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Abstract—The heavy-tailed distributions of corrupted outliers and singular values of all channels in low-level vision have proven

effective priors for many applications such as background modeling, photometric stereo and image alignment. And they can be well

modeled by a hyper-Laplacian. However, the use of such distributions generally leads to challenging non-convex, non-smooth and

non-Lipschitz problems, and makes existing algorithms very slow for large-scale applications. Together with the analytic solutions to

‘p-norm minimization with two specific values of p, i.e., p ¼ 1=2 and p ¼ 2=3, we propose two novel bilinear factor matrix norm

minimization models for robust principal component analysis. We first define the double nuclear norm and Frobenius/nuclear hybrid

norm penalties, and then prove that they are in essence the Schatten-1=2 and 2=3 quasi-norms, respectively, which lead to much more

tractable and scalable Lipschitz optimization problems. Our experimental analysis shows that both our methods yield more accurate

solutions than original Schatten quasi-norm minimization, even when the number of observations is very limited. Finally, we apply our

penalties to various low-level vision problems, e.g., text removal, moving object detection, image alignment and inpainting, and show

that our methods usually outperform the state-of-the-art methods.

Index Terms—Robust principal component analysis, rank minimization, Schatten-p quasi-norm, ‘p-norm, double nuclear norm penalty,

Frobenius/nuclear norm penalty, alternating direction method of multipliers (ADMM)

Ç

1 INTRODUCTION

THE sparse and low-rank priors have been widely used in
many real-world applications in computer vision and

pattern recognition, such as image restoration [1], face recog-
nition [2], subspace clustering [3], [4], [5] and robust princi-
pal component analysis [6] (RPCA, also called low-rank and
sparse matrix decomposition in [7], [8] or robust matrix com-
pletion in [9]). Sparsity plays an important role in various
low-level vision tasks. For instance, it has been observed that
the gradient of natural scene images can be better modeled
with a heavy-tailed distribution such as hyper-Laplacian dis-
tributions (pðxÞ / e�kjxj

a
, typically with 0:5 � a � 0:8, which

correspond to non-convex ‘p-norms) [10], [11], as exhibited
by the sparse noise/outliers in low-level vision problems [12]
shown in Fig. 1. To induce sparsity, a principledway is to use
the convex ‘1-norm [6], [13], [14], [15], [16], [17], which is the
closest convex relaxation of the sparser ‘p-norm, with

compressed sensing being a prominent example. However,
it has been shown in [18] that the ‘1-norm over-penalizes
large entries of vectors and results in a biased solution.
Compared with the ‘1-norm, many non-convex surrogates
of the ‘0-norm listed in [19] give a closer approximation,
e.g., SCAD [18] and MCP [20]. Although the use of hyper-
Laplacian distributions makes the problems non-convex,
fortunately an analytic solution can be derived for two spe-
cific values of p, 1=2 and 2=3, by finding the roots of a
cubic and quartic polynomial, respectively [10], [21], [22].
The resulting algorithm can be several orders of magnitude
faster than existing algorithms [10].

As an extension from vectors to matrices, the low-rank
structure is the sparsity of the singular values of a matrix.
Rank minimization is a crucial regularizer to induce a low-
rank solution. To solve such a problem, the rank function is
usually relaxed by its convex envelope [5], [23], [24], [25],
[26], [27], [28], [29], the nuclear norm (i.e., the sum of the sin-
gular values, also known as the trace norm or Schatten-1
norm [26], [30]). By realizing the intimate relationship
between the ‘1-norm and nuclear norm, the latter also over-
penalizes large singular values, that is, it may make the
solution deviate from the original solution as the ‘1-norm
does [19], [31]. Compared with the nuclear norm, the Schat-
ten-q norm for 0 < q < 1 is equivalent to the ‘q-norm on
singular values and makes a closer approximation to the
rank function [32], [33]. Nie et al. [31] presented an efficient
augmented Lagrange multiplier (ALM) method to solve the
joint ‘p-norm and Schatten-q norm (LpSq) minimization. Lai
et al. [32] and Lu et al. [33] proposed iteratively reweighted
least squares methods for solving Schatten quasi-norm min-
imization problems. However, all these algorithms have to
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be solved iteratively, and involve singular value decomposi-
tion (SVD) in each iteration, which occupies the largest com-
putation cost, Oðminðm;nÞmnÞ [34], [35].

It has been shown in [36] that the singular values of non-
local matrices in natural images usually exhibit a heavy-

tailed distribution (pðsÞ / e�kjsj
a
), as well as the similar

phenomena in natural scenes [37], [38], as shown in Fig. 2.
Similar to the case of heavy-tailed distributions of sparse
outliers, the analytic solutions can be derived for the two
specific cases of a, 1=2 and 2=3. However, such algorithms
have high per-iteration complexity Oðminðm;nÞmnÞ. Thus,
we naturally want to design equivalent, tractable and
scalable forms for the two cases of the Schatten-q quasi-
norm, q ¼ 1=2 and 2=3, which can fit the heavy-tailed dis-
tribution of singular values closer than the nuclear norm,
as analogous to the superiority of the ‘p quasi-norm
(hyper-Laplacian priors) to the ‘1-norm (Laplacian priors).

We summarize the main contributions of this work as fol-
lows. 1) By taking into account the heavy-tailed distributions
of both sparse noise/outliers and singular values of matrices,
we propose two novel tractable bilinear factor matrix norm
minimization models for RPCA, which can fit empirical dis-
tributions very well to corrupted data. 2) Different from the
definitions in our previous work [34], we define the double
nuclear norm and Frobenius/nuclear hybrid norm penalties
as tractable low-rank regularizers. Then we prove that they
are in essence the Schatten-1=2 and 2=3 quasi-norms, respec-
tively. The solution of the resulting minimization problems
only requires SVDs on two much smaller factor matrices as
compared with the much larger ones required by existing
algorithms. Therefore, our algorithms can reduce the per-iter-
ation complexity from Oðminðm;nÞmnÞ to OðmndÞ, where
d� m;n in general. In particular, our penalties are Lipschitz,
and more tractable and scalable than original Schatten quasi-
norm minimization, which is non-Lipschitz and generally
NP-hard [32], [39]. 3) Moreover, we present the convergence
property of the proposed algorithms for minimizing our
RPCA models and provide their proofs. We also extend our
algorithms to solve matrix completion problems, e.g., image
inpainting. 4)We empirically study both of our bilinear factor
matrix norm minimizations and show that they outperform
original Schatten norm minimization, even with only a few
observations. Finally, we apply the defined low-rank regular-
izers to address various low-level vision problems, e.g., text
removal, moving object detection, and image alignment and
inpainting, and obtain superior results than existingmethods.

2 RELATED WORK

In this section, we mainly discuss some recent advances in
RPCA, and briefly review some existing work on RPCA and

its applications in computer vision (readers may see [6] for
a review). RPCA [24], [40] aims to recover a low-rank matrix
L 2 Rm�n (m � n) and a sparse matrix S 2 Rm�n from cor-
rupted observationsD ¼ L� þ S� 2 Rm�n as follows:

min
L;S

� rankðLÞ þ kSk‘0 ; s.t.; Lþ S ¼ D; (1)

where k 	 k‘0 denotes the ‘0-norm
1 and � > 0 is a regulariza-

tion parameter. Unfortunately, solving (1) is NP-hard. Thus,
we usually use the convex or non-convex surrogates to
replace both of the terms in (1), and formulate this problem
into the following more general form

min
L;S

�kLkqSq þ kSk
p
‘p
; s.t.;PVðLþ SÞ ¼ PVðDÞ; (2)

where in general p; q 2 ½0; 2
, kSk‘p and kLkSq are depicted in

Table 1 and can be seen as the loss term and regularized

term, respectively, and PV is the orthogonal projection onto

the linear subspace of matrices supported on V :¼ fði; jÞj
Dij is observedg: PVðDÞij ¼ Dij if ði; jÞ 2 V and PVðDÞij ¼ 0

otherwise. If V is a small subset of the entries of the matrix,
(2) is also known as the robust matrix completion problem

as in [9], and it is impossible to exactly recover S� [41]. As

analyzed in [42], we can easily see that the optimal solution

SVc ¼ 0, where Vc is the complement of V, i.e., the index set

of unobserved entries. When p ¼ 2 and q ¼ 1, (2) becomes a

nuclear norm regularized least squares problem as in [43]

(e.g., image inpainting in Section 6.3.4).

2.1 Convex Nuclear Norm Minimization

In [6], [40], [44], both of the non-convex terms in (1) are
replaced by their convex envelopes, i.e., the nuclear norm
(q ¼ 1) and the ‘1-norm (p ¼ 1), respectively.

min
L;S

�kLk� þ kSk‘1 ; s.t.; Lþ S ¼ D: (3)

Wright et al. [40] and Cand�es et al. [6] proved that, under
some mild conditions, the convex relaxation formulation (3)
can exactly recover the low-rank and sparse matrices
ðL�; S�Þ with high probability. The formulation (3) has been
widely used in many computer vision applications, such as

Fig. 1. Sparsity priors. Left: A typical image of video sequences. Middle:
the sparse component recovered by [6]. Right: the empirical distribution
of the sparse component (blue solid line), along with a hyper-Laplacian
fit with a ¼ 1=2 (green dashdot line) and a ¼ 2=3 (red dotted line).

Fig. 2. The heavy-tailed empirical distributions (bottom) of the singular
values of the three channels of these three images (top).

1. Strictly speaking, the ‘0-norm is not actually a norm, and is
defined as the number of non-zero elements. When p � 1, kSk‘p strictly
defines a norm which satisfies the three norm conditions, while it
defines a quasi-normwhen 0 < p < 1. Due to the relationship between
kSk‘p and kLkSq , the latter has the same cases as the former.
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object detection and background subtraction [17], image
alignment [50], low-rank texture analysis [29], image and
video restoration [51], and subspace clustering [27]. This is
mainly because the optimal solutions of the sub-problems
involving both terms in (3) can be obtained by two well-
known proximal operators: the singular value thresholding
(SVT) operator [23] and the soft-thresholding operator [52].
The ‘1-norm penalty in (3) can also be replaced by the
‘1;2-norm as in outlier pursuit [28], [53], [54], [55] and sub-
space learning [5], [56], [57].

To efficiently solve the popular convex problem (3), vari-
ous first-order optimization algorithms have been pro-
posed, especially the alternating direction method of
multipliers [58] (ADMM, or also called inexact ALM
in [44]). However, they all involve computing the SVD of a
large matrix of size m� n in each iteration, and thus suffer
from high computational cost, which severely limits their
applicability to large-scale problems [59], as well as existing
Schatten-q quasi-norm (0 < q < 1) minimization algo-
rithms such as LpSq [31]. While there have been many
efforts towards fast SVD computation such as partial
SVD [60], the performance of those methods is still unsatis-
factory for many real applications [59], [61].

2.2 Non-Convex Formulations

To address this issue, Shen et al. [47] efficiently solved the
RPCA problem by factorizing the low-rank component into
two smaller factor matrices, i.e., L ¼ UV T as in [62], where
U 2 Rm�d, V 2 Rn�d, and usually d� minðm;nÞ, as well as
the matrix tri-factorization (MTF) [48] and factorized

data [63] cases. In [16], [42], [64], [65], [66], the column-
orthonormal constraint is imposed on the first factor matrix
U . According to the following matrix property, the original
convex problem (3) can be reformulated as a smaller matrix
nuclear norm minimization problem.

Property 1. For any matrix L 2 Rm�n and L ¼ UV T . If U has
orthonormal columns, i.e., UTU ¼ Id, then kLk� ¼ kV k�.

Cabral et al. [49] and Kim et al. [15] replaced the nuclear
norm regularizer in (3) with the equivalent non-convex for-
mulation stated in Lemma 1, and proposed scalable bilinear
spectral regularized models, similar to collaborative filter-
ing applications in [26], [67]. In [15], an elastic-net regular-
ized matrix factorization model was proposed for subspace
learning and low-level vision problems.

Besides the popular nuclear norm, some variants of the
nuclear norm were presented to yield better performance.
Gu et al. [37] proposed a weighted nuclear norm (i.e.,
kLkw;� ¼

P
i wisi, where w ¼ ½w1; . . . ; wn
T ), and assigned

different weights wi to different singular values such that
the shrinkage operator becomes more effective. Hu
et al. [38] first used the truncated nuclear norm (i.e.,
kLkd ¼

Pn
i¼dþ1 si) to address image recovery problems.

Subsequently, Oh et al. [45] proposed an efficient partial sin-
gular value thresholding (PSVT) algorithm to solve many
RPCA problems of low-level vision. The formulations men-
tioned above are summarized in Table 2.

3 BILINEAR FACTOR MATRIX NORM MINIMIZATION

In this section, we first define the double nuclear norm and
Frobenius/nuclear hybrid norm penalties, and then prove
the equivalence relationships between them and the Schat-
ten quasi-norms. Incorporating with hyper-Laplacian priors
of both sparse noise/outliers and singular values, we pro-
pose two novel bilinear factor matrix norm regularized
models for RPCA. Although the two models are still non-
convex and even non-smooth, they are more tractable and
scalable optimization problems, and their each factor matrix
term is convex. On the contrary, the original Schatten quasi-
norm minimization problem is very difficult to solve

TABLE 2
Comparison of Various RPCA Models and Their Properties

Model Objective function Constraints Parameters Convex?
Per-iteration
Complexity

RPCA [6], [44] �kLk� þ kSk‘1 Lþ S ¼ D � Yes Oðmn2Þ
PSVT [45] �kLkd þ kSk‘1 Lþ S ¼ D �; d No Oðmn2Þ
WNNM [46] �kLkw;� þ kSk‘1 �

LMaFit [47] kD� Lk‘1 UV T ¼ L d No OðmndÞ
MTF [48] �kWk� þ kSk‘1 UWV Tþ S ¼ D;UTU ¼ V TV ¼ Id �; d

RegL1 [16] �kV k� þ kPVðD� UV T Þk‘1 UTU ¼ Id �; d

Unifying [49] �
2 ðkUk

2
F þ kV k

2
F Þ þ kPVðD� LÞk‘1 UV T ¼ L �; d

factEN [15] �1
2 ðkUk

2
Fþ kV k

2
F Þ þ

�2
2 kLk

2
Fþ kPVðD� LÞk‘1 UV T ¼ L �1; �2; d

LpSq [31] �kLkqSq þ kPVðD� LÞkp‘p ð0 < p; q�1Þ Lþ S ¼ D � No Oðmn2Þ
ðS+LÞ1=2 �

2 ðkUk� þ kV k�Þ þ kPVðSÞk1=2‘1=2
Lþ S ¼ D;UV T ¼ L �; d No OðmndÞ

ðS+LÞ2=3 �
3 ðkUk

2
F þ 2kV k�Þ þ kPVðSÞk2=3‘2=3

Note that U2Rm�d and V 2Rn�d are the factor matrices of L, i.e., L ¼ UV T .

TABLE 1
The Norms of Sparse and Low-Rank Matrices

p; q Sparsity Low-rankness

0 kSk‘0 ‘0-norm kLkS0 ¼ ksk‘0 rank

ð0; 1Þ kSk‘p ¼ ð
P
jSijjpÞ1=p ‘p-norm kLkSq ¼ ð

P
sq
kÞ
1=q Schatten-q norm

1 kSk‘1 ¼
P
jSijj ‘1-norm kLk� ¼

P
sk nuclear norm

2 kSkF ¼
ffiffiffiffiffiffiffiffiffiffiffiP

S2
ij

q
Frobenius norm kLkF ¼

ffiffiffiffiffiffiffiffiffiffiP
s2
k

q
Frobenius norm

Let s ¼ ðs1; . . . ; srÞ2Rr be the non-zero singular values of L2Rm�n.
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because it is generally non-convex, non-smooth, and non-
Lipschitz, as well as the ‘q quasi-norm [39].

As in some collaborative filtering applications [26], [67],
the nuclear norm has the following alternative non-convex
formulations.

Lemma 1. For any matrix X 2 Rm�n of rank at most r � d, the
following equalities hold

kXk� ¼ min
U2Rm�d;V 2Rn�d:X¼UV T

1

2
ðkUk2F þ kV k

2
F Þ

¼ min
U;V :X¼UV T

kUkFkV kF :
(4)

The bilinear spectral penalty in the first equality of (4) has
been widely used in low-rank matrix completion and recov-
ery problems, such as RPCA [15], [49], online RPCA [68],
matrix completion [69], and image inpainting [25].

3.1 Double Nuclear Norm Penalty

Inspired by the equivalence relation between the nuclear
norm and the bilinear spectral penalty, our double nuclear
norm (D-N) penalty is defined as follows.

Definition 1. For any matrix X 2 Rm�n of rank at most r � d,
we decompose it into two factor matrices U 2 Rm�d and
V 2 Rn�d such that X ¼ UV T . Then the double nuclear norm
penalty ofX is defined as

kXkD�N ¼ min
U;V :X¼UV T

1

4
ðkUk� þ kV k�Þ

2: (5)

Different from the definition in [34], [70], i.e.,
minU;V :X¼UV T kUk�kV k�, which cannot be used directly to
solve practical problems, Definition 1 can be directly used
in practical low-rank matrix completion and recovery prob-
lems, e.g., RPCA and image recovery. Analogous to the
well-known Schatten-q quasi-norm [31], [32], [33], the dou-
ble nuclear norm penalty is also a quasi-norm, and their
relationship is stated in the following theorem.

Theorem 1. The double nuclear norm penalty k 	 kD�N is a
quasi-norm, and also the Schatten-1=2 quasi-norm, i.e.,

kXkD�N ¼ kXkS1=2 : (6)

To prove Theorem 1, we first give the following lemma,
which is mainly used to extend the well-known trace
inequality of John von Neumann [71], [72].

Lemma 2. Let X 2 Rn�n be a symmetric positive semi-definite
(PSD) matrix and its full SVD be UXSXU

T
X with SX ¼

diagð�1; . . . ; �nÞ. Suppose Y is a diagonal matrix (i.e., Y ¼
diagðt1; . . . ; tnÞ), and if �1 � 	 	 	 � �n � 0 and 0 � t1 � 	 	 	
� tn, then

TrðXTY Þ �
Xn
i¼1

�iti:

Lemma 2 can be seen as a special case of the well-known
von Neumann’s trace inequality, and its proof is provided
in the Supplementary Materials, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2017.2748590.

Lemma 3. For any matrix X ¼ UV T 2 Rm�n, U 2 Rm�d and
V 2 Rn�d, the following inequality holds

1

2
kUk� þ kV k�ð Þ � kXk1=2S1=2

:

Proof. Let U ¼ LUSUR
T
U and V ¼ LVSV R

T
V be the thin SVDs

of U and V , where LU 2 Rm�d, LV 2 Rn�d, andRU;SU;RV ;
SV 2 Rd�d. Let X ¼ LXSXR

T
X , where the columns of

LX 2 Rm�d and RX 2 Rn�d are the left and right singular
vectors associated with the top d singular values ofX with
rank at most r ðr � dÞ, and SX ¼ diagð½s1ðXÞ; . . . ; srðXÞ;
0; . . . ; 0
Þ 2 Rd�d. Suppose W1 ¼ LXSUL

T
X, W2 ¼ LXS

1
2
US

1
2
XL

T
X

and W3 ¼ LXSXL
T
X , we first construct the following PSD

matricesM1 2 R2m�2m and S1 2 R2m�2m

M1 ¼
�LXS

1
2
U

LXS
1
2
X

24 35 �S1
2
UL

T
X S

1
2
XL

T
X

h i
¼

W1 �W2

�WT
2 W3

� �
� 0;

S1 ¼
In

LUS
�12
U LT

U

" #
In LUS

�12
U LT

U

h i
¼

In LUS
�12
U LT

U

LUS
�12
U LT

U LUS
�1
U LT

U

24 35 � 0:

Because the trace of the product of two PSD matrices
is always non-negative (see the proof of Lemma 6
in [73]), we have

Tr
In LUS

�12
U LT

U

LUS
�12
U LT

U LUS
�1
U LT

U

24 35 W1 �W2

�WT
2 W3

� �0@ 1A � 0:

By further simplifying the above expression, we obtain

TrðW1Þ � 2TrðLUS
�12
U LT

UW
T
2 Þ þ TrðLUS

�1
U LT

UW3Þ � 0: (7)

RecallingX ¼ UV T and LXSXR
T
X ¼ LUSUR

T
URVSV L

T
V ,

thus LT
ULXSX ¼ SUR

T
URVSV L

T
V RX. Due to the orthonor-

mality of the columns of LU , RU , LV , RV , LX and RX, and
using the well-known von Neumann’s trace inequal-
ity [71], [72], we obtain

TrðLUS
�1
U LT

UW3Þ ¼ TrðLUS
�1
U LT

ULXSXL
T
XÞ

¼ TrðLUS
�1
U SUR

T
URVSV L

T
V RXL

T
XÞ

¼ TrðLUR
T
URVSV L

T
V RXL

T
XÞ

� TrðSV Þ ¼ kV k�:

(8)

Using Lemma 2, we have

TrðLUS
�12
U LT

UW
T
2 Þ ¼ TrðLUS

�12
U LT

ULXS
1
2
US

1
2
XL

T
XÞ

¼ TrðS�
1
2

U LT
ULXS

1
2
US

1
2
XL

T
XLUÞ

¼ TrðS�
1
2

U O1S
1
2
US

1
2
XO

T
1 Þ

� TrðS�
1
2

U S
1
2
US

1
2
XÞ ¼ TrðS

1
2
XÞ ¼ kXk

1=2
S1=2

;

(9)

where O1 ¼ LT
ULX 2 Rd�d, and it is easy to verify that

O1S
1
2
US

1
2
XO

T
1 is a symmetric PSD matrix. Using (7), (8), (9)

and TrðW1Þ ¼ kUk�, we have kUk� þ kV k� � 2kXk1=2S1=2
. tu

The detailed proof of Theorem 1 is provided in the
Supplementary Materials, available online. According to
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Theorem 1, it is easy to verify that the double nuclear norm
penalty possesses the following property [34].

Property 2. Given a matrix X 2 Rm�n with rankðXÞ � d, the
following equalities hold

kXkD�N ¼ min
U2Rm�d;V2Rn�d:X¼UV T

kUk� þ kV k�
2

� �2

¼ min
U;V :X¼UV T

kUk�kV k�:

3.2 Frobenius/Nuclear Norm Penalty

Inspired by the definitions of the bilinear spectral and dou-
ble nuclear norm penalties mentioned above, we define a
Frobenius/nuclear hybrid norm (F-N) penalty as follows.

Definition 2. For any matrix X 2 Rm�n of rank at most r � d,
we decompose it into two factor matrices U 2 Rm�d and
V 2 Rn�d such that X ¼ UV T . Then the Frobenius/nuclear
hybrid norm penalty ofX is defined as

kXkF�N ¼ min
U;V :X¼UV T

ðkUk2F þ 2kV k�Þ=3
h i3=2

: (10)

Different from the definition in [34], i.e., minU;V :X¼UV T

kUkFkV k�, Definition 2 can also be directly used in practical
problems. Analogous to the double nuclear norm penalty,
the Frobenius/nuclear hybrid norm penalty is also a quasi-
norm, as stated in the following theorem.

Theorem 2. The Frobenius/nuclear hybrid norm penalty,
k 	 kF�N, is a quasi-norm, and is also the Schatten-2=3 quasi-
norm, i.e.,

kXkF�N ¼ kXkS2=3 : (11)

To prove Theorem 2, we first give the following lemma.

Lemma 4. For any matrix X ¼ UV T 2 Rm�n, U 2 Rm�d and
V 2 Rn�d, the following inequality holds

1

3
kUk2F þ 2kV k�
� �

� kXk2=3S2=3
:

Proof. To prove this lemma, we use the same notations as in
the proof of Lemma 3, e.g., X ¼ LXSXR

T
X, U ¼ LUSUR

T
U

and V ¼ LVSV R
T
V denote the thin SVDs of U and V ,

respectively. Suppose W 1 ¼ RXSV R
T
X , W 2 ¼ RXS

1
2
VS

2
3
XR

T
X

and W 3 ¼ RXS
4
3
XR

T
X , we first construct the following PSD

matricesM2 2 R2m�2m and S2 2 R2m�2m

M2 ¼
�RXS

1
2
V

RXS
2
3
X

24 35 �S1
2
V R

T
X S

2
3
XR

T
X

� �

¼
W 1 �W 2

�WT

2 W 3

" #
� 0;

S2 ¼
In

LVS
�12
V LT

V

" #
In LVS

�12
V LT

V

h i

¼
In LVS

�12
V LT

V

LVS
�12
V LT

V LVS
�1
V LT

V

24 35 � 0:

Similar to Lemma 3, we have the following inequality:

Tr
In LVS

�12
V LT

V

LVS
�12
V LT

V LVS
�1
V LT

V

24 35 W 1 �W 2

�WT

2 W 3

� �0@ 1A � 0:

By further simplifying the above expression, we also
obtain

TrðW 1Þ � 2TrðLVS
�12
V LT

VW
T

2 Þ þ TrðLVS
�1
V LT

VW 3Þ � 0: (12)

Since LXSXR
T
X ¼ LUSUR

T
URVSV L

T
V , L

T
V RXSX ¼ ðLT

XLU

SUR
T
URVSV ÞT ¼ SV R

T
V RUSUL

T
ULX. Due to the orthonor-

mality of the columns of LU , RU , LV , RV , LX and RX, and

using the von Neumann’s trace inequality [71], [72], we

have

TrðLVS
�1
V LT

VW 3Þ ¼ TrðLVS
�1
V LT

V RXSXS
1
3
XR

T
XÞ

¼ TrðLVS
�1
V SV R

T
V RUSUL

T
ULXS

1
3
XR

T
XÞ

¼ TrðRT
XLV R

T
V RUSUL

T
ULXS

1
3
XÞ

� TrðSUS
1
3
XÞ �

1

2
kUk2F þ kXk

2=3
S2=3

� �
:

(13)By Lemma 2, we also have

TrðLVS
�12
V LT

VW
T

2 Þ ¼ TrðLVS
�12
V LT

V RXS
1
2
VS

2
3
XR

T
XÞ

¼ TrðS�
1
2

V LT
V RXS

1
2
VS

2
3
XR

T
XLV Þ

¼ TrðS�
1
2

V O2S
1
2
VS

2
3
XO

T
2 Þ

� TrðS�
1
2

V S
1
2
VS

2
3
XÞ ¼ TrðS

2
3
XÞ ¼ kXk

2=3
S2=3

;

(14)

where O2 ¼ LT
V RX 2 Rd�d, and it is easy to verify that

O2S
1
2
VS

2
3
XO

T
2 is a symmetric PSD matrix. Using (12), (13),

(14), and TrðW 1Þ ¼ kV k�, then we have kUk2F þ 2kV k� �
3kXk2=3S2=3

: tu

According to Theorem 2 (see the Supplementary Materi-
als, available online, for its detailed proof), it is easy to verify
that the Frobenius/nuclear hybrid norm penalty possesses
the following property [34].

Property 3. For any matrix X 2 Rm�n with rankðXÞ ¼ r � d,
the following equalities hold

kXkF�N ¼ min
U2Rm�d;V2Rn�d:X¼UV T

kUk2F þ 2kV k�
3

 !3=2

¼ min
U;V :X¼UV T

kUkFkV k�:

Similar to the relationship between the Frobenius norm
and nuclear norm, i.e., kXkF � kXk� � rankðXÞkXkF [26],
the bounds hold for between both the double nuclear norm
and Frobenius/nuclear hybrid norm penalties and the
nuclear norm, as stated in the following property.

Property 4. For any matrix X 2 Rm�n, the following inequal-
ities hold

kXk� � kXkF�N � kXkD�N � rankðXÞkXk�:
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The proof of Property 4 is similar to that in [34]. More-
over, both the double nuclear norm and Frobenius/nuclear
hybrid norm penalties naturally satisfy many properties of
quasi-norms, e.g., the unitary-invariant property. Obvi-
ously, we can find that Property 4 in turn implies that any
low F-N or D-N penalty is also a low nuclear norm
approximation.

3.3 Problem Formulations

Without loss of generality, we can assume that the unknown
entries ofD are set to zero (i.e., PVcðDÞ ¼ 0), and SVc may be
any values2 (i.e., SVc 2 ð�1;þ1Þ) such that PVcðLþ SÞ ¼
PVcðDÞ. Thus, the constraint with the projection operator PV

in (2) is considered instead of just Lþ S ¼ D as in [42].
Together with hyper-Laplacian priors of sparse components,
we use kLk1=2D�N and kLk2=3F�N defined above to replace kLkqSq in
(2), and present the following double nuclear norm and Fro-
benius/nuclear hybrid norm penalized RPCAmodels:

min
U;V;L;S

�

2
kUk� þ kV k�ð Þ þ kPVðSÞk1=2‘1=2

;

s.t.; UV T ¼ L;Lþ S ¼ D

(15)

min
U;V;L;S

�

3
kUk2F þ 2kV k�
� �

þ kPVðSÞk2=3‘2=3
;

s.t.; UV T ¼ L;Lþ S ¼ D:

(16)

From the two proposed models (15) and (16), one can
easily see that the norm of each bilinear factor matrix is con-
vex, and they are much more tractable and scalable optimi-
zation problems than the original Schatten quasi-norm
minimization problem as in (2).

4 OPTIMIZATION ALGORITHMS

To efficiently solve both our challenging problems (15)
and (16), we need to introduce the auxiliary variables bU
and bV , or only bV to split the interdependent terms such
that they can be solved independently. Thus, we can
reformulate Problems (15) and (16) into the following
equivalent forms

min
U;V;L;S;bU;bV �2 k bUk� þ k bV k�

� �
þ kPVðSÞk1=2‘1=2

;

s.t.; bU ¼ U; bV ¼ V; UV T ¼ L; Lþ S ¼ D

(17)

min
U;V;L;S;bV �3 kUk2F þ 2k bV k�� �

þ kPVðSÞk2=3‘2=3
;

s.t.; bV ¼ V; UV T ¼ L; Lþ S ¼ D:

(18)

4.1 Solving (17) via ADMM

Inspired by recent progress on alternating direction meth-
ods [44], [58], we mainly propose an efficient algorithm
based on the alternating direction method of multipliers [58]
(ADMM, also known as the inexact ALM [44]) to solve the
more complex problem (17), whose augmented Lagrangian
function is given by

LmðU; V; L; S; bU; bV ; fYigÞ ¼
�

2
ðk bUk� þ k bV k�Þ þ kPVðSÞk

1
2
‘1
2

þ hY1; bU � Ui þ hY2; bV � V i þ hY3; UV
T � Li þ hY4; Lþ S �Di

þ m

2
k bU � Uk2F þ k bV � V k2F þ kUV T � Lk2F þ kLþ S �Dk2F
� �

;

where m > 0 is the penalty parameter, h	; 	i represents the
inner product operator, and Y1 2 Rm�d, Y2 2 Rn�d and
Y3; Y4 2 Rm�n are Lagrange multipliers.

4.1.1 Updating Ukþ1 and Vkþ1
To update Ukþ1 and V kþ1, we consider the following optimi-
zation problems

min
U
k bUk � U þ m�1k Y k

1 k
2
F þ kUV T

k � Lk þ m�1k Y k
3 k

2
F ; (19)

min
V
k bVk � V þ m�1k Y k

2 k
2
F þ kUkþ1V

T � Lk þ m�1k Y k
3 k

2
F : (20)

Both (19) and (20) are least squares problems, and their opti-
mal solutions are given by

Ukþ1 ¼ ð bUk þ m�1k Y k
1 þMkVkÞðId þ V T

k VkÞ�1; (21)

Vkþ1 ¼ ð bVk þ m�1k Y k
2 þMT

k Ukþ1ÞðId þ UT
kþ1Ukþ1Þ�1; (22)

where Mk ¼ Lk � m�1k Y k
3 , and Id denotes an identity matrix

of size d� d.

Algorithm 1. ADMM for Solving ðS+LÞ1=2 Problem (17)

Input: PVðDÞ 2 Rm�n, the given rank d, and �.
Initialize: m0, r > 1, k ¼ 0, and �.
1: while not converged do
2: while not converged do
3: Update Ukþ1 and Vkþ1 by (21) and (22).

4: Compute bUkþ1 and bVkþ1 via the SVT operator [23].
5: Update Lkþ1 and Skþ1 by (26) and (29).
6: end while== Inner loop
7: Update the multipliers by

Y kþ1
1 ¼ Y k

1 þ mkð bUkþ1 � Ukþ1Þ;
Y kþ1
2 ¼ Y k

2 þ mkð bVkþ1 � Vkþ1Þ;
Y kþ1
3 ¼ Y k

3 þ mkðUkþ1V
T
kþ1 � Lkþ1Þ;

Y kþ1
4 ¼ Y k

4 þ mkðLkþ1 þ Skþ1 �DÞ.
8: Update mkþ1 by mkþ1 ¼ rmk.
9: k kþ 1.
10: end while== Outer loop
Output Ukþ1 and Vkþ1.

4.1.2 Updating bUkþ1 and bVkþ1
To solve bUkþ1 and bVkþ1, we fix the other variables and solve
the following optimization problems

minbU �

2
k bUk� þ mk

2
k bU � Ukþ1 þ Y k

1 =mkk2F ; (23)

minbV �

2
k bV k� þ mk

2
k bV � Vkþ1 þ Y k

2 =mkk2F : (24)

Both (23) and (24) are nuclear norm regularized least
squares problems, and their closed-form solutions can be
given by the so-called SVT operator [23], respectively.

2. Considering the optimal solution SVc ¼ 0, SVc must be set to 0 for
the expected output S.
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4.1.3 Updating Lkþ1
To update Lkþ1, we can obtain the following optimization
problem

min
L
kUkþ1V

T
kþ1 � Lþ m�1k Y k

3 k
2
F þ kLþ Sk �Dþ m�1k Y k

4 k
2
F : (25)

Since (25) is a least squares problem, and thus its closed-
form solution is given by

Lkþ1 ¼
1

2
Ukþ1V

T
kþ1 þ m�1k Y k

3 � Sk þD� m�1k Y k
4

	 

: (26)

4.1.4 Updating Skþ1
By keeping all other variables fixed, Skþ1 can be updated by
solving the following problem

min
S
kPVðSÞk1=2‘1=2

þ mk

2
kS þ Lkþ1 �Dþ m�1k Y k

4 k
2
F : (27)

Generally, the ‘p-norm (0 < p < 1) leads to a non-convex,
non-smooth, and non-Lipschitz optimization problem [39].
Fortunately, we can efficiently solve (27) by introducing the
following half-thresholding operator [21].

Proposition 1. For any matrix A 2 Rm�n, and X� 2 Rm�n is
an ‘1=2 quasi-norm solution of the following minimization

min
X
kX �Ak2F þ gkXk1=2‘1=2

; (28)

then the solution X� can be given by X� ¼ HgðAÞ, where
the half-thresholding operatorHgð	Þ is defined as

HgðaijÞ ¼
2
3 aij

h
1þ cos

�
2p�2fg ðaijÞ

3

�i
; jaijj >

ffiffiffiffiffiffiffi
54g2

3
p

4 ;

0; otherwise;

8<:
where fgðaijÞ ¼ arccosðg8 ðjaijj=3Þ

�3=2Þ.

Before giving the proof of Proposition 1, we first give the
following lemma [21].

Lemma 5. Let y 2 Rl�1 be a given vector, and t > 0. Suppose
that x� 2 Rl�1 is a solution of the following problem,

min
x
kBx� yk22 þ tkxk1=2‘1=2

:

Then for any real parameter m 2 ð0;1Þ, x� can be expressed as
x� ¼ Htmð’mðx�ÞÞ, where ’mðx�Þ ¼ x� þ mBT ðy�Bx�Þ.

Proof. The formulation (28) can be reformulated as the fol-
lowing equivalent form

min
vecðXÞ

kvecðXÞ � vecðAÞk22 þ gkvecðXÞk1=2‘1=2
:

Let B ¼ Imn, m ¼ 1, and using Lemma 5, the closed-form
solution of (28) is given by vecðX�Þ ¼ HgðvecðAÞÞ. tu

Using Proposition 1, the closed-form solution of (27) is

Skþ1 ¼PV H2=mk
ðD� Lkþ1 � m�1k Y k

4 Þ
	 


þ P?V D� Lkþ1 � m�1k Y k
4

	 
 (29)

where P?V is the complementary operator of PV. Alterna-
tively, Zuo et al. [22] proposed a generalized shrinkage-
thresholding operator to iteratively solve ‘p-norm minimi-
zation with arbitrary p values, i.e., 0 � p < 1, and achieve a
higher efficiency.

Based on the description above, we develop an efficient
ADMM algorithm to solve the double nuclear norm penal-
ized problem (17), as outlined in Algorithm 1. To further
accelerate the convergence of the algorithm, the penalty
parameter m, as well as r, are adaptively updated by the
strategy as in [44]. The varying m, together with shrinkage-
thresholding operators such as the SVT operator, sometimes
play the role of adaptive selection on the rank of matrices or
the number of non-zeros elements. We found that updating
fUk; Vkg, f bUk; bVkg, Lk and Sk just once in the inner loop is
sufficient to generate a satisfying accurate solution of (17),
so also called inexact ALM, which is used for computational
efficiency. In addition, we initialize all the elements of the
Lagrange multipliers Y1, Y2 and Y3 to 0, while all elements
in Y4 are initialized by the same way as in [44].

4.2 Solving (18) via ADMM

Similar to Algorithm 1, we also propose an efficient ADMM
algorithm to solve (18) (i.e., Algorithm 2), and provide the
details in the SupplementaryMaterials, available online. Since
the update schemes ofUk, Vk, bVk andLk are very similar to that
of Algorithm 1,we discuss their major differences below.

By keeping all other variables fixed, Skþ1 can be updated
by solving the following problem

min
S
PVðSÞ 2=3

‘2=3
þ mk

2

��� ���S þ Lkþ1 �Dþ m�1k Y k
3

��� ���2
F
: (30)

Inspired by [10], [22], [74], we introduce the following two-
thirds-thresholding operator to efficiently solve (30).

Proposition 2. For any matrix C 2 Rm�n, and X� 2 Rm�n is
an ‘2=3 quasi-norm solution of the following minimization

minX kX � Ck2F þ gkXk2=3‘2=3
; (31)

then the solution X� can be given by X� ¼ T gðCÞ, where
the two-thirds-thresholding operator T gð	Þ is defined as

T gðcijÞ ¼
sgnðcijÞ cg ðcijÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jcij j

cg ðcijÞ
�c2

g ðcijÞ
q� �3

8 ; jcijj > 2
ffiffiffiffiffiffi
3g3

4
p
3 ;

0; otherwise;

8><>:
where cgðcijÞ ¼ 2ffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
p

coshðarccoshð
27c2

ij

16 g�3=2Þ=3Þ
r

, and

sgnð	Þ is the sign function.

Before giving the proof of Proposition 2, we first give the
following lemma [22], [74].

Lemma 6. Let y 2 R be a given real number, and t > 0. Sup-
pose that x� 2 R is a solution of the following problem,

min
x

x2 � 2xyþ tjxj2=3: (32)

Then x� has the following closed-form thresholding formula

x� ¼
sgnðyÞ ctðyÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jyj
ctðyÞ

�c2
t ðyÞ

q� �3

8 ; jyj > 2
ffiffiffiffiffi
3t3

4
p
3 ;

0; otherwise:

8><>:
Proof. It is clear that the operator in Lemma 6 can be

extended to vectors and matrices by applying it element-
wise. Using Lemma 6, the closed-form thresholding for-
mula of (31) is given byX� ¼ T gðCÞ. tu
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By Proposition 2, the closed-form solution of (30) is

Skþ1 ¼PV T 2=mk
ðD� Lkþ1 � m�1k Y k

3 Þ
	 


þ P?V D� Lkþ1 � m�1k Y k
3

	 

:

(33)

5 ALGORITHM ANALYSIS

We mainly analyze the convergence property of Algo-
rithm 1. Naturally, the convergence of Algorithm 2 can also
be guaranteed in a similar way. Moreover, we also analyze
their per-iteration complexity.

5.1 Convergence Analysis

Before analyzing the convergence of Algorithm 1, we first
introduce the definition of the critical points (or stationary
points) of a non-convex function given in [75].

Definition 3. Given a function f : Rn ! ð�1;þ1
, we denote
the domain of f by domf , i.e., domf :¼ fx 2 Rn : fðxÞ � þ
1g. A function f is said to be proper if domf 6¼ ;; lower semi-
continuous at the point x0 if limx!x0 inf fðxÞ � fðx0Þ. If f is
lower semicontinuous at every point of its domain, then it is
called a lower semicontinuous function.

Definition 4. Let a non-convex function f : Rn ! ð�1;þ1

be a proper and lower semi-continuous function. x is a critical
point of f if 0 2 @fðxÞ, where @fðxÞ is the limiting sub-differ-
ential of f at x, i.e., @fðxÞ ¼ fu 2 Rn : 9xk ! x; fðxkÞ !
fðxÞ and uk 2 b@fðxkÞ ! u as k!1g, and b@fðxkÞ is the
Fr�echet sub-differential of f at x (see [75] for more details).

As stated in [45], [76], the general convergence property
of the ADMM for non-convex problems has not been
answered yet, especially for multi-block cases [76], [77]. For
such challenging problems (15) and (16), although it is diffi-
cult to guarantee the convergence to a local minimum, our
empirical convergence tests showed that our algorithms
have strong convergence behavior (see the Supplementary
Materials, available online, for details). Besides the empiri-
cal behavior, we also provide the convergence property for
Algorithm 1 in the following theorem.

Theorem 3. Let fðUk; Vk; bUk; bVk; Lk; Sk; fY k
i gÞg be the sequence

generated by Algorithm 1. Suppose that the sequence fY k
3 g is

bounded, and mk is non-decreasing and
P1

k¼0ðmkþ1=m
4=3
k Þ <

1, then

(I) fðUk; VkÞg, fð bUk; bVkÞg, fLkg and fSkg are all Cauchy
sequences;

(II) Any accumulation point of the sequence fðUk; Vk; bUk;bVk; Lk; SkÞg satisfies the Karush-Kuhn-Tucker (KKT)
conditions for Problem (17).

The proof of Theorem 3 can be found in the Supplemen-
taryMaterials, available online. Theorem 3 shows that under
mild conditions, any accumulation point (or limit point) of
the sequence generated by Algorithm 1 is a critical point of
the Lagrangian function Lm, i.e., ðU? ; V? ; bU? ; bV? ; L? ; S? ; fY ?

i gÞ,
which satisfies the first-order optimality conditions (i.e., the

KKT conditions) of (17): 0 2 �
2 @k bU? k� þ Y

?

1 , 0 2 �
2 @k bV? k� þ Y

?

2 ,

0 2 @FðS? Þ þ PVðY ?

4 Þ, PVcðY ?

4 Þ ¼ 0, L? ¼ U?V T
? , bU? ¼ U? ,bV? ¼ V? , and L? þ S? ¼ D, where FðSÞ :¼ kPVðSÞk1=2‘1=2

. Simi-
larly, the convergence of Algorithm 2 can also be guaranteed.

Theorem 3 is established for the proposedADMMalgorithm,
which has only a single iteration in the inner loop. When the
inner-loop iterations of Algorithm 1 iterate until conver-
gence, it may lead to a simpler proof. We leave further theo-
retical analysis of convergence as futurework.

Theorem 3 also shows that our ADMM algorithms have
much weaker convergence conditions than the ones in [15],
[45], e.g., the sequence of only one Lagrange multiplier is
required to be bounded for our algorithms, while the
ADMM algorithms in [15], [45] require the sequences of all
Lagrange multipliers to be bounded.

5.2 Convergence Behavior

According to the KKT conditions of (17) mentioned above,
we take the following conditions as the stopping criterion
for our algorithms (see details in Supplementary Materials,
available online),

maxf�1=kDkF ; �2g < �;

where �1 ¼ maxfkUkV
T
k � LkkF ; kLk þ Sk �DkF ; kY k

1 ð bVkÞy � ð bUT
k Þ
y

ðY k
2 Þ

TkFg, �2 ¼ maxfk bUk � UkkF=kUkkF ; k bVk � VkkF =kVkkFg;
ð bVkÞy is the pseudo-inverse of bVk, and " is the stopping toler-

ance. In this paper, we set the stopping tolerance to � ¼ 10�5

for synthetic data and � ¼ 10�4 for real-world problems. As
shown in the Supplementary Materials, available online, the

stopping tolerance and relative squared error (RSE) of our

methods decrease fast, and they converge within only a small

number of iterations (usuallywithin 50 iterations).

5.3 Computational Complexity

The per-iteration cost of existing Schatten quasi-norm mini-
mization methods such as LpSq [31] is dominated by the
computation of the thin SVD of an m� n matrix with
m � n, and is Oðmn2Þ. In contrast, the time complexity of
computing SVD for (23) and (24) is Oðmd2 þ nd2Þ. The dom-
inant cost of each iteration in Algorithm 1 corresponds to
the matrix multiplications in the update of U , V and L,
which take Oðmndþ d3Þ. Given that d� m;n, the overall
complexity of Algorithm 1, as well as Algorithm 2, is thus
OðmndÞ, which is the same as the complexity of LMaFit [47],
RegL1 [16], ROSL [64], Unifying [49], and factEN [15].

6 EXPERIMENTAL RESULTS

In this section, we evaluate both the effectiveness and effi-
ciency of our methods (i.e., ðS+LÞ1=2 and ðS+LÞ2=3) for solv-
ing extensive synthetic and real-world problems. We also
compare our methods with several state-of-the-art methods,
such as LMaFit3 [47], RegL14 [16], Unifying [49], factEN5 [15],
RPCA6 [44], PSVT7 [45],WNNM8 [46], and LpSq9 [31].

6.1 Rank Estimation

As suggested in [6], [28], the regularization parameter � of

our two methods is generally set to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞ

p
. Analogous

3. http://lmafit.blogs.rice.edu/
4. https://sites.google.com/site/yinqiangzheng/
5. http://cpslab.snu.ac.kr/people/eunwoo-kim
6. http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
7. http://thohkaistackr.wix.com/page
8. http://www4.comp.polyu.edu.hk/�cslzhang/
9. https://sites.google.com/site/feipingnie/
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to other matrix factorization methods [15], [16], [47], [49],
two proposed methods also have another important rank
parameter, d. To estimate it, we design a simple rank esti-
mation procedure. Since the observed data may be cor-
rupted by noise/outlier and/or missing data, our rank
estimation procedure combines two key techniques. First,
we efficiently compute the k largest singular values of the
input matrix (usually k ¼ 100), and then use the basic spec-
tral gap technique for determining the number of clus-
ters [78]. Moreover, the rank estimator for incomplete
matrices is exploited to look for an index for which the ratio
between two consecutive singular values is minimized, as
suggested in [79]. We conduct some experiments on cor-
rupted matrices to test the performance of our rank estima-
tion procedure, as shown in Fig. 3. Note that the input
matrices are corrupted by both sparse outliers and Gaussian
noise as shown below, where the fraction of sparse outliers
varies from 0 to 25 percent, and the noise factor of Gaussian
noise is changed from 0 to 0.5. It can be seen that our rank
estimation procedure performs well in terms of robustness
to noise and outliers.

6.2 Synthetic Data

We generated the low-rank matrix L� 2 Rm�n of rank r as
the product PQT , where P 2 Rm�r and Q 2 Rn�r are inde-
pendent matrices whose elements are independent and
identically distributed (i.i.d.) random variables sampled
from standard Gaussian distributions. The sparse matrix
S� 2 Rm�n is generated by the following procedure: its sup-
port is chosen uniformly at random and the non-zero entries
are i.i.d. random variables sampled uniformly in the inter-
val ½�5; 5
. The input matrix is D ¼ L� þ S� þN , where the
Gaussian noise is N ¼ nf � randn and nf � 0 is the noise
factor. For quantitative evaluation, we measured the perfor-
mance of low-rank component recovery by the RSE, and

evaluated the accuracy of outlier detection by the F-measure
(abbreviated to F-M) as in [17]. The higher F-M or lower
RSE, the better is the quality of the recovered results.

6.2.1 Model Comparison

We first compared our methods with RPCA (nuclear norm
& ‘1-norm), PSVT (truncated nuclear norm & ‘1-norm),
WNNM (weighted nuclear norm & ‘1-norm), LpSq
(Schatten q-norm & ‘p-norm), and Unifying (bilinear
spectral penalty & ‘1-norm), where p and q in LpSq are
chosen from the range of f0:1; 0:2; . . . ; 1g. A phase transi-
tion plot uses magnitude to depict how likely a certain
kind of low-rank matrices can be recovered by those
methods for a range of different matrix ranks and cor-
ruption ratios. If the recovered matrix L has a RSE
smaller than 10�2, we consider the estimation of both L
and S is regarded as successful. Fig. 4 shows the phase
transition results of RPCA, PSVT, WNNM, LpSq, Unify-
ing and both our methods on outlier corrupted matrices
of size 200� 200 and 500� 500, where the corruption
ratios varied from 0 to 0.35 with increment 0.05, and the
true rank r from 5 to 50 with increment 5. Note that the
rank parameter of PSVT, Unifying, and both our meth-
ods is set to d ¼ b1:25rc as suggested in [34], [47]. The
results show that both our methods perform significantly
better than the other methods, which justifies the effec-
tiveness of the proposed RPCA models (15) and (16).

To verify the robustness of our methods, the observed
matrices are corrupted by both Gaussian noise and outliers,
where the noise factor and outlier ratio are set to nf ¼ 0:5
and 20 percent. The average results (including RSE, F-M, and
running time) of 10 independent runs on corrupted matri-
ces with different sizes are reported in Table 3. Note that
the rank parameter d of PSVT, Unifying, and both our
methods is computed by our rank estimation procedure.
It is clear that both our methods significantly outperform
all the other methods in terms of both RSE and F-M in all
settings. Those non-convex methods including PSVT,
WNNM, LpSq, Unifying, and both our methods consis-
tently perform better than the convex method, RPCA, in
terms of both RSE and F-M. Impressively, both our meth-
ods are much faster than the other methods, and at least
10 times faster than RPCA, PSVT, WNNM, and LpSq in
the case when the size of matrices exceeds 5; 000� 5; 000.
This actually shows that our methods are more scalable,

Fig. 3. Histograms with the percentage of estimated ranks for Gaussian
noise and outlier corrupted matrices of size 500�500 (left) and 1;000 �
1;000 (right), whose true ranks are 10 and 20, respectively.

Fig. 4. Phase transition plots for different algorithms on corrupted matrices of size 200�200 (top) and 500�500 (bottom). X-axis denotes the matrix
rank, and Y -axis indicates the corruption ratio. The color magnitude indicates the success ratio ½0; 1
, and a larger red area means a better perfor-
mance of the algorithm (best viewed in colors).
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and have even greater advantage over existing methods
for handling large matrices.

We also report the RSE results of both our methods
on corrupted matrices of size 500� 500 and 1;000� 1;000
with outlier ratio 15 percent, as shown in Fig. 5, where
the true ranks of those matrices are 10 and 20, and the
noise factor ranges from 0.1 to 0.5. In addition, we pro-
vide the best results of two baseline methods, WNNM
and Unifying. Note that the parameter d of Unifying and
both our methods is computed via our rank estimation
procedure. From the results, we can observe that both
our methods are much more robust against Gaussian
noise than WNNM and Unifying, and have much greater
advantage over them in cases when the noise level is rel-
atively large, e.g., 0.5.

6.2.2 Comparisons with Other Methods

Figs. 6a and 6b show the average F-measure and RSE results
of different matrix factorization based methods on 1;000 �
1;000 matrices with different outliers ratios, where the noise
factor is set to 0.2. For fair comparison, the rank parame-
ter of all these methods is set to d ¼ b1:25rc as in [34],
[47]. In all cases, RegL1 [16], Unifying [49], factEN [15],
and both our methods have significantly better perfor-
mance than LMaFit [47], where the latter has no regular-
izers. This empirically verifies the importance of low-
rank regularizers including our defined bilinear factor
matrix norm penalties. Moreover, we report the average
RSE results of these matrix factorization based methods
with outlier ratio 5 percent and various missing ratios in
Figs. 6c and 6d, in which we also present the results of
LpSq. One can see that only with a very limited number
of observations (e.g., 80 percent missing ratio), both our
methods yield much more accurate solutions than the
other methods including LpSq, while more observations
are available, both LpSq and our methods significantly
outperform the other methods in terms of RSE.

Finally, we report the performance of all those methods
mentioned above on corrupted matrices of size 1;000� 1;000
as running time goes by, as shown in Fig. 7. It is clear that
both our methods obtain significantly more accurate solu-
tions than the other methods with much shorter running
time. Different from all other methods, the performance of
LMaFit becomes evenworse over time, whichmay be caused
by the intrinsic model without a regularizer. This also empir-
ically verifies the importance of all low-rank regularizers,
including our defined bilinear factor matrix norm penalties,
for recovering low-rankmatrices.

6.3 Real-World Applications

In this section, we apply our methods to solve various low-
level vision problems, e.g., text removal, moving object
detection, and image alignment and inpainting.

TABLE 3
Comparison of Average RSE, F-M and Time (Seconds) on Corrupted Matrices

RPCA [44] PSVT [45] WNNM [46] Unifying [49] LpSq [31] ðS+LÞ1=2 ðS+LÞ2=3
m ¼ n RSE F-M Time RSE F-M Time RSE F-M Time RSE F-M Time RSE F-M Time RSE F-M Time RSE F-M Time

500 0.1265 0.8145 6.87 0.1157 0.8298 2.46 0.0581 0.8419 30.59 0.0570 0.8427 1.96 0.1173 0.8213 245.81 0.0469 0.8469 1.70 0.0453 0.8474 1.35

1,000 0.1138 0.8240 35.29 0.1107 0.8325 16.91 0.0448 0.8461 203.52 0.0443 0.8462 6.93 0.1107 0.8305 985.69 0.0335 0.8495 6.65 0.0318 0.8498 5.89

5,000 0.1029 0.8324 1,772.55 0.0980 0.8349 1,425.25 0.0315 0.8483 24,370.85 0.0313 0.8488 171.28 — — — 0.0152 0.8520 134.15 0.0145 0.8521 128.11

10,000 0.1002 0.8340 20,321.36 0.0969 0.8355 1,5437.60 — — — 0.0302 0.8489 657.41 — — — 0.0109 0.8524 528.80 0.0104 0.8525 487.46

We highlight the best results in bold and the second best in italic for each of three performance metrics. Note that WNNM and LpSq could not yield experimental
results on the largest problem within 24 hours.

Fig. 5. Comparison of RSE results on corrupted matrices of size
500�500 (left) and 1; 000�1; 000 (right) with different noise factors.

Fig. 6. Comparison of different methods on corrupted matrices under
varying outlier and missing ratios in terms of RSE and F-measure.

Fig. 7. Comparison of RSE (left) and F-measure (right) of different meth-
ods on corrupted matrices of size 1;000� 1;000 versus running time.
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6.3.1 Text Removal

We first apply our methods to detect some text and remove
them from the image used in [70]. The ground-truth image
is of size 256� 256 with rank equal to 10, as shown in
Fig. 8a. The input data are generated by setting 5 percent of
the randomly selected pixels as missing entries. For fairness,
we set the rank parameter of PSVT [45], Unifying [49] and
our methods to 20, and the stopping tolerance � ¼ 10�4 for
all these algorithms. The text detection and removal results
are shown in Fig. 8, where the text detection accuracy (F-M)
and the RSE of recovered low-rank component are also
reported. The results show that both our methods signifi-
cantly outperform the other methods not only visually but
also quantitatively. The running time of our methods and
the Schatten quasi-norm minimization method, LpSq [31], is
1.36, 1.21 and 77.65 sec, respectively, which show that both
our methods are more than 50 times faster than LpSq.

6.3.2 Moving Object Detection

We test our methods on real surveillance videos for mov-
ing object detection and background subtraction as a
RPCA plus matrix completion problem. Background
modeling is a crucial task for motion segmentation in sur-
veillance videos. A video sequence satisfies the low-rank
and sparse structures, because the background of all the
frames is controlled by few factors and hence exhibits low-
rank property, and the foreground is detected by identify-
ing spatially localized sparse residuals [6], [17], [40]. We
test our methods on real surveillance videos for object
detection and background subtraction on five surveillance
videos: Bootstrap, Hall, Lobby, Mall and WaterSurface
databases.10 The input data are generated by setting
10 percent of the randomly selected pixels of each frame as
missing entries, as shown in Fig. 9a.

Figs. 9b, 9c, 9d, 9e, and 9f show the foreground and back-
ground separation results on the Bootstrap data set. We
can see that the background can be effectively extracted
by RegL1, Unifying, factEN and both our methods,
where their rank parameter is computed via our rank
estimation procedure. It is clear that the decomposition
results of both our methods are significantly better than
that of RegL1 and factEN visually in terms of both
background components and foreground segmentation.
In addition, we also provide the running time and
F-measure of different algorithms on all the five data

Fig. 8. Text removal results of different methods: detected text masks (top) and recovered background images (bottom). (a) Input image (top) and
original image (bottom); (b) RPCA (F-M: 0.9543, RSE: 0.1051); (c) PSVT (F-M: 0.9560, RSE: 0.1007); (d) WNNM (F-M: 0.9536, RSE: 0.0943); (e)
Unifying (F-M: 0.9584, RSE: 0.0976); (f) LpSq (F-M: 0.9665, RSE: 0.1097); (g) ðS+LÞ1=2 (F-M: 0.9905, RSE: 0.0396); and (h) ðS+LÞ2=3 (F-M: 0.9872,
RSE: 0.0463).

Fig. 9. Background and foreground separation results of different algorithms on the Bootstrap data set. The one frame with missing data of each
sequence (top) and its manual segmentation (bottom) are shown in (a). The results of different algorithms are presented from (b) to (f), respectively.
The top panel is the recovered background, and the bottom panel is the segmentation.

Fig. 10. Quantitative comparison for different methods in terms of F-
measure (left) and running time (right, in seconds and in logarithmic
scale) on five subsequences of surveillance videos. 10. http://perception.i2r.a-star.edu.sg/
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sets, as shown in Fig. 10, from which we can observe
that both our methods consistently outperform the other
methods in terms of F-measure. Moreover, Unifying and
our methods are much faster than RegL1. Although
factEN is slightly faster than Unifying and our methods,
it usually has poorer quality of the results.

6.3.3 Image Alignment

We also study the performance of our methods in the appli-
cation of robust image alignment: Given n images fI1; . . . ;
Ing of an object of interest, the image alignment task aims
to align them using a fixed geometric transformation
model, such as affine [50]. For this problem, we search
for a transformation t ¼ ft1; . . . ; tng and write D  t ¼
½vecðI1  t1Þj 	 	 	 jvecðIn  tnÞ
 2 Rm�n. In order to robustly
align the set of linearly correlated images despite sparse
outliers, we consider the following double nuclear norm
regularized model

min
U;V;S;t

�

2
ðkUk� þ kV k�Þ þ kSk

1=2
‘1=2

; s.t.; D  t ¼ UV T þ S: (34)

Alternatively, our Frobenius/nuclear norm penalty can also
be used to address the image alignment problem above.

We first test both our methods on the Windows data set
(which contains 16 images of a building, taken from vari-
ous viewpoints by a perspective camera, and with occlu-
sions due to tree branches) used in [50] and report the

aligned results of RASL11 [50], PSVT [45] and our methods
in Fig. 11, from which it is clear that, compared with RASL
and PSVT, both our methods not only robustly align the
images, correctly detect and remove the occlusion, but
also achieve much better performance in terms of low-
rank components, as shown in Figs. 11d and 11h, which
give the close-up views of the red boxes in Figs. 11c and
11g, respectively.

6.3.4 Image Inpainting

Finally, we applied the defined D-N and F-N penalties to
image inpainting. As shown by Hu et al. [38],12 the images
of natural scenes can be viewed as approximately low rank
matrices. Naturally, we consider the following D-N penalty
regularized least squares problem

min
U;V;L

�

2
ðkUk� þ kV k�Þ þ

1

2
kPVðL�DÞk2F ; s.t.; L ¼ UV T : (35)

The F-N penalty regularized model and the corresponding
ADMM algorithms for solving both models are provided in
the SupplementaryMaterials, available online.We compared
our methods with one nuclear norm solver [43], one
weighted nuclear norm method [37], [46], two truncated
nuclear norm methods [38], [45], and one Schatten-q quasi-
norm method [19].13 Since both of the ADMM algorithms
in [38], [45] have very similar performance as shown in [45],
we only report the results of [38]. For fair comparison, we set
the same values to the parameters d, r and m0 for both our
methods and [38], [45], e.g., d ¼ 9 as in [38].

Fig. 12 shows the 8 test images and some quantitative
results (including average PSNR and running time) of all
those methods with 85 percent random missing pixels. We
also show the inpainting results of different methods for ran-
dommask of 80 percentmissing pixels in Fig. 13 (see the Sup-
plementary Materials, available online, for more results with
different missing ratios and rank parameters). The results
show that both our methods consistently produce much bet-
ter PSNR results than the other methods in all the settings.
As analyzed in [34], [70], our D-N and F-N penalties not only
lead to two scalable optimization problems, but also require

Fig. 11. Alignment results on the Windows data set used in [50]. The first row: the results generated by RASL [50] (left) and PSVT [45] (right); The
second row: the results generated by our ðS+LÞ1=2 (left) and ðS+LÞ2=3 (right) methods, respectively. (a) and (e): Aligned images; (b) and (f): Sparse
occlusions; (c) and (g): Low-rank components; (d) and (h): Close-up (see red box in the left).

Fig. 12. The natural images used in image inpainting [38] (top), and
quantitative comparison of inpainting results (bottom).

11. http://perception.csl.illinois.edu/matrix-rank/
12. https://sites.google.com/site/zjuyaohu/
13. As suggested in [19], we chose the ‘q-norm penalty, where q was

chosen from the range of f0:1; 0:2; . . . ; 1g.
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significantly fewer observations than traditional nuclear
norm solvers, e.g., [43]. Moreover, both our methods are
much faster than the other methods, in particular, more than
25 times faster than themethods [19], [38], [46].

7 CONCLUSION AND DISCUSSIONS

In this paper we defined the double nuclear norm and Fro-
benius/nuclear hybrid norm penalties, which are in essence
the Schatten-1=2 and 2=3 quasi-norms, respectively. To take
advantage of the hyper-Laplacian priors of sparse noise/
outliers and singular values of low-rank components, we
proposed two novel tractable bilinear factor matrix norm
penalized methods for low-level vision problems. Our
experimental results show that both our methods can yield
more accurate solutions than original Schatten quasi-norm
minimization when the number of observations is very lim-
ited, while the solutions obtained by the three methods are
almost identical when a sufficient number of observations is
observed. The effectiveness and generality of both our
methods are demonstrated through extensive experiments
on both synthetic data and real-world applications, whose
results also show that both our methods perform more
robust to outliers and missing ratios than existing methods.

An interesting direction of future work is the theoretical
analysis of the properties of both of our bilinear factor matrix
norm penalties compared to the nuclear norm and the Schat-
ten quasi-norm. For example, how many observations are
sufficient for both our models to reliably recover low-rank
matrices, although in our experiments we found that our
methods perform much better than existing Schatten quasi-
norm methods with a limited number of observations. In
addition, we are interested in exploring ways to regularize
our models with auxiliary information, such as graph Lapla-
cian [27], [80], [81] and hyper-Laplacian matrix [82], or the
elastic-net [15].We can apply our bilinear factor matrix norm
penalties to various structured sparse and low-rank prob-
lems [5], [17], [28], [33], e.g., corrupted columns [9] and Han-
kel matrix for image restoration [25].
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