem:

λ∗ = min
x∈S

max
1≤i≤q

{
ϕi (x)
ψi (x)

}

, (6)

where λ∗ is the optimal value of the problem, S is the
nonempty feasible set, ϕi and ψi are continuous functions
on S, and ψi is positive on S. Crouzeix et al. [43], [44]
proposed two Dinkelbach-type algorithms that consists of
solving sequential problems in the form:

γ k+1 = min
x∈S

f k(x), (7)

where f k(x) = max
1≤i≤q

{(

ϕi (x)− λkψi (x)
)

/ωk
i

}

, ωk
i > 0 is

the normalization parameter, the optimal solution is denoted
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as xk+1, and λk is the optimal objective function value of
problem (6) at the previous iteration, i.e.,

λk = max
1≤i≤q

{
ϕi (xk)

ψi (xk)

}

. (8)

It has been shown that the sequence {λk} generated by (7)
and (8) converges linearly to λ∗ in (6) when ωk

i = 1 [43],
which can be improved to become superlinear when ωk

i =
ψi (xk) [44]. Moreover, if S is compact, λ∗ in (6) is finite and
every limit point of the sequence {xk} generated by either of
the two algorithms is an optimal solution of problem (6).

However, the convergence of the above two algorithms
requires finding an optimal solution to problem (7), which may
not be easy, e.g., f k(x) in (7) is nonconvex and nonsmooth.
To ease this requirement, some inexact Dinkelbach-type
algorithms have been proposed, where only a sufficiently
accurate solution of problem (7) is needed. For example,
Birbil et al. [45] assumed that S is convex and approxi-
mated f k(x) in (7) from above, which produces a decreasing
sequence {λk} by (8). Strodiot et al. [46] considered the case
that problem (7) is convex, i.e., f k(x) and S are both convex.
Then they performed a serious step of the proximal bundle
method [47] to construct a proper piecewise linear lower
approximation of f k(x). They proved that the sequences {λk}
and {xk} generated by these approximation problems converge
to λ∗ and an optimal solution of problem (6), respectively,
where the convexity of f k(x) is necessary to prove conver-
gence. However, their algorithm cannot be directly applied
to a nonconvex f k(x). This is because the proximal bundle
method cannot ensure to obtain an accurate enough solution
of problem (7) when f k(x) is nonconvex. The proximal bundle
method can generate a piecewise linear lower approximation
to a convex f k(x) with any desired accuracy, which is defined
as the maximum of tangent lines. The lower approxima-
tion is measured by the linearization errors, which are the
differences between f k(x) and all tangent lines at the current
prox-center. If f k(x) is convex, the tangent lines are below
f k(x) and hence the linearization errors are always nonneg-
ative. However, the linearization errors can be negative when
f k(x) is nonconvex, which implies that the tangent lines may
cut off a region containing a minimum.

We focus on the situation that S is compact and f k(x)
in (7) is nonconvex and nonsmooth, which is much harder.
So we only consider developing an inexact Dinkelbach-type
algorithm that can guarantee to generate a decreasing sequence
{λk} by (8). Fortunately, this is tractable and can be guided by
Theorem 1.

Theorem 1: Let the sequence {xk} be the feasible approx-
imation solutions to problem (7). If f k(xk+1) ≤ 0 is always
met, the corresponding sequence {λk} generated by (8) is
decreasing and convergent.

Proof: From the definition in (8), we have that there exists
i ′ ∈ {1, · · · , q} such that

λk+1 = max
1≤i≤q

{
ϕi (xk+1)

ψi (xk+1)

}

= ϕi ′ (xk+1)

ψi ′ (xk+1)
. (9)

Since f k(x) in (7) is the maximum of its q component
functions, it is greater than or equal to any of its component

functions for all x ∈ S. In particular, the following inequality
holds at xk+1 for the given i ′ ∈ {1, · · · , q}:

f k(xk+1) ≥
(

ϕi ′ (x
k+1)− λkψi ′ (x

k+1)
)

/ωk
i ′

= (λk+1 − λk)ψi ′ (x
k+1)/ωk

i ′ . (10)

As ψi (x) and ωk
i are both positive on S, if f k(xk+1) ≤ 0

is true, λk+1 ≤ λk will hold and hence the sequence {λk} is
decreasing. Since S is compact, λ∗ in (6) will be finite and is a
lower bound of {λk}. Thus {λk} is convergent and the theorem
is proved.

By combining (7) and (8), it is easy to see that f k(xk) = 0.
Then according to Theorem 1, we only need to obtain a
feasible approximation solution to problem (7) that is better
than xk . Moreover, if we further assume that ψi (x)/ωk

i has an
upper bound, applying the Squeeze Theorem (also known as
the Sandwich Theorem) to (10) we can obtain that f k(xk+1)
converges to 0, which can be used as the stop criterion. Note
that ωk

i = 1 and ωk
i = ψi (xk) are the commonly used normal-

ization parameters. We use ωk
i = 1 in the paper. Consequently,

if ψi (x) is upper bounded, f k(xk+1) will converge to 0.

B. Solving Problem (5)

Based on the above analysis, we develop an inexact
Dinkelbach-type algorithm to solve problem (5), which can
guarantee that the objective function value in (5) is decreasing.
We first denote the feasible set of problem (5) by � = {P ∈
R

m×3m |P ≥ 0,P ◦ Q = 0,P111 = 111,111T PR = 0}, which is
compact and convex. Then at the k-th iteration, we need to
solve the following problem with sufficient accuracy:

min
P∈� f k(P), (11)

where the sufficiently accurate solution is denoted as Pk+1,
the corresponding function value f k(Pk+1) is denoted as γ k+1,

f k(P) = max
1≤i< j≤n

{

|〈Pdi ,Pd j 〉| − λk‖Pdi‖2‖Pd j ‖2

}

, (12)

and λk is the objective function value of problem (5) at Pk ,
i.e.,

λk = max
1≤i< j≤n

{

|〈Pkdi ,Pkd j 〉|/(‖Pkdi‖2‖Pkd j ‖2)
}

. (13)

Since ‖P‖∞ = 1 on � and ‖di‖2 = 1, we have that
‖Pdi‖2 ≤ ‖P‖2‖di‖2 ≤ √

m‖P‖∞ = √
m for all i ∈

{1, · · · , n}. Accordingly, for every 1 ≤ i < j ≤ n,
‖Pdi‖2‖Pd j‖2 is bounded from above by m. So the sequence
{γ k} generated by solving problem (11) with sufficient accu-
racy converges to 0.

The whole process for solving problem (5) is summarized
in Algorithm 1.

Since f k(P) in (11) is nonconvex and nonsmooth, finding
a sufficiently accurate solution of problem (11) is not easy.
However, 〈Pdi ,Pd j 〉 and ‖Pdi‖2‖Pd j‖2 are C2 functions
w.r.t. P and hence lower-C2 functions.1 Functions defined

1A function f is lower-C2 on an open set O if f is finite on O and for
any x ∈ O there exists a threshold κmin > 0 such that f (y)+ κ

2 ‖y − x‖2
2 is

convex w.r.t. y on an open neighbourhood of x for all κ ≥ κmin.
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Algorithm 1 Algorithm for Solving Problem (5)

by sums, absolute values, and maximums of lower-C2 func-
tions are lower-C2 [48]. Thus f k(P) in (11) is globally
lower-C2. Accordingly, we adapt the redistributed proximal
bundle method [49] to get an accurate enough solution of
problem (11). The convergence of the redistributed proxi-
mal bundle method for solving the unconstrained nonconvex
nonsmooth minimization with a lower-C2 objective function
has been well established. We detail the solution process of
inexactly solving problem (11) in the following subsections.

C. Local Convexification

We first briefly introduce the local convexification strategy,
which is the main idea of the redistributed proximal bundle
method [49]. The redistributed proximal bundle method con-
siders the following unconstrained minimization problem:

min
y

f (y), (14)

where f (y) is a lower-C2 function and may be nonconvex
nonsmooth. As a proximal bundle method, it first augments
f (y) with a stabilization term:

min
y

f (y)+ κ

2
‖y − x‖2

2, (15)

where x and κ > 0 are called the prox-center and prox-
parameter, respectively. In contrast to other nonconvex bundle
methods, it then splits the prox-parameter κ into two nonneg-
ative terms η and ν satisfying κ = η + ν. Thus problem (15)
could be equivalently rewritten as:

min
y

f̃ (y)+ ν

2
‖y − x‖2

2, (16)

where f̃ (y) = f (y) + η
2 ‖y − x‖2

2 is assumed to be locally
convex at x. So a piecewise linear lower approximation to
f̃ (y) at x can be constructed by using the cutting plane
method [50]. Consequently, problem (16) is approximated
from below by an unconstrained convex quadratic program-
ming problem, which has efficient solving methods [51].
Thus solving problem (14) consists of solving a sequence of
unconstrained convex quadratic programming problems. This
strategy is called local convexification. Accordingly, η and ν
are referred as the convexification parameter and model prox-
parameter, respectively, and have to be suitably modified
during the iteration.

D. Solving Problem (11) With Sufficient Accuracy

We use the local convexification strategy to solve
problem (11) with sufficient accuracy, which is a linearly
constrained nonconvex nonsmooth minimization problem. Let
t be the iteration counter and it depends on k. For notational
simplicity, we omit the superscript k below.

At the t-th iteration, the current prox-center is
denoted by P̂t and the bundle information is formed by
{

Pl, f (Pl),Gl ∈ ∂ f (Pl)
}t

l=0. Then by the local convexifi-

cation strategy, f̃ t (P) = f (P) + ηt

2 ‖P − P̂t‖2
F is bounded

from below at P̂t by the model function ϕt (P), which is a
piecewise linear function. Formally,

ϕt (P) = max
0≤l≤t

{

f̃ t (Pl)+
〈

Gl + ηt (Pl − P̂t),P − Pl
〉}

= f (P̂t )+ max
0≤l≤t

{〈

Gl + ηt (Pl − P̂t),P − P̂t
〉

− ẽt
l

}

,

(17)

where ẽt
l = et

l + ηt

2 ‖Pl − P̂t‖2
F is called the augmented

linearization error, and et
l = f (P̂t )− ( f (Pl)+ 〈Gl , P̂t − Pl〉)

is called the linearization error. Accordingly, the linearly
constrained convex quadratic programming problem at the
t-th iteration is:

min
P∈� ϕ

t (P)+ ν

2
‖P − P̂t‖2

F . (18)

In order to improve the readability, we provide the solution
process for (18) in the Appendix.

We compute the subgradient Gl ∈ ∂ f (Pl) as follows.
We compute a subgradient of the i j -th component function
of f (P) in (12) by

hi j (P) = sign(〈Pdi ,Pd j 〉)P
(

di dT
j + d j dT

i

)

− λ
(

‖Pd j ‖2Pdi dT
i

‖Pdi‖2
+ ‖Pdi‖2Pd j dT

j

‖Pd j‖2

)

, (19)

where sign(·) is the sign function which extracts the sign of
a real number. Suppose that the i ′ j ′-th component function
of f (P) achieves the maximum at Pl . Then we obtain the
subgradient Gl of f (P) at Pl by

Gl = hi ′ j ′(Pl). (20)

In order to guarantee that ϕt (P) is a lower approximation to
f̃ t (P) at P̂t , the augmented linearization error ẽt

l in (17) should
be nonnegative, i.e., ẽt

l ≥ 0, l ∈ {0, · · · , t}. Thus before the
update of model function ϕt (P), we compute ηt by

ηt = max

(

max
0≤l≤t,Pl �=P̂t

−2et
l

‖Pl − P̂t‖2
F

, 0

)

, (21)

which is the minimal value that keeps ẽt
l nonnegative for

all l ∈ {0, · · · , t}.
After the candidate prox-center Pt+1 is computed by (18),

we check whether it provides sufficient decrease of f (P) as
compared to P̂t , which is measured by a fixed fraction of the
predicted decrease:

δt = f (P̂t )−
(

ϕt (Pt+1)+ ν

2
‖Pt+1 − P̂t‖2

F

)

. (22)
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Algorithm 2 Algorithm for Inexactly Solving Problem (11)

Algorithm 3 Algorithm for Inexactly Solving Problem (11)
With Restarts

Note that by combining (17), (18), and (21), we have that
ϕt (Pt+1) + ν

2‖Pt+1 − P̂t‖2
F ≤ ϕt (P̂t) ≤ f (P̂t ). So δt is

nonnegative. If the decrease is sufficient, we perform a serious
step, where Pt+1 will be the next prox-center. Otherwise,
we perform a null step and the next prox-center is still P̂t .

Since f (P) is nonconvex, Pt+1 may increase f (P) as
compared to Pt , i.e., f (Pt ) < f (Pt+1). As in [49], when this
happens, we restart the algorithm by initializing P with the
current prox-center P̂t and setting ρ as ρξ (ξ > 1). As f (P)
is globally lower-C2, it has been proved that there is only a
finite number of such restarts.

We summarize the whole inexact solution process of
problem (11) in Algorithm 3.

IV. EXPERIMENTS

In this section, we conduct experiments on benchmark test
images to verify the effectiveness of our CFA design method.
We use the Plain Sparse Representation based Demosaicking

Fig. 3. Our specifically optimized CFA pattern for the publicly available
dictionary D [53]. (a) is our newly designed 4 × 2 CFA pattern and (b) is its
color values.

algorithm to test our designed CFAs, which we call PSRD. For
a given dictionary, it demosaicks every

√
m × √

m raw image
patch via solving (3) by OMP [28] and then simply averages
the values of overlapping pixels of the demosaicked image
patches to produce the demosaicked image, where nearby
patches overlap

√
m − 1 pixels. We use the mexOMP function

in the SPAMS toolbox [52] as the implementation of OMP.
We design a new CFA for a well-chosen dictionary using the

proposed method. Then we first compare it with the predefined
CFAs, all demosaicked by PSRD using the chosen dictionary.
We next compare our new CFA demosaicked by PSRD using
the chosen dictionary with the state-of-the-art demosaicking.
The two comparisons together can thoroughly testify to the
effectiveness of our design method.

A. Experimental Settings

1) Dictionary and Dataset: As we design CFAs for
the sparse representation based demosaicking with a given
dictionary, we need to choose the dictionary. In our experi-
ments, we directly use the publicly available dictionary D ∈
R

192×256 [53]. The main reason is that state-of-the-art sparse
representation based demosaicking algorithms [1], [12], [41]
use the dictionary. When comparing with these algorithms
using an identical dictionary, we can directly conclude that the
performance gain of our approach results from the optimized
CFA rather than the dictionary used. The dictionary is learned
on 2×107 color image patches with a size of 8×8 pixels. These
patches are randomly taken from the 9,963 natural images of
the PASCAL VOC’07 dataset [54], which have no overlap with
demosaicking benchmark images. Thus we have m = 8 × 8
and n = 256 in (3). Accordingly, we also exclude an 8-pixel
border (one patch width) to eliminate the boundary effect.

Demosaicking performances are usually evaluated on both
the Kodak [32] and IMAX [55] datasets. The images in the
Kodak dataset have weak channel correlations, while those
in the IMAX dataset have strong channel correlations [56].
As in [56], we can show that most images in the PASCAL
VOC’07 dataset have weak channel correlations. However,
traditional dictionary learning works well only when the
conditions in the training set are similar as those present
during testing [57], which implies that the learned dictionary is
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Fig. 4. Blowups of some demosaicked images in the Kodak dataset. From top to bottom, the images are from #8 and #15 Images of the Kodak dataset,
respectively. In each group, (a) is the scaled original image, in which the red rectangle indicates the selected patch to blow up; (b) is the ground truth;
(c)-(h) and (i) are the images demosaicked from raw images by the predefined CFAs and our specifically optimized CFA, respectively; (j)-(t) are the images
demosaicked by the state-of-the-art demosaicking algorithms with their respective best CFAs. From the two groups of images, we can clearly see that there
are obvious false color artifacts along edges in the images demosaicked from raw images by other CFAs, while those by our CFA have better visual quality.

optimal only for the Kodak dataset. Accordingly, we only test
our CFA design method with the learned dictionary on the
Kodak dataset, which contains 24 RGB images with a size
of 512×768 pixels.

2) Compared CFAs and Demosaicking Algorithms: As we
assume that a CFA pattern should be smaller than an image

patch (here is of 8 × 8 pixels), we choose the 2 × 2 Bayer
CFA [14] (Fig. 1(a)), 4 × 2 Lukac CFA [16] (Fig. 1(b)),
4 × 2 Hirakawa CFA [19] (Fig. 1(d)), 3 × 2 Condat CFA [20]
(Fig. 1(e)), 4 × 4 Hao CFA [21] (Fig. 1(f)), and 7 × 7 Diag7
CFA [22] (Fig. 1(g)) for comparison. They are all demosaicked
by PSRD for fairness.
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Fig. 5. More blowups of demosaicked images in the Kodak dataset. From top to bottom, the images are from #8 and #24 Images of the Kodak dataset,
respectively. In each group, (a) is the scaled original image, in which the red rectangle indicates the selected patch to blow up; (b) is the ground truth;
(c)-(h) and (i) are the images demosaicked from raw images by the predefined CFAs and our specifically optimized CFA, respectively; (j)-(t) are the images
demosaicked by the state-of-the-art demosaicking algorithms with their respective best CFAs. From the two groups of images, we can see that the images
demosaicked from the raw images by other CFAs have severe zipper effects or false color artifacts, while those by our CFA have better subjective quality.

To further demonstrate the benefit of our CFA design
method in enhancing the performance of sparse representation
based demosaicking, we also include comparisons between
PSRD with our optimized CFA and state-of-the-art demosaick-
ing algorithms with their respective best CFAs. The selected
demosaicking algorithms all achieve their best performance
with the Bayer CFA unless stated otherwise. LPA [5] designed

a spatially adaptive filter to remove demosaicking errors.
MSG [6] used multiscale color gradients to adaptively combine
directional estimates. LSLCD [11] is a frequency selection
based demosaicking algorithm, which learns bandpass filters
by minimizing the mean-squared demosaicking error over a
training image set. It also employed an adaptive weighting
strategy [10] to improve demosaicking performance. RI [7]
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TABLE II

EVALUATION ON THE KODAK DATASET. THE LEFT PART SHOWS THE COMPARISON BETWEEN OUR SPECIFICALLY OPTIMIZED CFA AND SIX
REPRESENTATIVE CFAs DEMOSAICKED ALL BY PSRD. THE RIGHT PART SHOWS THE COMPARISON BETWEEN PSRD WITH OUR OPTIMIZED

CFA AND THE STATE-OF-THE-ART DEMOSAICKING ALGORITHMS WITH THEIR RESPECTIVE BEST CFAs. “ALG.” AND “AVG.” STAND FOR

“ALGORITHM” AND “AVERAGE”, RESPECTIVELY. THE INDIVIDUAL AND AVERAGE CPSNR VALUES ARE REPORTED

performed the interpolation in a residual domain, where the
residuals are differences between known and tentatively esti-
mated color components. MLRI [8] is an extension of RI,
which estimates the tentative color components by minimizing
the Laplacian energies of the residuals. DDR [25] integrated
MLRI and a fast postprocessing algorithm based on directional
difference regression, where the regressors are offline learned
on a training image set. ACUDE [58] was developed based
on the accurate chrominance estimation in the spatial domain
and the optimal demosaicking color transformation. SC [12] is
similar to PSRD but used a new inner product in the standard
OMP. SSC [1] is a simultaneous sparse representation based
demosaicking algorithm, which promotes similar raw image
patches to have similar sparse representations. LSSC [1] is an
extension of SSC, which further learns an adaptive dictionary
for every test image. It is important to note that we use the
identical dictionary (see IV-A.1) as SC and SSC do, which
is also the initial dictionary for LSSC. CD [13] is a sparse
representation based demosaicking algorithm with a manually
constructed dictionary. It achieved the best performance with
the Hirakawa CFA and an adaptive block selection strategy.

B. Comparison With the Predefined CFAs

For the given dictionary [53] and a given CFA pattern size,
we generate a CFA pattern by solving our CFA design model
in (5). We check all pattern sizes that are smaller than 8 × 8.
The resulted CFA pattern that performs the best in our tests
is shown in Fig. 3. It is a 4 × 2 CFA pattern and has seven
different color components.

We compare our specifically optimized CFA with six repre-
sentative CFAs on the Kodak dataset. The left part of Table II
gives the individual and average CPSNR values, where the best
values are in boldface. We can see that our optimized CFA
achieves the best CPSNR values on most individual images
and the whole dataset.

We also present part of the visual comparison on the Kodak
dataset in Fig. 4 and Fig. 5. We can see that the visual quality
of our specifically optimized CFA is better than that of the
predefined CFAs (Please read the captions for the descriptions
on visual difference.).

The two comparisons validate the advantage of our opti-
mized CFA and also testify that designing CFAs specifically
for a type of demosaicking algorithms is important for achiev-
ing superior performance.

C. Comparison With the State-of-the-Art Demosaicking

Both the CFA and the demosaicking algorithm affect
the quality of the reconstructed color images. Accordingly,
to further demonstrate the benefit of our CFA design method
in improving the performance of sparse representation based
demosaicking, we also provide the comparison between PSRD
with our specifically optimized CFA and the state-of-the-art
demosaicking algorithms with their respective best CFAs. The
right part of Table II presents the individual and average
CPSNR values on the Kodak dataset, where the best values
are in boldface. We can see that LSSC [1] and PSRD with
our optimized CFA outperform other demosaicking algorithms
on most individual images and the whole dataset. Moreover,
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PSRD with our optimized CFA achieves the best average
CPSNR value on the Kodak dataset, which is slightly better
than LSSC with a gap of 0.17dB. To the best of our knowledge,
it is the first sparse representation based demosaicking algo-
rithm that outperforms LSSC on the Kodak dataset in CPSNR
since it was proposed in 2009. Nonetheless, it is important
to highlight that LSSC first obtains a tentatively demosaicked
image using SC [12] with an initial dictionary. Then it learns
a new dictionary on the tentatively demosaicked image. It next
concatenates the two dictionaries and performs SSC [1] with
the concatenated dictionary to get the finally demosaicked
image. So LSSC has two complete demosaicking processes
and one dictionary learning process. However, PSRD with
our optimized CFA uses a fixed dictionary and has only
one complete demosaicking process. When we compare with
the sparse representation based demosaicking with a fixed
dictionary on the whole dataset, PSRD with our optimized
CFA performs better than SC [12], SSC [1], and CD [13]
with gaps of 0.67dB, 0.45dB, and 0.59dB, respectively, which
are significant.

We present part of the visual comparison in Fig. 4 and
Fig. 5. We can see that PSRD with our optimized CFA
produces better visual quality than that of other demosaicking
algorithms with their respective best CFAs (Please read the
captions for the descriptions on visual difference.).

The above two comparisons further verify that specifically
optimizing CFAs for a type of demosaicking algorithms is
beneficial in producing high quality demosaicked images.

V. CONCLUSIONS

In this paper, we present a theoretically grounded approach
to design specific CFAs for sparse representation based demo-
saicking, where the dictionary is well-chosen and fixed.
We formulate the CFA design as the minimization of
the mutual coherence with the CFA’s physical realizability
constraints, where most methods for minimizing the mutual
coherence do not apply. We develop a new method to solve
it based on generalized fractional programming. Extensive
experiments on benchmark images demonstrate the superiority
of our design method. Future work will include learning
channel-correlation adaptive dictionaries [57], investigating the
effect of CFA pattern size, and jointly designing the CFA and
dictionary as did for the CS projection matrix [37], [59].

APPENDIX

SOLVING PROBLEM (18)

Substituting (17) into (18), we rewrite problem (18) in more
detail:

min
P∈� max

0≤l≤t

{〈

Gl + η(Pl − P̂t ),P − P̂t
〉

− ẽt
l

}

+ ν

2
‖P − P̂t‖2

F ,

(23)

where the term f (P̂t ) of ϕt (P) in (17) is omitted as this does
not affect the solution. It can be reformulated as:

min
p∈� max

0≤l≤t

{〈

st
l ,p

〉 − êt
l

} + ν

2
‖p − p̂t‖2

2, (24)

where � = {p|p = vec(P),P ∈ �}, st
l = vec(Gl +η(Pl −P̂t)),

p = vec(P), p̂t = vec(P̂t ), and êt
l = ẽt

l + 〈

st
l , p̂t

〉

. Denote
St = (st

0, · · · , st
t ) and êt = (êt

0, · · · , êt
t )

T , then problem (24)
can be reformulated as:

min
p∈�,z z + ν

2
‖p − p̂t‖2

2

s.t. z111 − St T p + êt ≥ 0, (25)

where 111 ∈ R
(t+1)×1. We introduce an auxiliary variable k to

equivalently rewrite problem (25) as follows:

min
p,z,k

z + ν

2
‖p − p̂t‖2

2 + I�(p)+ IR+(k)

s.t. z111 − St T p + êt − k = 0, (26)

where I�(·) and IR+(·) are indicator functions defined on �
and R+, respectively. The indicator function of a set � is
defined as

I�(x) =
⎧

⎨

⎩

0, x ∈ �,
+∞, otherwise.

Problem (26) is a three-block separable convex problem with
linear constraints. In order to avoid expensive matrix inver-
sions, we use the linearized alternating direction method with
parallel splitting and adaptive penalty (LADMPSAP) [60] to
solve it. The convergence of LADMPSAP for solving multi-
block separable convex problems is well established.

The augmented Lagrangian function of problem (26) is:

L(p, z,k, y) = z + ν

2
‖p − p̂t‖2

2 + I�(p)+ IR+(k)

+ 〈y, z111 − St T p + êt − k〉

+ β

2
‖z111 − St T p + êt − k‖2

2, (27)

where y is the Lagrange multiplier and β > 0 is the penalty
parameter which is updated during the iteration.

Then by LADMPSAP, problem (26) can be solved via the
following iterations:

ŷτ = yτ + β(zτ111 − St T pτ + êt − kτ ), (28)

pτ+1 = argmin
p

I�(p)+ θσ

2
‖p − pτ + ∇G(pτ )/(θσ )‖2

2

= π�
(

pτ − ∇G(pτ )/(θσ )) , (29)

zτ+1 = argmin
z

θβ(t + 1)

2
‖z − zτ + ∇F(zτ )/(θβ(t + 1))‖2

2

= zτ − ∇F(zτ )/(θβ(t + 1)), (30)

kτ+1 = argmin
k

IR+(k)+ θβ

2
‖k − kτ + ∇Q(kτ )/(θβ)‖2

2

= max
(

0,kτ − ∇Q(kτ )/(θβ)) , (31)

yτ+1 = yτ + β(zτ+1111 − St T pτ+1 + êt − kτ+1), (32)

where θ is a constant that should be larger than or equal to the
number of blocks in (26), G(p) = ν

2 ‖p−p̂t‖2
2+ β

2 ‖zτ111−St T p+
êt − kτ + ŷτ /β‖2

2 in (29), ∇G(p) = ν(p − p̂t ) − βSt (zτ111 −
St T p+êt −kτ+ŷτ /β) is the derivative of G(p), σ is the largest
eigenvalue of νI + βSt St T , π�(u) is a linear operator that
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Algorithm 4 Algorithm for Solving Problem (26)

projects u onto � , F(z) = z+ β
2 ‖z111−St T pτ+êt −kτ+ŷτ /β‖2

2
in (30), ∇F(z) = 1+β111T (z111−St T pτ + êt −kτ + ŷτ /β) is the
derivative of F(z), Q(k) = β

2 ‖zτ111− St T pτ + êt − k + ŷτ /β‖2
2

in (31), and ∇Q(k) = −β(zτ111 − St T pτ + êt − k + ŷτ /β).
It should be noted that p, z, and k are updated in parallel.

The computation of π�(u) is as follows. We first convert
u into a matrix U ∈ R

m×3m satisfying vec(U) = u. Then
we form C ∈ R

√
m×√

m×3, which satisfies vec(C(:, :, 1)) =
diag(U(:, 1 : m)), vec(C(:, :, 2)) = diag(U(:,m + 1 : 2m)),
and vec(C(:, :, 3)) = diag(U(:, 2m + 1 : 3m)). We next
normalize C to obtain Ĉ such that Ĉ ≥ 0 and
∑

i Ĉ(:, :, i) = 111. We average all nonoverlapping r × c blocks
of Ĉ to produce a valid CFA pattern. With the CFA pattern,
we generate a periodic CFA C̃ ∈ R

√
m×√

m×3 and form
the tentative mosaicking matrix Ũ = (ŨR, ŨG , ŨB), where
ŨR = Diag(vec(C̃(:, :, 1))), ŨG = Diag(vec(C̃(:, :, 2))), and
ŨB = Diag(vec(C̃(:, :, 3))). We finally compute π�(u) by
π�(u) = vec(Ũ).

We update β adaptively by:

βτ+1 =
{

min(βmax, β
τυ), if βτατ ≤ ε1,

βτ , otherwise,
(33)

where βmax is an upper bound of {βk}, υ ≥ 1 is a constant, and
ατ = max{√σ/β‖pτ+1 − pτ‖2,

√
t + 1|zτ+1 − zτ |, ‖kτ+1 −

kτ ‖2}. If β is changed, we recalculate σ as it is the largest
eigenvalue of νI + βSt St T . The stopping criteria are:

βτατ ≤ ε1 and (34)

‖zτ+1111 − St T pτ+1 + êt − kτ+1‖2 ≤ ε2. (35)

We summarize the whole solution process of problem (26)
in Algorithm 4.
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