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Abstract—L1-norm based low rank matrix factorization in the presence of missing data and outliers remains a hot topic in computer

vision. Due to non-convexity and non-smoothness, all the existing methods either lack scalability or robustness, or have no theoretical

guarantee on convergence. In this paper, we apply the Majorization Minimization technique to solve this problem. At each iteration, we

upper bound the original function with a strongly convex surrogate. By minimizing the surrogate and updating the iterates

accordingly, the objective function has sufficient decrease, which is stronger than just being non-increasing that other methods

could offer. As a consequence, without extra assumptions, we prove that any limit point of the iterates is a stationary point of

the objective function. In comparison, other methods either do not have such a convergence guarantee or require extra critical

assumptions. Extensive experiments on both synthetic and real data sets testify to the effectiveness of our algorithm. The

speed of our method is also highly competitive.

Index Terms—Matrix factorization, majorization minimization, alternating direction method of multipliers (ADMM)

Ç

1 INTRODUCTION

LOW rank matrix factorization has been successfully
applied to a variety of computer vision tasks, such as

rigid [1] and nonrigid [2] Structure from Motion (SfM), pho-
tometric stereo [3], [4], layer extraction [5], face recognition
[6] and image recovery [7]. Quite often, some entries of
the observed data matrix are missing. This problem can be
modelled as follows:

min
U;V

kW � ðM � UV T Þk; (1)

where M 2 Rm�n is the measurement matrix with rank r
known apriori (r � minðm;nÞ) and k � k is some matrix
norm. U 2 Rm�r and V 2 Rn�r are the unknown low rank
factorization. W is a 0-1 binary mask with the same size as
M. The entry value of W being 0 means that the component
at the same position in M is missing, and 1 otherwise. The
operator � is the Hadamard element-wise product.

Alternative to bilinear factorization as (1), the nuclear
norm, or sum of singular value, has been proposed and
shown to be effective [8], [9], [10]. Under certain assump-
tions [11], the low rank product matrix UV T can be exactly
recovered. However, such assumptions may not hold in
practice. In addition, the rank of target matrix in some com-
puter vision problems, e.g., rigid and nonrigid SfM and
image recovery, is known or could be estimated apriori,

while the nuclear norm cannot easily incorporate this prior
information. So in this paper, we only focus on the bilinear
factorization as (1).

When there are no missing data and the norm is the
L2-norm, namely Frobenius norm, SVD gives the optimal
solution to (1). To tackle the case of missing data, many opti-
mization methods [12], [13], [14], [15], [16] have been pro-
posed. However, the L2-norm is only optimal to Gaussian
noise and is fragile to outliers. For robustness, [17] proposed
to adopt the L1-norm, the sum of absolute values of entries,
in (1). Although having been extensively investigated in the
following years, it remains a hot yet challenging topic [18],
[19], [20], [21], [22]. Due to its non-convexity and non-
smoothness, all the existing methods either lack scalability or
robustness, or have no theoretical guarantee on convergence.

In this paper, we propose a new algorithm for robust
matrix factorization (RMF), i.e., problem (1) with the
L1-norm. Our method is based on the Majorization Minimi-
zation (MM) technique and can overcome all the weakness
of the existing algorithms. At each iteration, we upper
bound the original objective function with a strongly convex
surrogate, which is a function of the increments in U and V .
By minimizing the surrogate, U and V can be updated
accordingly. The contributions of this paper are as follows:

(a) We propose to use MM to solve the L1-norm based
bilinear matrix factorization. By constructing a
strongly convex surrogate at each iteration, the corre-
sponding convex subproblem can be efficiently
solved, despite its non-smoothness. Hence our
method could handle relatively large scale problems.

(b) Although in general MM, as well as most existing
methods for RMF, can only ensure the non-
increment of the original objective function and
hence has no convergence guarantee, we prove that
our MM for RMF (RMF-MM for short) has sufficient
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decrease in the objective function value. As a conse-
quence, we can further prove that any limit point of
RMF-MM is a stationary point of (1). To the best of
our knowledge, this is the first work for RMF with
convergence guarantee and without extra critical
assumptions.

(c) We conduct extensive experiments to demonstrate
the effectiveness of RMF-MM by comparing it with
the state-of-the-art methods. In particular, when the
measurement matrix has a high missing rate or/and
is severely corrupted, RMF-MM can still attain plau-
sible results while all others fail. Its speed is also
highly competitive.

2 RELATED WORK

In this section, we review some representative algorithms
for the problem of bilinear matrix factorization with
missing data.

When the norm is theL2-norm, Buchanan et al. [12] gave a
comprehensive survey on many factorization-based meth-
ods. They also proposed the Damped Newton algorithm to
optimize for U and V jointly. Okatani et al. [13] showed that
a Wiberg marginalization strategy on U or V is insensitive to
initialization. Mitra et al. [14] formulated the problem as a
low rank semidefinite program (LRSDP) and showed its abil-
ity to handle large scale data and incorporate additional con-
straints. Bue et al. [16] utilized Augmented Lagrangian
Multiplier (ALM) and projected variables onto the constraint
manifold at each step. They presented appealing visual
results for some popular factorization problems in computer
vision. Wen et al. [15] constructed a nonlinear successive
over-relaxation (SOR) algorithm and showed that its speed
is several times faster thanmany othermethods.

Unfortunately, all of the above L2-norm based methods
are only optimal to Gaussian noise and sensitive to outliers.
An intuitive extension of L2-norm to handle outliers is to
assign a proper weight to each element by iterative re-
weighted least squares [23]. However, a good initialization
is very critical for success. For robustness, Ke and Kanade
[17] suggested replacing the L2-norm with the L1-norm.
From then on, many algorithms have been proposed to
tackle this problem. They mainly fall into two categories:
Alternate Minimization (AM) algorithms and Alternating
Direction Method of Multipliers (ADMM).

Alternate Minimization algorithms update U and V alter-
nately, by fixing the other matrix. When one of the matrix is
fixed, the corresponding subproblem becomes convex and
the subproblem is of smaller size, which makes this kind of
methods very attractive. For example, Ke and Kanade [17]
converted the subproblem to convex Linear Programs (LP)
(or Quadratic Programs (QP) for Huber loss). However,
Eriksson and Hengel [18] pointed out that such an updating
scheme tends to flatline, i.e., converge slowly after initial
rapid update. Actually, for non-smooth problems, alternate
minimization can easily get stuck at non-stationary points
[24]. So Eriksson and Hengel represented V implicitly with
U and extended the Wiberg Algorithm to L1-norm (named
as L1-Wib) [21]. They only proved the convergence of the
objective function value, not the sequence fðUk; VkÞg itself.
Moreover, they had to assume that the dependence of V on

U is differentiable, which is unlikely to hold everywhere.
Additionally, as L1-Wib unfolds matrix U into a vector its
memory requirement is very high, which prevents it from
large scale computation. To overcome this issue, Meng et al.
[19] changed to update only one entry ofU and V in each iter-
ation. By adopting the cyclic weighted median (CWM)
method, each sub-problem can be solved efficiently. Although
shown to be more scalable, this coordinate decent algorithm
can only converge to coordinate-wise minimum points [19],
which are cusps of the iso-surfaces of the objective function,
not stationary points. Kim et al. [25] also proposed two ver-
sions of algorithms (namely ARG-A and ARG-D) by finding
rectified gradients of U and V cyclically. They were shown to
be less computationally expensive than computing the exact
updating direction. However, the intrinsic alternate minimi-
zation scheme restricted their convergence guarantee. And
they could only prove the convergence of one version of the
algorithms, i.e., ARG-D, to subspace-wise local minimum
[25], which is similar to that of CWM [19].

Recently, ADMM has also been applied to tackle RMF.
By introducing an auxiliary variable E and a constraint
E ¼ UV T , the original unconstrained problem is reformu-
lated as a constrained one

min
E;U;V

kW � ðM � EÞk; s:t: E ¼ UV T : (2)

Then by ADMM each sub-problem can be solved in closed
form. As there are more than two blocks of variables (E;U;
and V ), the original convergence theory of ADMM may not
be applied to this non-convex problem directly. By assum-
ing that the variables are bounded and convergent, Shen
et al. [20] proved that any accumulation point of their LMa-
Fit algorithm is the Karush-Kuhn-Tucker (KKT) point. It
was shown that the method was only able to handle outliers
with magnitudes comparable to the low rank matrix [20].
Moreover, the penalty parameter was fixed, which was not
easy to tune for fast convergence. Zheng et al. [21] thus
modified with an adaptive penalty. To reduce the solution
space, they added a nuclear norm regularization to V and
enforced U to be column orthogonal (named as RegL1).
Cabral et al. [22] replaced the nuclear norm regularization
with a sum of squared Frobenius norms on both U and V
(named as UNuBi). Both algorithms, RegL1 [21] and UNuBi
[22], scaled well and achieved plausible performance in
practice. Howe ver, as the experiments in Section 6 show,
they are still not robust when the observed matrix is ill-
conditioned. Since the convergence analysis in [20] cannot
be directly extended to the case with additional regulariza-
tion and adaptive penalty, it remains unknown whether the
iterations of RegL1 and UNuBi converge to KKT points.

3 PROBLEM FORMULATION

3.1 Optimization with MM

For completeness, we first give a brief introduction to opti-
mization with MM, which will be used later for RMF.

When an objective function is not easy to optimize
directly, e.g., it is non-convex or/and non-smooth, itera-
tively minimizing a majorizing surrogate function is pre-
ferred. Such a method is called Majorization Minimization
[26], [27], [28]. The key idea of MM is to construct an easy-
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to-tackle surrogate function fðx; xkÞ based on the current
iterate xk. Denote the objective function as hðxÞ. Then the
surrogate function should satisfy

hðxÞ � fðx; xkÞ; 8x; and (3)

xk ¼ argmin
x

fðx; xkÞ � hðxÞ: (4)

Typically, we can further choose fðx; xkÞ such that fðxk;
xkÞ ¼ hðxkÞ. Byminimizing fðx; xkÞ, we get the next iterate as

xkþ1 ¼ argmin
x

fðx; xkÞ: (5)

Then

hðxkþ1Þ � fðxkþ1; xkÞ � fðxk; xkÞ ¼ hðxkÞ: (6)

Namely, the objective function value is non-increasing. Fig. 1
gives an illustration. Note that in general MM does not have
any guarantee, e.g., on the convergence of the iteration,
beyond the non-increment of the objective function value.

A variety of algorithms can be regarded as MM, such as
proximal methods [29], [30], [31], DC programming [32],
boosting [33], [34] and some variational Bayes techniques
[35], [36]. The concept of surrogate has also been introduced
in the literature of sparse optimization [37], [38] and matrix
factorization [39], [40].

3.2 New Surrogate Function

Choosing L1-norm, we can explicitly write (1) as follows:

min
U;V

kW � ðM � UV T Þk1: (7)

Note that there is a gauge freedom: for any invertible r� r
matrix G, ~U ~V T ¼ ðUGÞðVG�1ÞT ¼ UV T . Therefore, for any
minimizer ðU	; V 	Þ, there are a family of infinitely many
equivalent solutions. In addition, not all mask matrices
admit a unique (even up to the gauge) solution [12]. To
reduce the degrees of freedom, we target on a modified ver-
sion of (7) as [22]:

min
U;V

HðU; V Þ ¼min
U;V

kW � ðM � UV T Þk1

þ �

2
kUk2F þ �

2
kV k2F ;

(8)

where � 2 Rþ is a regularization parameter. In addition, for
any matrix X with rank less than or equal to r, there exists
an identity [22]:

kXk	 ¼ min
X¼UV T

1

2
kUk2F þ 1

2
kV k2F ; (9)

where k � k	 denotes the nuclear norm. Thus model (8)
can also be regarded as a nuclear norm regularized one
to some extent.

Suppose that we have obtained ðUk; VkÞ at the kth itera-
tion. We split ðU; V Þ as the sum of ðUk; VkÞ and the unknown
increment ðDU;DV Þ

ðU; V Þ ¼ ðUk; VkÞ þ ðDU;DV Þ: (10)

Then (8) can be equivalently written as

min
DU;DV

HkðDU;DV Þ; where

HkðDU;DV Þ ¼kW � ðM � ðUk þ DUÞðV T
k þ DV ÞT Þk1

þ �

2
kUk þ DUk2F þ �

2
kVk þ DV k2F :

(11)

Now the key step is to find an increment ðDU;DV Þ such that
the objective function keeps decreasing. However, problem
(11) is not easier than the original problem (8). Inspired by
MM, we try to relax (11) to a convex surrogate.

By the triangular inequality of norms, we have the fol-
lowing inequality:

HkðDU;DV Þ � kW � ðM � UkV
T
k � DUV T

k � UkDV
T Þk1

þ kW � ðDUDV T Þk1 þ
�

2
kUk þ DUk2F þ �

2
kVk

þ DV k2F :
(12)

Denoting DuT
i and DvTi as the ith rows of DU and DV ,

respectively, we can further relax

kW � ðDUDV T Þk1 ¼ W �
DuT1 Dv1 DuT1 Dvn

..

. . .
. ..

.

DuT
mDv1 DuT

mDvn

0
BB@

1
CCA

��������

��������
1

� 1

2
kLuDUk2F þ 1

2
kLvDV k2F ;

(13)

where the inequality is derived from the Cauchy-Schwartz
inequality. Lu and Lv are diagonal matrices. The ith diago-
nal entry of Lu is chosen to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Wði;:Þ þ �

p
, where #Wði;:Þ

represents the number of non-zero entries in the ith row of
W and � > 0 is any positive scalar. Similarly, the jth diago-
nal entry of Lv is chosen to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Wð:;jÞ þ �

p
, where #Wð:;jÞ

represents the number of non-zero entries in the jth column
ofW . The equality holds if and only if ðDU;DV Þ ¼ ð0; 0Þ.

For simplicity, we define JkðDU;DV Þ as follows:

JkðDU;DV Þ ¼kW � ðM � UkV
T
k � DUV T

k � UkDV
T Þk1

þ �

2
kUk þ DUk2F þ �

2
kVk þ DV k2F :

(14)

Fig. 1. Illustration of MM. The curve of the surrogate function fðx; xkÞ is
above that of the objective function hðxÞ and equal to hðxÞ at xk. By mini-
mizing the surrogate function fðx; xkÞ, we get the next iterate xkþ1. The
values of objective function hðxÞ at fxkg are non-increasing.
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Then we have a relaxed function ofHkðDU;DV Þ

FkðDU;DV Þ ¼ JkðDU;DV Þ þ 1

2
kLuDUk2F þ 1

2
kLvDV k2F : (15)

Combining (12), (13) and (14), it is obvious that FkðDU;DV Þ
satisfies conditions (3) and (4). Thus it can be a surrogate of
HkðDU;DV Þ. Moreover, FkðDU;DV Þ is strongly convex with
a unique optimal solution, denoted as ðDUk, DVkÞ. By updat-
ing ðUk; VkÞ with this optimal increment according to (10),
the original function HðU; V Þ will be non-increasing. The
iteration stops when the improvement on the objective func-
tionHðU; V Þ in (8) is below a threshold.

Note that the traditional MM only ensures non-incre-
ment of the objective function, hence has no convergence
guarantee. By contrast, for RMF we can prove that by adopt-
ing this new surrogate function, the objective function will
have sufficient decrease. Consequently, we can prove that
any limit point is a stationary point. More details can be
found in Section 5. Also note that Mairal [28] gave
comprehensive analysis on the convergence of MM using
the first-order surrogate. However, he had to assume that
the difference between the objective function and the surro-
gate is differentiable. As FkðDU;DV Þ �HkðDU;DV Þ is not
differentiable, his result does not apply to our problem.

4 MINIMIZING THE SURROGATE FUNCTION

Now we show how to find the minimizer of the convex
FkðDU;DV Þ in Eq.(15). This can be easily done by using the
Linearized Alternating Direction Method with Parallel
Splitting and Adaptive Penalty (LADMPSAP) method [41],
whose computation cost and memory requirement are rela-
tively low.

4.1 Sketch of LADMPSAP

LADMPSAP fits for solving the following linearly con-
strained separable convex programs

min
x1;...;xn

Xn
j¼1

fjðxjÞ; s:t:
Xn
j¼1

AjðxjÞ ¼ b; (16)

where xj and b could be either vectors or matrices, fj is a
proper convex function and Aj is a linear mapping. Very
often, there are multiple blocks of variables (n 
 3).

We denote the iteration index by superscript i. The
LADMPSAP algorithm consists of the following steps [41]:

(a) Update xj’s (j ¼ 1; . . . ; n) in parallel:

xiþ1
j ¼ argmin

xj

fjðxjÞ þ
s
ðiÞ
j

2
xj � xij þAy

jðŷiÞ=sðiÞ
j

��� ���2: (17)

(b) Update y:

yiþ1 ¼ yi þ bi

Xn
j¼1

Ajðxiþ1
j Þ � b

 !
: (18)

(c) Update b:

bðiþ1Þ ¼ minðbmax; rbðiÞÞ; (19)

where y is the Lagrange multiplier, bðiÞ is the penalty
parameter, bmax � 1 is an upper bound of bðiÞ, sðiÞ

j ¼ hjb
ðiÞ

with hj > nkAjk2 (kAjk is the operator norm of Aj), Ay
j is

the adjoint operator of Aj,

ŷi ¼ yi þ bðiÞ Xn
j¼1

AjðxijÞ � b

 !
; (20)

and

r ¼ r0; if bðiÞmax
ffiffiffiffiffi
hj

p
xiþ1
j � xij

��� ���n o� �
= bk k < "1;

1; otherwise;

(
(21)

with r0 
 1 being a constant and 0 < "1 � 1 being a thresh-
old. For more details of LADMPSAP, please refer to [41].

4.2 Optimization Using LADMPSAP

To apply LADMPSAP, we first introduce an auxiliary matrix
E such that E ¼ M � UkV

T
k � DUV T

k � UkDV
T . Then mini-

mizing FkðDU;DV Þ in Eq. (15) can be transformed into the
following linearly constrained separable convex program

min
E;DU;DV

kW � Ek1 þ
�

2
kUk þ DUk2F þ 1

2
kLuDUk2F

� �

þ �

2
kVk þ DV k2F þ 1

2
kLvDV k2F

� �
;

s.t. E þ DUV T
k þ UkDV

T ¼ M � UkV
T
k ;

(22)

which naturally fits into the model problem (16). By injecting
the corresponding variables to the above steps of LADMP-
SAP, it is easy to update them accordingly. The details can be
found in the supplementary material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2017.2651816. The
stopping criteria of LADMPSAP are derived from the KKT
condition [41], [42], [43]. We terminate the iteration when the
following two conditions aremet

bðiÞ maxð ffiffiffiffiffi
he

p kEiþ1 � EikF ;
ffiffiffiffiffi
hu

p kDUiþ1 � DUikF ;ffiffiffiffiffi
hv

p kDV iþ1 � DV ikF Þ=kM � UkV
T
k kF < "1;

(23)

kEiþ1 � DUiþ1V T
k � UkDV

ðiþ1ÞTkF=kM � UkV
T
k kF < "2:

(24)

Once we obtain the optimal ðDUk;DVkÞ, we update ðUk; VkÞ
in the main iteration according to (10). When first executing
LADMPSAP, we initialize E0 ¼ M � U0V

T
0 , DU0 ¼ 0 and

DV 0 ¼ 0. In the subsequent iterations, we adopt the warm
start strategy. Namely, we initialize E0, DU0 and DV 0 with
their respective optimal values in last main iteration.

Denote K and I as the total number of main and inner
iterations, respectively, then the overall computation cost of
minimizingHðU; V Þ isOðKImnrÞ. We also adopt the contin-
uation technique [44] for setting Lu and Lv in FkðDU;DV Þ
(see Eq. (15)), which controls the step sizes of updating U
and V . Namely, we initialize the diagonal entries of Lu and
Lv with relatively small values and then increase them grad-
ually along with the main iteration until they touch the
upper bounds in (13). Such a simple trick can greatly cut the
number K of main iterations. As shown in Fig. 2, our RMF-
MM converges quickly after only a few iterations.
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5 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of our algo-
rithm. We will show that the objective function has suffi-
cient decrease, and accordingly any limit point of the
iterates is a stationary point of problem (8). We first recall
the definitions of directional derivative, stationary point
and sufficient decrease [45], [46].

Definition 1. Let f : D ! R be a function, where D 2 Rm is an
open set. The directional derivative of f at point x in the feasible
direction d is defined as

rfðx; dÞ ¼ lim inf
u#0

fðxþ udÞ � fðxÞ
u

: (25)

Definition 2. A point x is a (minimizing) stationary point of f if
rfðx; dÞ 
 0 for all d such that xþ d 2 D.

Definition 3. A function f is said to have sufficient decrease on
the sequence fxkg if there exists a constant a > 0 such that

fðxkÞ � fðxkþ1Þ 
 akxk � xkþ1k2; 8k: (26)

Next, we have the following proposition.

Proposition 1. rFkð0; 0;Du;DvÞ ¼ rHkð0; 0;Du;DvÞ holds
for any feasible direction ðDu;DvÞ.

Proof. Consider minimizing FkðDU;DV Þ �HkðDU;DV Þw.r.t.
ðDU;DV Þ. It reaches the minimum 0 at ðDU;DV Þ ¼ ð0; 0Þ.
We then have

rFkð0; 0;Du;DvÞ 
 rHkð0; 0;Du;DvÞ; (27)

where ðDu;DvÞ is any feasible direction.
Define RkðDU;DV Þ as

RkðDU;DV Þ ¼JkðDU;DV Þ

� 1

2
kLuDUk2F þ 1

2
kLvDV k2F

� �
:

(28)

Similar to FkðDU;DV Þ, we have

HkðDU;DV Þ 
 RkðDU;DV Þ; 8ðDU;DV Þ: (29)

The equality holds if and only if ðDU;DV Þ ¼ ð0; 0Þ. In
other words, the function HkðDU;DV Þ �RkðDU;DV Þ
reaches theminimum0 at ðDU;DV Þ ¼ ð0; 0Þ.We then have

rHkð0; 0;Du;DvÞ 
 rRkð0; 0;Du;DvÞ; 8ðDu;DvÞ: (30)

Compare FkðDU;DV Þ with RkðDU;DV Þ. They are com-
bined with two parts, the common part JkðDU;DV Þ and
the continuously differentiable part �ð12 kLuDUk2F þ 1

2 kLv

DV k2F Þ. And the function FkðDU;DV Þ �RkðDU;DV Þ ¼
kLuDUk2F þ kLvDV k2F achieves its global minimum at
ðDU;DV Þ ¼ ð0; 0Þ. Hence the first order optimality condi-
tion [46, Proposition 1] implies

rFkð0; 0;Du;DvÞ ¼ rRkð0; 0;Du;DvÞ: (31)

Combining (27), (30) and (31), we have rFkð0; 0;Du;
DvÞ ¼ rHkð0; 0;Du;DvÞ. tu
Now we are ready to prove our convergence theorem.

Theorem 1. The sequence fðUk; VkÞg generated by our algorithm
satisfies the following properties:

(a) Hð�; �Þ has sufficient decrease on the sequence
fðUk; VkÞg

HðUk; VkÞ �HðUkþ1; Vkþ1Þ 

1

2
kLuðUkþ1 � UkÞk2F þ 1

2
kLvðVkþ1 � VkÞk2F :

(b) limk!1ðUkþ1 � UkÞ ¼ 0 and limk!1ðVkþ1 � VkÞ ¼ 0.
(c) The sequence fðUk; VkÞg is bounded.

Proof. As the zero vector is contained in the subgradient of
FkðDU;DV Þ at the optimal solution ðDUk;DVkÞ, there exists
ðGUk

;GVkÞ 2 @JkðDUk;DVkÞ such that

ðGUk
;GVkÞ þ ðL2

uDUk;L
2
vDVkÞ ¼ ð0; 0Þ: (32)

An inner product with ðDUk;DVkÞ on both sides of (32)
gives

hGUk
;DUki þ hGVk;DVki þ kLuDUkk2F þ kLvDVkk2F ¼ 0: (33)

By the definition of subgradient of convex function, we
have

Jkð0; 0Þ 
 JkðDUk;DVkÞ � hGUk
;DUki � hGVk;DVki: (34)

Combining (33) and (34), we can get

HðUk; VkÞ �HðUkþ1; Vkþ1Þ

Fkð0; 0Þ � FkðDUk;DVkÞ

 1

2
kLuðUkþ1 � UkÞk2F þ 1

2
kLvðVkþ1 � VkÞk2F ;

(35)

where the first inequality is derived from the property of
surrogate function in (4). Thus HðUk; VkÞ has sufficient
decrease. Summing all the inequalities in (35) for k 
 1, it
follows that

Fig. 2. Objective value (8) versus computing time of UNuBi [22] and our
RMF-MM on large scale synthetic data, where each marker represents
one iteration. The left part of the curve by UNuBi is not shown as the
values are greater than 2:1� 104.
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HðU1; V1Þ 
 1

2

X1
k¼1

kLuðUkþ1 � UkÞk2F

þ 1

2

X1
k¼1

kLvðVkþ1 � VkÞk2F : (36)

By the positive definiteness of Lu and Lv, we can infer
that limk!1ðUkþ1 � UkÞ ¼ 0 and limk!1ðVkþ1 � VkÞ ¼ 0.

As HðU; V Þ ! 1 when kUk ! 1 or kV k ! 1, we
can conclude that the sequence fUk; Vkg is bounded. tu

Theorem 2. Let fðUk; VkÞg be the sequence generated by our
algorithm. Then any accumulation point of fðUk; VkÞg is a sta-
tionary point ðU	; V 	Þ of problem (8).

Proof. By Theorem 1 the sequence fðUk; VkÞg is bounded.
Hence the sequence fðUk; VkÞg has accumulation points.
For any accumulation point ðU	; V 	Þ, there exists a subse-
quence fðUkj ; VkjÞg such that limj!1ðUkj ; VkjÞ ¼ ðU	; V 	Þ.
From the fact that limj!1 DUj ¼ limj!1ðUjþ1 � UjÞ ¼ 0
and limj!1 DVj ¼ limj!1ðVjþ1 � VjÞ ¼ 0, we have limj!1
Ukjþ1 ¼ U	 and limj!1 Vkjþ1 ¼ V 	.

Since ðDUkj ;DVkjÞminimizes FkjðDU;DV Þ, we have

rFkjðDUkj ;DVkj ;Du;DvÞ 
 0; 8ðDu;DvÞ: (37)

As j ! 1, ðDUkj ;DVkjÞ approaches to ð0; 0Þ. By Proposi-
tion 1, we have

rHkjð0; 0;Du;DvÞ ¼ rFkjð0; 0;Du;DvÞ 
 0; 8ðDu;DvÞ:
(38)

AsHkðDU;DV Þ ¼ HkðU � Uk; V � VkÞ ¼ HðU; V Þ, we have

rHðU	; V 	;Du;DvÞ 
 0; 8ðDu;DvÞ: (39)

By Definition 2, we can conclude that ðU	; V 	Þ is a sta-
tionary point of (8). tu

6 EXPERIMENTAL RESULTS

In this section, we compare our RMF-MM with several
state-of-the-art algorithms for RMF, including L1-Wib1 [18],
CWM2 [19], ARG-D [25], LMaFit3 [20], RegL1

4 [21] and
UNuBi [22]. The code of ARG-D and UNuBi are kindly
provided by their authors. We modify the original code of
LMaFit so that it fits for missing data with a fixed rank.
L1-ALP/AQP [17] are not included here as they have been
shown to be much inferior to the above methods [18], [19],
[21]. All the codes are run in Matlab on a desktop PC with a
3.4 GHz CPU and 8 GB RAM.

For the monotonically decreasing algorithms, L1-Wib,
CWM, ARG-D and our RMF-MM, we stop them when the
relative change of the objective function is less than 10�4.
For the ADMM based algorithms, LMaFit, RegL1 and
UNuBi, we terminate them when

maxðkEk � Ek�1kF ; kUk � Uk�1kF ;
kVk � Vk�1kF Þ=kMkF < 10�4;

(40)

kEk � UkV
T
k kF=kMkF < 10�4; (41)

where Ek is the auxiliary variable. As LMaFit is hard to
reach such a precision using a fixed penalty parameter
when the data are noisy, we tune the penalty parameter and
the maximum iteration number in each experiment.

For the inner iterations in our RMF-MM algorithm, we set
"1 ¼ 10�5, "2 ¼ 10�4, r0 ¼ 1:5, and bmax ¼ 1010 as default val-
ues. For algorithms for regularized models, RegL1, UNuBi
and RMF-MM, we simply set the regularization parameter
� ¼ 20=ðmþ nÞ. In the following, unless explicitly men-
tioned all the algorithms are initialized with the rank-r trun-
cation of the singular-value decomposition ofW �M [18].

6.1 Synthetic Data

We first compare all the methods on synthetic data. We
generate data matrices M ¼ U0V

T
0 , where U0 2 Rm�r and

V0 2 Rn�r. The entries of U0 and V0 are sampled i.i.d. from
a Gaussian distribution Nð0; 1Þ. Then Gaussian noise
Nð0; 0:1Þ is added independently to every entry of M.
We additionally corrupt a portion of entries with outliers
uniformly distributed in ½�s; s
, where s > 0 represents the
magnitude of outliers. The positions of both outliers and
missing data are chosen uniformly at random. We denote
the missing data ratio as s percent and the outliers ratio as
o percent, respectively. Two metrics are used to measure the
performance. One is the optimized L1-norm error between
the reconstructedmatrixMest and the corruptedmatrixM

Err1 ¼ kW � ðMest �MÞk1=#W; (42)

where we normalize the error with the number #W of
observed entries. The other metric is the L1-norm error
betweenMest and the ground truth matrixM0,

Err2 ¼ kMest �M0k1=ðmnÞ: (43)

Experiments are conducted at two sizes: ðm ¼ 20; n ¼
30; r ¼ 4Þ and ðm ¼ 200; n ¼ 300; r ¼ 4Þ. Due to the signifi-
cant memory requirement of the L1-Wib algorithm [21],
[22], we do not include it in the large scale experiments.
At each size, we test the algorithms by varying one of the
three hyper parameters (missing data ratio s percent, out-
liers ratio o percent and outliers magnitude s) and fixing
the other two. At each combination of these hyper parame-
ters, we repeat the experiments 50 times. All the compared
algorithms use the same data in each trial. The results are
summarized at Table 1. Ave1 and Std1 denote the average
and the standard derivation of Err1, respectively. Ave2 and
Std2 are defined similarly for Err2. The least Ave1, Std1,
Ave2 and Std2 among all algorithms are presented in bold-
face. To account for the inconsistency in the termination cri-
teria, the four measurements within a difference of 10�3

from the least ones are also shown in bold fonts.
In the small scale data experiments, our RMF-MM con-

sistently gives the smallest Ave1 and Std1 except when s, o
percent or s is very large. L1-Wib and LMaFit are a little
inferior to our algorithm in Ave1 and Std1. However, the
two algorithms seldom achieve the least Ave2 and Std2. We
attribute this to the Frobenius norm regularizations in (8).
In general, the regularized model, e.g., our RMF-MM, is less

1. http://cs.adelaide.edu.au/�anders/code/cvpr2010.html
2. http://gr.xjtu.edu.cn/web/dymeng/3
3. http://lmafit.blogs.rice.edu/
4. https://sites.google.com/site/yinqiangzheng/
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TABLE 1
Synthetic Experiments on Two Sizes of Data with Varying Missing Data Ratio s Percent,

Outliers Ratio o Percent and Outliers Magnitude s

m ¼ 20; n ¼ 30
r ¼ 4

s% varies, o% ¼ 15% and s ¼ 9 s% ¼ 20%, o% varies and s ¼ 9 s% ¼ 20%, o% ¼ 15% and s varies

10% 15% 20% 25% 5% 10% 15% 20% 5 7 9 11

L1-Wib [18]

Ave1 0:713 0:701 0.716 0.687 0:271 0:483 0.716 0.906 0:413 0:564 0.716 0.859
Std1 0:089 0:095 0.090 0.103 0:056 0:072 0.090 0.082 0:049 0:069 0.090 0.104
Ave2 0.115 0.784 0.662 1.722 0:072 0.136 0.662 1.313 0.126 0.253 0.662 1.002
Std2 0.086 3.950 1.873 4.705 0:007 0.239 1.873 1.773 0.041 0.516 1.873 2.504

CWM [19]

Ave1 0.753 0.763 0.796 0.788 0.290 0.540 0.796 1.005 0.441 0.617 0.796 0.961
Std1 0.105 0.109 0.106 0.117 0.064 0.094 0.106 0.090 0.055 0.082 0.106 0.126
Ave2 0.287 0.386 0.508 0.656 0.126 0.301 0.508 0.806 0.246 0.373 0.508 0.656
Std2 0.171 0.191 0.207 0:247 0.070 0.162 0.207 0:193 0.077 0.151 0.207 0.279

ARG-D [25]

Ave1 0.715 0.704 0.719 0.700 0:272 0.485 0.719 0.927 0.416 0.569 0.719 0.876
Std1 0:090 0.098 0.090 0.103 0:056 0:073 0.090 0.084 0:050 0.071 0.090 0.110
Ave2 0.130 0.151 0.237 0.384 0.076 0.110 0.237 0.575 0.143 0.168 0.237 0.355
Std2 0.080 0.071 0.181 0.259 0.009 0.061 0.181 0.270 0.043 0.069 0.181 0.275

LMaFit [20]

Ave1 0:713 0:701 0.718 0:680 0:271 0:484 0.718 0:902 0:414 0.567 0.718 0:853
Std1 0:089 0:095 0:088 0:097 0:056 0:072 0:088 0:079 0:049 0:069 0:088 0:097
Ave2 0.160 0.141 0.285 0.543 0:072 0.120 0.285 0.752 0.126 0.181 0.285 0.615
Std2 0.202 0.110 0.360 0.492 0:007 0.127 0.360 0.506 0.042 0.197 0.360 0.617

RegL1 [21]

Ave1 0.719 0.705 0.718 0.687 0:272 0.485 0.718 0.911 0:414 0:565 0.718 0.872
Std1 0.096 0:096 0.090 0.101 0.060 0.075 0.090 0:080 0:049 0:069 0.090 0.103
Ave2 0.174 0.192 0.283 0.374 0.085 0.118 0.283 0.589 0:117 0.160 0.283 0.551
Std2 0.188 0.231 0.259 0.317 0.070 0.087 0.259 0.352 0:027 0.128 0.259 0.333

UNuBi [22]

Ave1 0:713 0.703 0.717 0.688 0:272 0:484 0.717 0.913 0:414 0.567 0.717 0.863
Std1 0:089 0:096 0:087 0.102 0.060 0:072 0:087 0.088 0:049 0:069 0:087 0.105
Ave2 0.118 0.147 0.208 0.322 0.080 0:105 0.208 0.536 0:116 0.148 0.208 0.403
Std2 0:077 0.121 0.188 0.301 0.059 0:054 0.188 0.316 0:027 0.098 0.188 0.344

RMF-MM

Ave1 0:713 0:701 0:714 0.685 0:271 0:483 0:714 0.909 0:414 0:565 0:714 0.861
Std1 0:089 0:095 0:088 0:098 0:056 0:072 0:088 0:080 0:049 0:069 0:088 0.104
Ave2 0:113 0:118 0:178 0:292 0:071 0:105 0:178 0:427 0:117 0:136 0:178 0:248
Std2 0:076 0:042 0:153 0.266 0:006 0:054 0:153 0.317 0:027 0:054 0:153 0:244

m ¼ 200; n ¼ 300
r ¼ 4

s% varies, o% ¼ 35% and s ¼ 9 s% ¼ 85%, o% varies and s ¼ 9 s% ¼ 85%, o% ¼ 35% and s varies
75% 80% 85% 90% 25% 30% 35% 40% 5 7 9 11

CWM [19]

Ave1 1.619 1.614 1.641 1.659 1.173 1.404 1.641 1.862 0.915 1.274 1.641 2.036
Std1 0:022 0:026 0.040 0.037 0:026 0.024 0.040 0.030 0:018 0.026 0.040 0.050
Ave2 0.105 0.185 0.618 1:767 0.195 0.338 0.618 0.932 0.313 0.435 0.618 0.989
Std2 0.007 0.018 0.119 0:095 0.023 0.048 0.119 0:085 0.031 0.054 0.119 0.190

ARG-D [25]

Ave1 1:617 1:607 1.599 1.526 1:161 1:381 1.599 1.815 0:899 1.248 1.599 1.969
Std1 0:022 0:025 0.033 0.035 0:025 0:023 0.033 0.030 0:017 0.026 0.033 0.052
Ave2 0.082 0.125 0.351 1.914 0.120 0.182 0.351 0.777 0.199 0.256 0.351 0.704
Std2 0.005 0.010 0.074 0.136 0.010 0.024 0.074 0.123 0.020 0.036 0.074 0.291

LMaFit [20]

Ave1 1.667 1.662 1.647 1.483 1.184 1.417 1.647 1.849 0.914 1.277 1.647 2.019
Std1 0.025 0.029 0.033 0:028 0.027 0.024 0.033 0:028 0:018 0.026 0.033 0:038
Ave2 0.170 0.210 0.358 3.020 0.139 0.209 0.358 0.898 0.201 0.265 0.358 0.516
Std2 0.017 0.018 0.053 0.241 0.009 0:018 0.053 0.243 0.018 0.031 0.053 0:116

RegL1 [21]

Ave1 1:616 1:606 1.597 1.454 1:161 1:381 1.597 1.808 0:898 1:246 1.597 1.977
Std1 0:022 0:025 0.031 0:028 0:025 0:022 0.031 0:028 0:017 0:024 0.031 0.042
Ave2 0:077 0:109 0.275 3.621 0.107 0.164 0.275 1.154 0:176 0.210 0.275 1.455
Std2 0:003 0:008 0.085 0.202 0.023 0.060 0.085 0.393 0:017 0.029 0.085 0.618

UNuBi [22]

Ave1 1:616 1:606 1.597 1.454 1:160 1:380 1.597 1.807 0:898 1:246 1.597 1.978
Std1 0:022 0:025 0.033 0:028 0:025 0.024 0.033 0:028 0:017 0:024 0.033 0.044
Ave2 0:077 0:109 0.285 3.620 0:104 0.150 0.285 1.121 0:176 0.210 0.285 1.512
Std2 0:003 0:008 0.130 0.218 0:007 0.040 0.130 0.399 0:017 0.029 0.130 0.683

RMF-MM

Ave1 1:616 1:606 1:595 1:435 1:160 1:380 1:595 1:803 0:898 1:246 1:595 1:948
Std1 0:022 0:025 0:031 0:029 0:025 0:023 0:031 0:028 0:017 0:024 0:031 0.042
Ave2 0:077 0:108 0:247 2.617 0:104 0:146 0:247 0:672 0:176 0:207 0:247 0:444
Std2 0:003 0:007 0:040 0.234 0:008 0:017 0:040 0.175 0:016 0:025 0:040 0.135

Ave1 and Std1 (Ave2 and Std2) represent the average and the standard derivation of Err1 (Err2) across 50 repeats. The best values within a difference of 10�3 are
in bold fonts.
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likely to overfit the corrupted data than the unregularized
ones, e.g., L1-Wib and LMaFit. Thus we can give more accu-
rate estimate on the ground truth matrices, i.e., the smallest
Ave2 and Std2, across almost all combinations of the three
hyper parameters. When s, o percent or s is relatively small,
UNuBi can also achieve reasonably good performance.

In the large scale data experiments, our RMF-MM again
reaches the smallest values of the four measurements in
most cases. When s% ¼ 90%, although we get much smaller
Ave1 and Std1 than CWM, the corresponding Ave2 and Std2

are much worse. The reason may be the ill conditioning
caused by the very high missing data ratio s percent. When
o% ¼ 40% or s ¼ 11, the achieved standard derivation of
our RMF-MM is not the smallest. But combining with the
far smaller average value, we may still conclude that our
algorithm achieves the best performance in these two cases.
When s;m percent, or s is relatively small, RegL1 and
UNuBi also recover the matrix in high accuracy. Overall,
the algorithms with regularized model, i.e., RegL1, UNuBi
and RMF-MM, are better than the unregularized ones, i.e.,
CWM, ARG-D and LMaFit.

To have a better understanding on the convergence rate
of our RMF-MM, we compare with UNuBi on large scale
data (s% ¼ 85%; o% ¼ 30%; and s ¼ 9). Both algorithms
have the same objective function (8). As Fig. 2 shows, our
RMF-MM converges quickly after only a few iterations. By
contrast, it takes more time for UNuBi to reach reasonably
small objective values. From the curve, we can also see that
it costs much more time in the first iteration for our RMF-
MM. This is because that we fix the initial small diagonal
entries of Lu and Lv across all experiments, and it takes
time for our continuation technique to reach the proper val-
ues of Lu and Lv for this specific task.

6.2 Real Data

In this section, we compare the performance of various algo-
rithms on real data. We do not include L1-Wib here again
due to its high memory requirement[21], [22].

6.2.1 Affine Rigid SfM

As first proposed in [1], Tomasi and Kanade modelled the
orthographic rigid SfM, a special case of affine rigid SfM, as a
matrix factorization problem. When there are no missing
data and outliers, it can be formulated as a rank-3 factoriza-
tion problem after registering the image origin to the centroid
of feature points in every frame. Unfortunately, such an ideal
scenario does not exist in practice. We thus model this prob-
lem as a rank-4matrix factorization [18], [19], [21], [22].

Here we use the famous Oxford Dinosaur sequence,5

which consists of 36 images with a resolution of 720� 576.
We pick out a portion of the raw features which are
observed by at least e views. We conduct three sets of
experiments with e chosen as be 7, 6 and 5, respectively.
The raw features are shown in Fig. 3a. The corresponding
observed matrices are of size 72� 336 with s% ¼ 76:9%,
72� 557 with s% ¼ 79:5%, and 72� 932 with s% ¼ 82:1%,
respectively. The observed matrices have a band diagonal
pattern with outliers and the missing data ratio increases as
e decreases. Thus it is very challenging to conduct SfM,
especially when e is small.

We first register the image origin to the image center,
ð360; 288Þ, by which the intrinsic rank remains to be four
under the affine SfM model. Since there is no ground truth,
we only measure the reconstruction error Err1 defined as
(42). Figs. 3b, 3c, 3d, 3e, and 3f show the full tracks recon-
structed by all algorithms. And the values of Err1 are shown
under the tracks. As the dinosaur sequence is taken on a
turntable, all the tracks are expected to be circular. Among
them, the tracks reconstructed by CWM are the most infe-
rior. Its reconstruction errors are higher by orders than
others. This may be caused by its alternate scheme, which
easily gets struck at non-stationary solutions. ARG-D and
LMaFit perform better but quite a few tracks also diverge.
RegL1 and UNuBi give reasonably good results. However,

Fig. 3. Original incomplete and recovered data of the Dinosaur sequence with at least 7, 6 and 5 views, respectively. (a) Raw input tracks. (b-g) Full
tracks reconstructed by ALP [17], CWM [19], LMaFit [20], RegL1 [21], UNuBi [22] and RMF-MM, respectively. The reconstruction errors Err1 defined
as (42) are presented below the tracks.

5. http://www.robots.ox.ac.uk/�vgg/data1.html

LIN ET AL.: ROBUST MATRIX FACTORIZATION BY MAJORIZATION MINIMIZATION 215

http://www.robots.ox.ac.uk/~vgg/data1.html
http://www.robots.ox.ac.uk/~vgg/data1.html


most of the reconstructed tracks in large radii are not
smooth at their ends, and there are some wild tracks which
obviously fail to be reconstructed. By contrast, almost all
the tracks reconstructed by our RMF-MM in Fig. 3g are cir-
cular, which exhibit the most plausible visual performance.
The consistently lowest reconstruction errors also confirm
the effectiveness of our RMF-MM.

6.2.2 Nonrigid SfM

As Bregler et al. [2] pointed out, nonrigid motions could be
reconstructed from an image sequence via rank-3d matrix
factorization, where d is the number of shape basis account-
ing for nonrigid deformation.

We use the Giraffe sequence,6 which contains 166 feature
points tracked over 120 successive frames. The measure-
ment matrix M is of size 240� 166 with 30.2 percent entries
missing. Since it is somehow cleaned [12] for the L2-norm
based methods, we imitate the experimental setup of [21]
by uniformly adding outliers in the range of ½�s; s
 to o per-
cent of the observed entries. For comparison, we add two
levels of outliers with ðo% ¼ 5%; s ¼ 50Þ and ðo% ¼ 10%;
s ¼ 100Þ, respectively. We set d to 2, leading to a rank-6
matrix factorization problem. We initialize all algorithms
with the same random matrix.

Fig. 4 shows the recovered giraffe shape feature points in
the first (first and third rows) and the 50th (second and

fourth rows) frames of the sequence. We report Err1 (42) and
Err2 (43)

7 below the figures. Among all the competing meth-
ods, LMaFit gives the worst visual results in the sampled
frames, although it reaches reasonably small Err2. We may
attribute this phenomenon to overfitting of the unregularized
model. This may also hold for ARG-D when observing its
out-of-shaped frames and its lowErr2. CWMgives reasonably
good reconstruction. However, there are still some wild fea-
ture points that obviously fail to recover. When the intensity
of outliers increases, the neck of the giraffe in the first frame
and the head in the 50th frame are out of shape. RegL1 and
UNuBi show a great gap in the two levels of outliers. Both
algorithms seem to be more sensitive to outliers. By contrast,
our RMF-MM consistently gives the best visual results. The
lowest errors also confirm the effectiveness of our algorithm.

6.2.3 Image Recovery

As pointed out in [7], many images could be regarded as low
rank matrices, where the top singular values dominate
the main information. Thus we can employ low rank
approximation to recover corrupted images. Figs. 5a and 6a8

show typical ones of size 300� 300, where the unrelated
texts to be removed are masked as missing data. To show
the robustness of the L1-norm based methods, we uniformly

Fig. 4. Recovered points for the first (first and third rows) and the 50th (second and fourth rows) frames of the Giraffe sequence on two levels of out-
liers (o% ¼ 5% and s ¼ 50 for the first two rows and o% ¼ 10% and s ¼ 100 for the last two rows). A red dot represents an observed outliers we ran-
domly generated. Green is an observed entry, and black is a missing entry. Err1 and Err2 are presented below the figures (best viewed on screen!).

6. http://www.robots.ox.ac.uk/�amb/

7. As the ground truth is with missing data, similar to Err1, we com-
pute Err2 over the observed entries only.

8. https://sites.google.com/site/zjuyaohu/
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Fig. 5. Comparison of image recovery after adding different magnitudes of outliers and by choosing different ranks. The first to the fourth rows corre-
spond to ðs ¼ 150; r ¼ 15Þ, ðs ¼ 150; r ¼ 20Þ, ðs ¼ 250; r ¼ 15Þ and ðs ¼ 250; r ¼ 20Þ, respectively. The PSNRs are presented below each image
(best viewed on screen!).

Fig. 6. The description is the same as Fig. 5.
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add outliers in the range of ½�s; s
 to 20 percent of the
observed pixels. For color images which have three chan-
nels, we implement matrix factorization on each channel
independently.

Figs. 5b, 5c, 5d, 5e, 5f, 5g and 6b, 6c, 6d, 6e, 6f, 6g show
the recovered results by all six compared methods on the
corrupted images. Here we vary the outliers magnitude s

and the chosen rank r. In the first to the fourth rows, the fig-
ures correspond to results of ðs ¼ 150; r ¼ 15Þ, ðs ¼ 150;
r ¼ 20Þ, ðs ¼ 250; r ¼ 15Þ and ðs ¼ 250; r ¼ 20Þ, respec-
tively. Overall, our RMF-MM consistently produces good
visual quality with few noticeable artifacts. Whereas other
methods can only succeed for at most one or two cases. In
the remaining cases, their results are more or less with arti-
facts of some horizontal (and vertical) lines. Besides the
visual results, we report the Signal-to-Noise Ratios (PSNRs)
below images and highlight the best in boldface. Our RMF-
MM consistently achieves the highest PSNRs on the two
tested images in all cases.

6.3 Parameter Sensitivity Analysis

As mentioned in the beginning of Section 6, we fix the regu-
larization parameter � ¼ 20=ðmþ nÞ for all the regularized
methods, i.e., RegL1, UNuBi and RMF-MM, across all experi-
ments. In this section, we first test the sensitivity with respect
to �. We conduct experiments on the Dinosaur sequence by
varying � in the range of ½0:1; 100
 	 2=ðmþ nÞ. The results
are shown in Fig. 7. In all the three trials, our RMF-MM can
produce almost constant Err1 in a wide range of �. It also
reaches the lowest values among all methods inmost cases.

We also test the effect of rank parameter on the perfor-
mance of Image Recovery. The experiments are conducted
on a wider range of ranks, e.g., ½10; 25
. As Fig. 8 shows, our
RMF-MM consistently reaches the highest PSNRs. Com-
pared with other methods, it is less sensitive to the changes
of rank. Especially, when the rank is large, all other methods
exhibit an obvious degradation as rank increases. By con-
trast, the PSNRs of our RMF-MM only drop by a small
amount or even increase.

Fig. 7. Err1 versus the regularization parameter � for all the regularized methods, e.g., RegL1 [21], UNuBi [22] and RMF-MM, on the Dinosaur data
set. The curves from left to right correspond to data sequence with at least 7, 6 and 5 views, respectively.

Fig. 8. PSNR versus the rank r on the image recovery task. The first two images correspond to Fig. 5 with outliers magnitude s ¼ 150 and 250,
respectively. The last two correspond to Fig. 6 similarly.

TABLE 2
Average Computing Time (Seconds) of the Competing Algorithms on Different Data Sets

Experiments/ Algorithms L1-Wib [18] CWM [19] ARG-D [25] LMaFit [20] RegL1 [21] UNuBi [22] RMF-MM

Small scale synthetic data 61.4 0:1 0:2 3:0 2:6 0:8 0:5
Large scale synthetic data - 0:9 5:9 19:9 36:4 16:8 14:3
Affine Rigid SfM (7 views) - 17.1 138.1 270.2 20.3 10:4 47.9
Affine Rigid SfM (6 views) - 59.3 96.1 362.8 30.4 14:9 67.1
Affine Rigid SfM (5 views) - 87.2 254.5 569.3 47.2 23:7 120.1
Nonrigid SfM - 13.9 10.7 79.9 32.8 19.9 9:7
Image Recovery - 94.7 71:5 471.3 295.2 131.6 305.4
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6.4 Computing Time

We show in Table 2 the average computing time of all the
competing algorithms on all data sets. Note that the com-
puting time in image recovery is the sum of those on three
(R, G and B) channels. RMF-MM costs the least in Nonrigid
SfM. On other data sets, although RMF-MM is not the fast-
est, its computing time is at the same scale as those of
others. If considering the quality of solutions, RMF-MM
should still be highly preferable.

7 CONCLUSION

In this paper, we apply the Majorization Minimization
technique to solve the L1-norm based low rank matrix
factorization problem in the presence of both missing
data and outliers. By constructing a novel convex surro-
gate, the corresponding strongly convex sub-problem
can be minimized by LADMPSAP efficiently. Moreover,
the objective function has sufficient decrease. Accord-
ingly, we are able to prove that any limit point of RMF-
MM is a stationary point, which might be the best possi-
ble convergence result for non-convex optimization. To
our best knowledge, this is the first convergence guaran-
tee for the RMF problem without extra assumptions.
Experiments on both synthetic and real data sets demon-
strate that our RMF-MM can outperform the state-of-the-
art robust factorization algorithms in robustness and
accuracy. Its speed is also highly competitive.
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