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In this supplementary material, we give the detailed proofs of some theorems, lemmas and properties. We also provide
the stopping criterion of our algorithms and the details of Algorithm 2. In addition, we present two new ADMM algorithms
for image recovery application and their pseudo-codes, and some additional experimental results for both synthetic and
real-world datasets.

NOTATIONS

Rl denotes the l-dimensional Euclidean space, and the set of all m×n matrices1 with real entries is denoted by Rm×n.
Tr(XTY ) =

∑
ij XijYij , where Tr(·) denotes the trace of a matrix. We assume the singular values of X∈Rm×n are ordered

as σ1(X) ≥ σ2(X) ≥ · · · ≥ σr(X) > σr+1(X) = · · · = σn(X) = 0, where r = rank(X). Then the SVD of X is denoted by
X = UΣV T , where Σ = diag(σ1, . . . , σn). In denotes an identity matrix of size n×n.

Definition 5. For any vector x ∈ Rl, its ℓp-norm for 0<p<∞ is defined as

∥x∥ℓp =

(
l∑

i=1

|xi|p
)1/p

where xi is the i-th element of x. When p = 1, the ℓ1-norm of x is ∥x∥ℓ1 =
∑

i |xi| (which is convex), while the ℓp-norm of
x is a quasi-norm when 0 < p < 1, which is non-convex and violates the triangle inequality. In addition, the ℓ2-norm of x is
∥x∥ℓ2 =

√∑
i x

2
i .

The above definition can be naturally extended from vectors to matrices by the following form

∥S∥ℓp =

∑
i,j

|si,j |p
1/p

.

Definition 6. The Schatten-p norm (0<p<∞) of a matrix X∈Rm×n is defined as follows:

∥X∥Sp =

(
n∑

i=1

σp
i (X)

)1/p

where σi(X) denotes the i-th largest singular value of X .
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In the following, we will list some special cases of the Schatten-p norm (0<p<∞).

• When 0<p<1, the Schatten-p norm is a quasi-norm, and it is non-convex and violates the triangle inequality.
• When p=1, the Schatten-1 norm (also known as the nuclear norm or trace norm) of X is defined as

∥X∥∗ =
n∑

i=1

σi(X).

• When p=2, the Schatten-2 norm is more commonly called the Frobenius norm2 defined as

∥X∥F =

√√√√ n∑
i=1

σ2
i (X) =

√∑
i,j

X2
i,j .

APPENDIX A: PROOF OF LEMMA 2
To prove Lemma 2, we first define the doubly stochastic matrix, and give the following lemma.

Definition 7. A square matrix is doubly stochastic if its elements are non-negative real numbers, and the sum of elements of each row
or column is equal to 1.

Lemma 7. Let P ∈Rn×n be a doubly stochastic matrix, and if

0 ≤ x1 ≤ x2 ≤ . . . ≤ xn, y1 ≥ y2 ≥ . . . ≥ yn ≥ 0, (36)

then
n∑

i,j=1

pijxiyj ≥
n∑

k=1

xkyk.

The proof of Lemma 7 is essentially similar to that of the lemma in [1], thus we give the following proof sketch for this
lemma.

Proof: Using (36), there exist non-negative numbers αi and βj for all 1 ≤ i, j ≤ n such that

xk =
∑

1≤i≤k

αi, yk =
∑

k≤j≤n

βj for all k = 1, . . . , n.

Let δij denote the Kronecker delta (i.e., δij=1 if i=j, and δij=0 otherwise), we have
n∑

k=1

xkyk −
n∑

i,j=1

pijxiyj =
n∑

i,j=1

(δij − pij)xiyj

=
∑

1≤i,j≤n

(δij − pij)
∑

1≤r≤i

αr

∑
j≤s≤n

βs

=
∑

1≤r,s≤n

αrβs

∑
r≤i≤n,1≤j≤s

(δij − pij).

If r ≤ s, by the lemma in [1] we know that ∑
1≤i<r,1≤j≤s

(δij − pij) ≥ 0, and

∑
r≤i≤n,1≤j≤s

(δij − pij) +
∑

1≤i<r,1≤j≤s

(δij − pij) = 0.

Therefore, we have ∑
r≤i≤n,1≤j≤s

(δij − pij) ≤ 0.

The same result can be obtained in a similar way for r≥s.
Proof of Lemma 2:

Proof: Using the properties of the trace, we know that

Tr(XTY ) =
n∑

i,j=1

(UX)2ijλiτj .

Note that UX is a unitary matrix, i.e., UT
XUX =UXUT

X = In, which implies that ((UX)2ij) is a doubly stochastic matrix.
By Lemma 7, we have Tr(XTY ) ≥

∑n
i=1 λiτi.

2. Note that the Frobenius norm is the induced norm of the ℓ2-norm on matrices.
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APPENDIX B: PROOFS OF THEOREMS 1 AND 2
Proof of Theorem 1:

Proof: Using Lemma 3, for any factor matrices U ∈Rm×d and V ∈Rn×d with the constraint X=UV T , we have(∥U∥∗ + ∥V ∥∗
2

)2

≥ ∥X∥S1/2
.

On the other hand, let U⋆=LXΣ
1/2
X and V ⋆=RXΣ

1/2
X , where X=LXΣXRT

X is the SVD of X as in Lemma 3, then we
have

X = U⋆(V ⋆)T and ∥X∥S1/2
= (∥U⋆∥∗ + ∥V ⋆∥∗)2/4.

Therefore, we have

min
U,V :X=UV T

(∥U∥∗ + ∥V ∥∗
2

)2

= ∥X∥S1/2
.

This completes the proof.

Proof of Theorem 2:
Proof: Using Lemma 4, for any U ∈Rm×d and V ∈Rn×d with the constraint X=UV T , we have(∥U∥2F + 2∥V ∥∗

3

)3/2

≥ ∥X∥S2/3
.

On the other hand, let U⋆=LXΣ
1/3
X and V ⋆=RXΣ

2/3
X , where X=LXΣXRT

X is the SVD of X as in Lemma 3, then we
have

X = U⋆(V ⋆)T and ∥X∥S2/3
= [(∥U⋆∥2F + 2∥V ⋆∥∗)/3]3/2.

Thus, we have

min
U,V :X=UV T

(∥U∥2F + 2∥V ∥∗
3

)3/2

= ∥X∥S2/3
.

This completes the proof.

APPENDIX C: PROOF OF PROPERTY 4
Proof: The proof of Property 4 involves some properties of the ℓp-norm, which we recall as follows. For any vector x

in Rn and 0 < p2 ≤ p1 ≤ 1, the following inequalities hold:

∥x∥ℓ1 ≤ ∥x∥ℓp1 , ∥x∥ℓp1 ≤ ∥x∥ℓp2 ≤ n
1
p2

− 1
p1 ∥x∥ℓp1 .

Let X be an m× n matrix of rank r, and denote its compact SVD by X = Um×rΣr×rV
T
n×r . By Theorems 1 and 2, and

the properties of the ℓp-norm mentioned above, we have

∥X∥∗ = ∥diag(Σr×r)∥ℓ1 ≤ ∥diag(Σr×r)∥ℓ 1
2

= ∥X∥D-N ≤ rank(X)∥X∥∗,

∥X∥∗ = ∥diag(Σr×r)∥ℓ1 ≤ ∥diag(Σr×r)∥ℓ 2
3

= ∥X∥F-N ≤
√

rank(X)∥X∥∗.

In addition,
∥X∥F-N = ∥diag(Σr×r)∥ℓ 2

3

≤ ∥diag(Σr×r)∥ℓ 1
2

= ∥X∥D-N.

Therefore, we have
∥X∥∗ ≤ ∥X∥F-N ≤ ∥X∥D-N ≤ rank(X)∥X∥∗.

This completes the proof.

APPENDIX D: SOLVING (18) VIA ADMM
Similar to Algorithm 1, we also propose an efficient algorithm based on the alternating direction method of multipliers
(ADMM) to solve (18), whose augmented Lagrangian function is given by

Lµ(U, V, L, S, V̂ , Y1, Y2, Y3) =
λ

3

(
∥U∥2F +2∥V̂ ∥∗

)
+ ∥PΩ(S)∥2/3ℓ2/3

+
⟨
Y1, V̂ −V

⟩
+
⟨
Y2, UV T−L

⟩
+⟨Y3, L+S−D⟩

+
µ

2

(
∥UV T − L∥2F + ∥V̂ − V ∥2F + ∥L+ S −D∥2F

)
where Y1∈Rn×d, Y2∈Rm×n and Y3∈Rm×n are the matrices of Lagrange multipliers.
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Algorithm 2 ADMM for solving (S+L)2/3 problem (18)

Input: D∈Rm×n, the given rank d and λ.
Initialize: µ0, ρ>1, k=0, and ϵ.

1: while not converged do
2: while not converged do
3: Update Uk+1 and Vk+1 by (61) and (62), respectively.
4: Update V̂k+1 by V̂k+1 = D2λ/3µk

(Vk+1−(Y2)k/µk).
5: Update Lk+1 and Sk+1 by (43) and (33) in this paper, respectively.
6: end while // Inner loop
7: Update the multipliers Y k+1

1 , Y k+1
2 and Y k+1

3 by
Y k+1
1 =Y k

1 +µk(V̂k+1−Vk+1), Y k+1
2 =Y k

2 +µk(Uk+1V
T
k+1−Lk+1), and Y k+1

3 =Y k
3 +µk(Lk+1+Sk+1−D).

8: Update µk+1 by µk+1 = ρµk.
9: k ← k + 1.

10: end while // Outer loop
Output: Uk+1 and Vk+1.

Update of Uk+1 and Vk+1:

For updating Uk+1 and Vk+1, we consider the following optimization problems:

min
U

λ

3
∥U∥2F +

µk

2
∥UV T

k − Lk + µ−1
k Y k

2 ∥2F , (37)

min
V
∥V̂k − V + µ−1

k Y k
1 ∥2F + ∥Uk+1V T− Lk + µ−1

k Y k
2 ∥2F , (38)

and their optimal solutions can be given by

Uk+1 = µkPkVk

(
2λ

3
Id + µkV

T
k Vk

)−1
, (39)

Vk+1 =
[
V̂k + µ−1

k Y k
1 + PT

k Uk+1

] (
Id + UT

k+1Uk+1

)−1
, (40)

where Pk=Lk − µ−1k Y k
2 .

Update of V̂k+1:

To update V̂k+1, we fix the other variables and solve the following optimization problem

min
V̂

2λ

3
∥V̂ ∥∗ +

µk

2
∥V̂ − Vk+1 + Y k

1 /µk∥2F . (41)

Similar to (23) and (24), the closed-form solution of (41) can also be obtained by the SVT operator [2] defined as follows.

Definition 8. Let Y be a matrix of size m×n (m ≥ n), and UY ΣY V
T
Y be its SVD. Then the singular value thresholding (SVT)

operator Dτ is defined as [2]:
Dτ (Y ) = UY Sτ (ΣY )V

T
Y ,

where Sτ (x) = max(|x| − τ, 0) · sgn(x) is the soft shrinkage operator [3], [4], [5].

Update of Lk+1:

For updating Lk+1, we consider the following optimization problem:

min
L
∥Uk+1V

T
k+1−L+µ−1k Y k

2 ∥2F + ∥L+Sk−D+µ−1
k Y k

3 ∥2F . (42)

Since (42) is a least squares problem, and thus its closed-form solution is given by

Lk+1 =
1

2

(
Uk+1V

T
k+1 + µ−1

k Y k
2 − Sk +D − µ−1

k Y k
3

)
. (43)

Together with the update scheme of Sk+1, as stated in (33) in this paper, we develop an efficient ADMM algorithm to
solve the Frobenius/nuclear hybrid norm penalized RPCA problem (18), as outlined in Algorithm 2.
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APPENDIX E: PROOF OF THEOREM 3
In this part, we first prove the boundedness of multipliers and some variables of Algorithm 1, and then we analyze the
convergence of Algorithm 1. To prove the boundedness, we first give the following lemma.

Lemma 8 ([6]). Let H be a real Hilbert space endowed with an inner product ⟨·, ·⟩ and a corresponding norm ∥·∥, and y ∈ ∂∥x∥,
where ∂f(x) denotes the subgradient of f(x). Then ∥y∥∗=1 if x ̸= 0, and ∥y∥∗≤1 if x=0, where ∥·∥∗ is the dual norm of ∥·∥. For
instance, the dual norm of the nuclear norm is the spectral norm, ∥·∥2, i.e., the largest singular value.

Lemma 9 (Boundedness). Let Y k+1
1 =Y k

1 +µk(Ûk+1−Uk+1), Y k+1
2 =Y k

2 +µk(V̂k+1−Vk+1), Y k+1
3 =Y k

3 +µk(Uk+1V
T
k+1−Lk+1)

and Y k+1
4 = Y k

4 +µk(Lk+1+Sk+1−D). Suppose that µk is non-decreasing and
∑∞

k=0
µk+1

µ
4/3
k

<∞, then the sequences {(Uk, Vk)},

{(Ûk, V̂k)}, {(Y k
1 , Y k

2 , Y k
4 / 3
√
µk−1)}, {Lk} and {Sk} produced by Algorithm 1 are all bounded.

Proof: Let Uk := (Uk, Vk), Vk := (Ûk, V̂k) and Yk := (Y k
1 , Y k

2 , Y k
3 , Y k

4 ). By the first-order optimality conditions of the
augmented Lagrangian function of (17) with respect to Û and V̂ (i.e., Problems (23) and (24)), we have

0 ∈ ∂ÛLµk
(Uk+1,Vk+1, Lk+1, Sk+1,Yk) and 0 ∈ ∂V̂ Lµk

(Uk+1,Vk+1, Lk+1, Sk+1,Yk),

i.e., −Y k+1
1 ∈ λ

2∂∥Ûk+1∥∗ and −Y k+1
2 ∈ λ

2∂∥V̂k+1∥∗, where Y k+1
1 =µk(Ûk+1−Uk+1+Y k

1 /µk) and Y k+1
2 =µk(V̂k+1−Vk+1+

Y k
2 /µk). By Lemma 8, we obtain

∥Y k+1
1 ∥2 ≤

λ

2
and ∥Y k+1

2 ∥2 ≤
λ

2
,

which implies that the sequences {Y k
1 } and {Y k

2 } are bounded.
Next we prove the boundedness of {Y k

4/ 3
√
µk−1}. Using (27), it is easy to show that P⊥

Ω (Y k+1
4 )=0, which implies that

the sequence {P⊥
Ω (Y k+1

4 )} is bounded. Let A=D−Lk+1−µ−1
k Y k

4 , and Φ(S) :=∥PΩ(S)∥1/2ℓ1/2
. To prove the boundedness of

{Y k
4/ 3
√
µk−1}, we consider the following two cases.

Case 1: |aij | > 3

2 3
√

µ2
k

, (i, j)∈Ω.
If |aij |> 3

2 3
√

µ2
k

, and using Proposition 1, then |[Sk+1]ij | > 0. The first-order optimality condition of (27) implies that

[∂Φ(Sk+1)]ij + [Y k+1
4 ]ij = 0,

where [∂Φ(Sk+1)]ij denotes the gradient of the penalty Φ(S) at [Sk+1]ij . Since ∂Φ(sij) = sign(sij)/(2
√
|sij |), then∣∣∣[Y k+1

4 ]ij

∣∣∣ = ∣∣∣∣∣ 1

2
√
|[Sk+1]ij |

∣∣∣∣∣ .
Using Proposition 1, we have∣∣∣∣∣ [Y k+1

4 ]ij
3
√
µk

∣∣∣∣∣ =
∣∣∣∣∣ 1

2 3
√
µk

√
|[Sk+1]ij |

∣∣∣∣∣ =
√
3

2
√
2|aij(1 + cos(

2π−2ϕγ(aij)
3 ))| 3√µk

≤ 1√
2
,

where γ=2/µk.
Case 2: |aij | ≤ 3

2 3
√

µ2
k

, (i, j)∈Ω.
If |aij | ≤ 3

2 3
√

µ2
k

, and using Proposition 1, we have [Sk+1]ij = 0. Since

|[Y k+1
4 /µk]ij | = |[Lk+1 + µ−1

k Y k
4 −D + Sk+1]ij | = |[Lk+1 + µ−1

k Y k
4 −D]ij | = |aij | ≤

3

2 3

√
µ2
k

,

then ∣∣∣∣∣ [Y k+1
4 ]ij
3
√
µk

∣∣∣∣∣ ≤ 3

2
, and ∥Y k+1

4 ∥F / 3
√
µk = ∥PΩ(Y

k+1
4 )∥F / 3

√
µk ≤

3|Ω|
2

.

Therefore, {Y k
4/ 3
√
µk−1} is bounded.

By the iterative scheme of Algorithm 1, we have

Lµk
(Uk+1,Vk+ 1, Lk+1, Sk+1,Yk) ≤Lµk

(Uk+1,Vk+1, Lk, Sk,Yk)

≤Lµk
(Uk,Vk, Lk, Sk,Yk)

=Lµk−1
(Uk,Vk, Lk, Sk,Yk−1) + αk

3∑
j=1

∥Y k
j −Y k−1

j ∥2F + βk
∥Y k

4 −Y k−1
4 ∥2F

3

√
µ2
k−1

,
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where αk = µk−1+µk

2(µk−1)2
, βk = µk−1+µk

2(µk−1)4/3
, and the above equality holds due to the definition of the augmented Lagrangian

function Lµ(U, V, L, S, Û , V̂ , {Yi}). Since µk is non-decreasing, and
∑∞

k=1(µk/µ
4/3
k−1) <∞, then

∞∑
k=1

βk =
∞∑
k=1

µk−1 + µk

2µ
4/3
k−1

≤
∞∑
k=1

µk

µ
4/3
k−1

<∞,

∞∑
k=1

αk =
∞∑
k=1

µk−1 + µk

2µ2
k−1

≤
∞∑
k=1

µk

µ2
k−1

<
∞∑
k=1

µk

µ
4/3
k−1

<∞.

Since {∥Y k
4 ∥F / 3

√
µk−1} is bounded, and µk = ρµk−1 and ρ > 1, then {∥Y k−1

4 ∥F / 3
√
µk−1} is also bounded, which

implies that {∥Y k
4 −Y k−1

4 ∥2F / 3

√
µ2
k−1} is bounded. Then {Lµk

(Uk+1,Vk+1, Lk+1, Sk+1,Yk)} is upper-bounded due to the

boundedness of the sequences of all Lagrange multipliers, i.e., {Y k
1 }, {Y k

2 }, {Y k
3 } and {∥Y k

4 −Y k−1
4 ∥2F / 3

√
µ2
k}.

λ

2
(∥Ûk∥∗+∥V̂k∥∗) + ∥PΩ(Sk)∥1/2ℓ1/2

= Lµk−1
(Uk,Vk, Lk, Sk,Yk−1)−

1

2

4∑
i=1

∥Y k
i ∥2F−∥Y

k−1
i ∥2F

µk−1

is upper-bounded (note that the above equality holds due to the definition of Lµ(U, V, L, S, Û , V̂ , {Yi})), thus {Sk}, {Ûk}
and {V̂k} are all bounded.

Similarly, by Uk = Ûk− [Y k
1 −Y k−1

1 ]/µk−1, Vk = V̂k− [Y k
2 −Y k−1

2 ]/µk−1, Lk = UkV
T
k − [Y k

3 −Y k−1
3 ]/µk−1 and the

boundedness of {Ûk}, {V̂k}, {Y k
i } (i=1, 2, 3), and {Y k

4/ 3
√
µk−1}, thus {Uk}, {Vk} and {Lk} are also bounded. This means

that each bounded sequence must have a convergent subsequence due to the Bolzano-Weierstrass theorem.

Proof of Theorem 3:
Proof: (I) Ûk+1 − Uk+1 = [Y k+1

1 −Y k
1 ]/µk, V̂k+1 − Vk+1 = [Y k+1

2 −Y k
2 ]/µk, Uk+1V

T
k+1 − Lk+1 = [Y k+1

3 −Y k
3 ]/µk and

Lk+1+Sk+1−D= [Y k+1
4 −Y k

4 ]/µk. Due to the boundedness of {Y k
1 }, {Y k

2 }, {Y k
3 } and {Y k

4 / 3
√
µk−1}, the non-decreasing

property of {µk}, and
∑∞

k=0(µk+1/µ
4/3
k )<∞, we have

∞∑
k=0

∥Ûk+1−Uk+1∥F ≤
∞∑
k=0

µk+1

µ2
k

∥Y k+1
1 −Y k

1 ∥F <∞,
∞∑
k=0

∥V̂k+1−Vk+1∥F ≤
∞∑
k=0

µk+1

µ2
k

∥Y k+1
2 −Y k

2 ∥F <∞,

∞∑
k=0

∥Lk+1−Uk+1V
T
k+1∥F ≤

∞∑
k=0

µk+1

µ2
k

∥Y k+1
3 −Y k

3 ∥F <∞,
∞∑
k=0

∥Lk+1+Sk+1−D∥F ≤
∞∑
k=0

µk+1

µ
5/3
k

∥Y k+1
4 −Y k

4 ∥F
µ
1/3
k

<∞,

which implies that

lim
k→∞

∥Ûk+1 − Uk+1∥F =0, lim
k→∞

∥V̂k+1 − Vk+1∥F = 0, lim
k→∞

∥Lk+1 − Uk+1V
T
k+1∥F = 0,

and lim
k→∞

∥Lk+1 + Sk+1 −D∥F = 0.

Hence, {(Uk, Vk, Ûk, V̂k, Lk, Sk)} approaches to a feasible solution. In the following, we will prove that the sequences {Uk}
and {Vk} are Cauchy sequences.

Using Y k
1 = Y k−1

1 +µk−1(Ûk−Uk), Y k
2 = Y k−1

2 +µk−1(V̂k−Vk) and Y k
3 = Y k−1

3 +µk−1(UkV
T
k −Lk), then the first-order

optimality conditions of (19) and (20) with respect to U and V are written as follows:(
Uk+1V

T
k −Lk+

Y k
3

µk

)
Vk+

(
Uk+1−Ûk−

Y k
1

µk

)

=

(
Uk+1V

T
k −UkV

T
k −

Y k−1
3

µk−1
+

Y k
3

µk−1
+
Y k
3

µk

)
Vk +Uk+1−Uk+Uk−Ûk−

Y k
1

µk

=(Uk+1−Uk)(V
T
k Vk+Id) +

(
Y k
3 −Y k−1

3

µk−1
+
Y k
3

µk

)
Vk +

Y k−1
1 −Y k

1

µk−1
− Y k

1

µk

=0,

(44)
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Vk+1U

T
k+1−LT

k +
(Y k

3 )T

µk

)
Uk+1+

(
Vk+1−V̂k−

Y k
2

µk

)

=

(
Vk+1U

T
k+1−VkU

T
k−

(Y k−1
3 )T

µk−1
+
(Y k

3 )T

µk−1
+
(Y k

3 )T

µk

)
Uk+1 + Vk+1−Vk+Vk−V̂k−

Y k
2

µk

=(Vk+1−Vk)(U
T
k+1Uk+1+Id)+Vk(U

T
k+1−UT

k )Uk+1+

(
(Y k

3 )T−(Y k−1
3 )T

µk−1
+
(Y k

3 )T

µk

)
Uk+1+

Y k−1
2 −Y k

2

µk−1
− Y k

2

µk

=0.

(45)

By (44) and (45), we obtain

Uk+1 − Uk

=

[(
Y k−1
3 −Y k

3

µk−1
− Y k

3

µk

)
Vk +

Y k
1 −Y k−1

1

µk−1
+

Y k
1

µk

](
V T
k Vk + Id

)−1
,

Vk+1 − Vk

=

[
Vk(U

T
k − UT

k+1)Uk+1+

(
(Y k−1

3 )T−(Y k
3 )T

µk−1
− (Y k

3 )T

µk

)
Uk+1+

Y k
2 −Y k−1

2

µk−1
+
Y k
2

µk

](
UT
k+1Uk+1+Id

)−1
.

Recall that ∞∑
k=0

µk+1

µ
4/3
k

<∞,

we have ∞∑
k=0

∥Uk+1 − Uk∥F ≤
∞∑
k=0

µ−1
k ϑ1 ≤

∞∑
k=0

µk+1

µ2
k

ϑ1 ≤
∞∑
k=0

µk+1

µ
4/3
k

ϑ1 <∞,

where the constant ϑ1 is defined as

ϑ1 = max
{[(

ρ∥Y k−1
3 −Y k

3 ∥F+∥Y k
3 ∥F

)
∥Vk∥F +ρ∥Y k

1 −Y k−1
1 ∥F+∥Y k

1 ∥F
]
∥(V T

k Vk+Id)
−1∥F , k = 1, 2, · · ·

}
.

In addition,
∞∑
k=0

∥Vk+1 − Vk∥F

≤
∞∑
k=0

1

µk

[(
ρ∥Y k−1

3 −Y k
3 ∥F +∥Y k

3 ∥F
)
∥Uk+1∥F +ρ∥Y k

2 −Y k−1
2 ∥F+∥Y k

2 ∥F
]
∥(UT

k+1Uk+1+Id)
−1∥F

+
∞∑
k=0

(
∥Vk∥F ∥Uk+1∥F ∥(UT

k+1Uk+1+Id)
−1∥F

)
∥Uk+1−Uk∥F

≤
∞∑
k=0

ϑ2∥Uk+1−Uk∥F +
∞∑
k=0

1

µk
ϑ3 ≤

∞∑
k=0

ϑ2∥Uk+1−Uk∥F +
∞∑
k=0

µk+1

µ2
k

ϑ3 <∞,

where the constants ϑ2 and ϑ3 are defined as

ϑ2 = max
{
∥Vk∥F ∥Uk+1∥F ∥(UT

k+1Uk+1+Id)
−1∥F , k = 1, 2, · · ·

}
,

ϑ3 = max
{[(

ρ∥Y k−1
3 −Y k

3 ∥F+∥Y k
3 ∥F

)
∥Uk+1∥F+ρ∥Y k

2 −Y k−1
2 ∥F +∥Y k

2 ∥F
]
∥(UT

k+1Uk+1+Id)
−1∥F , k = 1, 2, · · ·

}
.

Consequently, both {Uk} and {Vk} are convergent sequences. Moreover, it is not difficult to verify that {Uk} and {Vk}
are both Cauchy sequences.

Similarly, {Ûk}, {V̂k}, {Sk} and {Lk} are also Cauchy sequences. Practically, the stopping criterion of Algorithm 1 is
satisfied within a finite number of iterations.

(II) Let (U⋆, V⋆, Û⋆, V̂⋆, L⋆, S⋆) be a critical point of (17), and Φ(S) = ∥PΩ(S)∥1/2ℓ1/2
. Applying the Fermat’s rule as in [7]

to the subproblem (27), we then obtain

0 ∈ λ

2
∂∥Û⋆∥∗ + (Y ⋆

1 ) and 0 ∈ λ

2
∂∥V̂⋆∥∗ + (Y ⋆

2 ),

0 ∈ ∂Φ(S⋆) + PΩ(Y
⋆
4 ) and PΩc(Y ⋆

4 ) = 0,

L⋆ = U⋆V
T
⋆ , Û⋆ = U⋆, V̂⋆ = V⋆, L⋆ + S⋆ = D.
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Applying the Fermat’s rule to (27), we have

0 ∈ ∂Φ(Sk+1) + PΩ(Y
k+1
4 ), PΩc(Y k+1

4 ) = 0. (46)

In addition, the first-order optimal conditions for (23) and (24) are given by

0 ∈ λ∂∥Ûk+1∥∗ + 2Y k+1
1 , 0 ∈ λ∂∥V̂k+1∥∗ + 2Y k+1

2 . (47)

Since {Uk}, {Vk}, {Ûk}, {V̂k}, {Lk} and {Sk} are Cauchy sequences, then

lim
k→∞

∥Uk+1−Uk∥ = 0, lim
k→∞

∥Vk+1−Vk∥ = 0, lim
k→∞

∥Ûk+1−Ûk∥ = 0,

lim
k→∞

∥V̂k+1−V̂k∥ = 0, lim
k→∞

∥Lk+1−Lk∥ = 0, lim
k→∞

∥Sk+1−Sk∥ = 0.

Let U∞, V∞, Û∞, V̂∞, S∞ and L∞ be their limit points, respectively. Together with the results in (I), then we have that
U∞= Û∞, V∞= V̂∞, L∞=U∞V T

∞ and L∞+S∞=D. Using (46) and (47), the following holds

0 ∈ λ

2
∂∥Û∞∥∗ + (Y1)∞ and 0 ∈ λ

2
∂∥V̂∞∥∗ + (Y2)∞,

0 ∈ ∂Φ(S∞) + PΩ((Y4)∞) and PΩc((Y4)∞) = 0,

L∞ = U∞V T
∞, Û∞ = U∞, V̂∞ = V∞, L∞ + S∞ = D.

Therefore, any accumulation point {(U∞, V∞, Û∞, V̂∞, L∞, S∞)} of the sequence {(Uk, Vk, Ûk, Ûk, Lk, Sk)} generated
by Algorithm 1 satisfies the KKT conditions for the problem (17). That is, the sequence asymptotically satisfies the KKT
conditions of (17). In particular, whenever the sequence {(Uk, Vk, Lk, Sk)} converges, it converges to a critical point of (15).
This completes the proof.

APPENDIX F: STOPPING CRITERION

For the problem (15), the KKT conditions are

0 ∈ λ

2
∂∥U⋆∥∗ + Y ⋆V ⋆ and 0 ∈ λ

2
∂∥V ⋆∥∗ + (Y ⋆)TU⋆,

0 ∈ ∂Φ(S⋆) + PΩ(Ŷ
⋆) and PΩc(Ŷ ⋆) = 0,

L⋆ = U⋆(V ⋆)T , PΩ(L
⋆) + PΩ(S

⋆) = PΩ(D).

(48)

Using (48), we have

− Y ⋆ ∈ λ

2
∂∥U⋆∥∗(V ⋆)† and − Y ⋆ ∈ [(U⋆)T ]†(

λ

2
∂∥V ⋆∥∗)T (49)

where (V ⋆)† is the pseudo-inverse of V ⋆. The two conditions hold if and only if

∂∥U⋆∥∗(V ⋆)† ∩ [(U⋆)T ]†(∂∥V ⋆∥∗)T ̸= ∅.

Recalling the equivalence relationship between (15) and (17), the KKT conditions for (17) are given by

0 ∈ λ

2
∂∥Û⋆∥∗ + Y ⋆

1 and 0 ∈ λ

2
∂∥V̂ ⋆∥∗ + Y ⋆

2 ,

0 ∈ ∂Φ(S⋆) + PΩ(Ŷ
⋆) and PΩc(Ŷ ⋆) = 0,

L⋆=U⋆(V ⋆)T , Û⋆=U⋆, V̂ ⋆=V ⋆, L⋆+S⋆=D.

(50)

Hence, we use the following conditions as the stopping criteria for Algorihtm 1:

max {ϵ1/∥D∥F , ϵ2} < ϵ

where ϵ1 = max{∥UkV
T
k −Lk∥F , ∥Lk+Sk−D∥F , ∥Y k

1 (V̂k)
†− (ÛT

k )†(Y k
2 )T ∥F } and ϵ2 = max{∥Ûk−Uk∥F /∥Uk∥F , ∥V̂k−

Vk∥F /∥Vk∥F }.
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Algorithm 3 Solving image recovery problem (51) via ADMM
Input: PΩ(D), the given rank d, and λ.
Initialize: µ0=10−4, µmax=1020, ρ>1, k=0, and ϵ.

1: while not converged do
2: Uk+1 =

[
(Lk + Y k

3 /µk)Vk +Ûk − Y k
1 /µk

] (
V T
k Vk + I

)−1
.

3: Vk+1 =
[
(Lk + Y k

3 /µk)
TUk+1 + V̂k − Y k

2 /µk

] (
UT
k+1Uk+1 + I

)−1
.

4: Ûk+1 = Dλ/(2µk)

(
Uk+1 + Y k

1 /µk

)
, and V̂k+1 = Dλ/(2µk)

(
Vk+1 + Y k

2 /µk

)
.

5: Lk+1 = PΩ

(
D+µkUk+1V

T
k+1−Y k

3

1+µk

)
+ P⊥

Ω

(
Uk+1V

T
k+1 − Y k

3 /µk

)
.

6: Y k+1
1 = Y k

1 + µk

(
Uk+1 − Ûk+1

)
, Y k+1

2 = Y k
2 + µk

(
Vk+1 − V̂k+1

)
, and Y k+1

3 = Y k
3 + µk

(
Lk+1 − Uk+1V

T
k+1

)
.

7: µk+1 = min (ρµk, µmax).
8: k ← k + 1.
9: end while

Output: Uk+1 and Vk+1.

APPENDIX G: ALGORITHMS FOR IMAGE RECOVERY

In this part, we propose two efficient ADMM algorithms (as outlined in Algorithms 3 and 4) to solve the following
D-N/F-N penalty regularized least squares problems for matrix completion:

min
U,V,L

λ

2
(∥U∥∗+∥V ∥∗) +

1

2
∥PΩ(L)− PΩ(D)∥2F , s.t., L = UV T , (51)

min
U,V,L

λ

3

(
∥U∥2F+2∥V ∥∗

)
+

1

2
∥PΩ(L)−PΩ(D)∥2F , s.t., L = UV T . (52)

Similar to (17) and (18), we also introduce the matrices Û and V̂ as auxiliary variables to (51) (i.e., (35) in this paper),
and obtain the following equivalent formulation,

min
U,V,Û,V̂ ,L

λ

2
(∥Û∥∗+∥V̂ ∥∗) +

1

2
∥PΩ(L)−PΩ(D)∥2F ,

s.t., L = UV T , U = Û , V = V̂ .

(53)

The augmented Lagrangian function of (53) is

Lµ =
λ

2
(∥Û∥∗+∥V̂ ∥∗)+

1

2
∥PΩ(L)−PΩ(D)∥2F +⟨Y1, U−Û⟩+⟨Y2, V −V̂ ⟩+⟨Y3, L−UV T ⟩

+
µ

2
(∥U−Û∥2F +∥V −V̂ ∥2F+∥L−UV T ∥2F )

where Yi (i=1, 2, 3) are the matrices of Lagrange multipliers.

Updating Uk+1 and Vk+1:

By fixing the other variables at their latest values, and removing the terms that do not depend on U and V and adding
some proper terms that do not depend on U and V , the optimization problems with respect to U and V are formulated as
follows:

∥U − Ûk + Y k
1 /µk∥2F + ∥Lk − UV T

k + Y k
3 /µk∥2F , (54)

∥V − V̂k + Y k
2 /µk∥2F + ∥Lk − Uk+1V

T + Y k
3 /µk∥2F . (55)

Since both (54) and (55) are smooth convex optimization problems, their closed-form solutions are given by

Uk+1 =
[
(Lk + Y k

3 /µk)Vk + Ûk − Y k
1 /µk

] (
V T
k Vk + I

)−1
, (56)

Vk+1 =
[
(Lk + Y k

3 /µk)
TUk+1 + V̂k − Y k

2 /µk

] (
UT
k+1Uk+1 + I

)−1
. (57)
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Algorithm 4 Solving image recovery problem (52) via ADMM
Input: PΩ(D), the given rank d, and λ.
Initialize: µ0=10−4, µmax=1020, ρ>1, k=0, and ϵ.

1: while not converged do
2: Uk+1 =

[
(µkLk + Y k

2 )Vk

] (
µkV

T
k Vk + (2λ/3)I

)−1
.

3: Vk+1 =
[
(Lk + Y k

2 /µk)
TUk+1 + V̂k − Y k

1 /µk

] (
UT
k+1Uk+1 + I

)−1
.

4: V̂k+1 = D2λ/(3µk)

(
Vk+1 + Y k

1 /µk

)
.

5: Lk+1 = PΩ

(
D+µkUk+1V

T
k+1−Y k

2

1+µk

)
+ P⊥

Ω

(
Uk+1V

T
k+1 − Y k

2 /µk

)
.

6: Y k+1
1 =Y k

1 +µk

(
Vk+1−V̂k+1

)
and Y k+1

2 =Y k
2 +µk

(
Lk+1−Uk+1V

T
k+1

)
.

7: µk+1 = min (ρµk, µmax).
8: k ← k + 1.
9: end while

Output: Uk+1 and Vk+1.

Updating Ûk+1 and V̂k+1:

By keeping all other variables fixed, Ûk+1 is updated by solving the following problem:

λ

2
∥Û∥∗ +

µk

2
∥Uk+1 − Û + Y k

1 /µk∥2F . (58)

To solve (58), the SVT operator [2] is considered as follows:

Ûk+1=Dλ/(2µk)

(
Uk+1+Y k

1 /µk

)
. (59)

Similarly, V̂k+1 is given by
V̂k+1 = Dλ/(2µk)

(
Vk+1 + Y k

2 /µk

)
. (60)

Updating Lk+1:

By fixing all other variables, the optimal Lk+1 is the solution to the following problem:

1

2
∥PΩ(L)−PΩ(D)∥2F +

µk

2
∥L− Uk+1V

T
k+1 +

Y k
3

µk
∥2F . (61)

Since (61) is a smooth convex optimization problem, it is easy to show that the optimal solution to (61) is

Lk+1 = PΩ

(
D + µkUk+1V

T
k+1 − Y k

3

1 + µk

)
+ P⊥

Ω

(
Uk+1V

T
k+1 − Y k

3 /µk

)
(62)

where P⊥
Ω is the complementary operator of PΩ, i.e., P⊥

Ω (D)ij=0 if (i, j)∈Ω, and P⊥
Ω (D)ij=Dij otherwise.

Based on the description above, we develop an efficient ADMM algorithm for solving the double nuclear norm
minimization problem (51), as outlined in Algorithm 3. Similarly, we also present an efficient ADMM algorithm to solve
(52), as outlined in Algorithm 4.

APPENDIX H: MORE EXPERIMENTAL RESULTS

In this paper, we compared both our methods with the state-of-the-art methods, such as LMaFit3 [8], RegL14 [9], Unify-
ing [10], factEN5 [11], RPCA6 [6], PSVT7 [12], WNNM8 [13], and LpSq9 [14]. The Matlab code of the proposed methods can
be downloaded from the link10.

3. http://lmafit.blogs.rice.edu/
4. https://sites.google.com/site/yinqiangzheng/
5. http://cpslab.snu.ac.kr/people/eunwoo-kim
6. http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
7. http://thohkaistackr.wix.com/page
8. http://www4.comp.polyu.edu.hk/∼cslzhang/
9. https://sites.google.com/site/feipingnie/
10. https://www.dropbox.com/s/9ah4oezv1b1x5jm/Code DFMNM.zip?dl=0



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 26

10 20 30 40

10
−4

10
−2

Iterations

S
to

p 
cr

ite
rio

n
 r = 5
 r = 10
 r = 20

10 20 30 40

10
−4

10
−2

Iterations

S
to

p 
cr

ite
rio

n

 r = 5
 r = 10
 r = 20

(a) Stop criterion: (S+L)1/2 (left) and (S+L)2/3 (right)
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Fig. 1. Convergence behavior of our (S+L)1/2 and (S+L)2/3 methods for the cases of the matrix rank 5, 10 and 20.
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(b) RSE vs. λ: 200×200 (left) and 500×500 (right)

Fig. 2. Comparison of RSE results on corrupted matrices with different rank parameters (a) and regularization parameters (b).

Convergence Behavior

Fig. 1 illustrates the evolution of the relative squared error (RSE), i.e. ∥L−L∥F /∥L∥F , and stop criterion over the iterations
on corrupted matrices of size 1, 000×1, 000 with outlier ratio 5%, respectively. From the results, it is clear that both the
stopping tolerance and RSE values of our two methods decrease fast, and they converge within only a small number of
iterations, usually within 50 iterations.

Robustness

Like the other non-convex methods such as PSVT and Unifying, the most important parameter of our methods is the rank
parameter d. To verify the robustness of our methods with respect to d, we report the RSE results of PSVT, Unifying and
our methods on corrupted matrices with outlier ratio 10% in Fig. 2(a), in which we also present the results of the baseline
method, LpSq [14]. It is clear that both our methods perform much more robust than PSVT and Unifying, and consistently
yield much better solutions than the other methods in all settings.

To verify the robustness of both our methods with respect to another important parameter (i.e. the regularization
parameter λ), we also report the RSE results of our methods on corrupted matrices with outlier ratio 10% in Fig. 2(b). Note
that the rank parameter of both our methods is computed by our rank estimation procedure. From the resutls, one can see
that both our methods demonstrate very robust performance over a wide range of the regularization parameter, e.g. from
10−4 to 100.

Text Removal

We report the text removal results of our methods with varying rank parameters (from 10 to 40), as shown in Fig. 3, where
the rank of the original image is 10. We also present the results of the baseline method, LpSq [14]. The results show that our
methods significantly outperform the other methods in terms of RSE and F-measure, and they perform much more robust
than Unifying with respect to the rank parameter.

Moving Object Detection

We present the detailed descriptions for five surveillance video sequences: Bootstrap, Hall, Lobby, Mall and WaterSurface
data sets, as shown in Table 1. Moreover, Fig. 4 illustrates the foreground and background separation results on the Hall,
Mall, Lobby and WaterSurface data sets.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 27

TABLE 1
Information of the surveillance video sequences used in our experiments.

Datasets Bootstrap Hall Lobby Mall WaterSurface

Size×♯frames [120, 160]× 1000 [144, 176]× 1000 [128, 160]× 1000 [256, 320]× 600 [128, 160]× 500

Description Crowded scene Crowded scene Dynamic foreground Crowded scene Dynamic background
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Fig. 3. The text removal results (including RSE and F-measure) of LpSq [14], Unifying [10] and our methods with different rank parameters.

Image Alignment

We also conducted some image aligment experiments on the Dummy images used in [15]. Figs. 5(b) and 5(c) show the
results of alignment, low-rank and sparse estimations by both our methods, some of which are shown in Fig. 5(a). We can
observe that both our methods are able to align the facial images nicely despite illumination variations and occlusions, and
correctly detect and remove them.

Image Inpainting

In this part, we first reported the average PSNR results of two proposed methods (i.e., D-N and F-N) with different ratios of
random missing pixels from 95% to 80%, as shown in Fig. 6. Since the methods in [16], [17] are very slow, we only present
the average inpainting results of APGL11 [18] and WNNM12 [13], both of which use the fast SVD strategy and need to
compute only partical SVD instead of the full one. Thus, APGL and WNNM are usually much faster than the methods [16],
[17]. Considering that only a small fraction of pixels are randomly selected, thus we conducted 50 independent runs and
report the average PSNR and standard deviation (std). The results show that both our methods consistently outperform
APGL [18] and WNNM [13] in all the settings. This experiment actually shows that both our methods have even greater
advantage over existing methods in the cases when the numer of observed pixels is very limited, e.g., 5% observed pixels.

As suggested in [17], we set d=9 for our two methods and TNNR13 [17]. To evaluate the robustness of our two methods
with respect to their rank parameter, we report the average PSNR and standard deviation of two proposed methods with
varying rank parameter d from 7 to 15, as shown in Fig. 7. Moreover, we also present the average inpainting results of
TNNR [17] over 50 independent runs. It is clear that two proposed methods perform much more robust than TNNR with
repsect to the rank parameter.
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(c) Image 3
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(d) Image 4
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(e) Image 5
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(f) Image 6
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(g) Image 7
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(h) Image 8

Fig. 6. The average PSNR and standard deviation of APGL [18], WNNM [13] and both our methods for image inpainting vs. fraction of observed
pixels (best viewed in colors).
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Fig. 7. The average PSNR and standard deviation of TNNR [17] and both our methods for image inpainting vs. the rank parameter (best viewed in
colors).


