
A Unified Alternating Direction Method of
Multipliers by Majorization Minimization
Canyi Lu , Student Member, IEEE, Jiashi Feng , Shuicheng Yan, Fellow, IEEE,

and Zhouchen Lin , Senior Member, IEEE

Abstract—Accompanied with the rising popularity of compressed sensing, the Alternating DirectionMethod of Multipliers (ADMM) has

become themost widely used solver for linearly constrained convex problemswith separable objectives. In this work, we observe that

many existing ADMMs update the primal variable byminimizing different majorant functions with their convergence proofs given case by

case. Inspired by the principle of majorization minimization, we respectively present the unified frameworks of Gauss-Seidel ADMMs and

Jacobian ADMMs, which use different historical information for the current updating. Our frameworks generalize previous ADMMs to

solve the problemswith non-separable objectives.We also show that ADMMs converge faster when the usedmajorant function is tighter.

We then propose theMixedGauss-Seidel and Jacobian ADMM (M-ADMM) which alleviates the slow convergence issue of Jacobian

ADMMs by absorbingmerits of theGauss-Seidel ADMMs. M-ADMM can be further improved by backtracking and wise variable partition.

We also propose to solve themulti-blocks problems by Proximal Gauss-Seidel ADMMwhich is of the Gauss-Seidel type. It convegences

for non-strongly convex objective. Experiments on both synthesized and real-world data demonstrate the superiority of our newADMMs.

Finally, we release a toolbox that implements efficient ADMMs for many problems in compressed sensing.

Index Terms—Unified frameworks of ADMM, mixed ADMM, majorization minimization, convex optimization

Ç

1 INTRODUCTION

THIS work aims to solve the following convex problem

min
x

fðxÞ ¼ fðx1; . . . ; xnÞ; s.t. Ax ¼
Xn
i¼1

Aixi ¼ b; (1)

where f : Rp1�����pn ! R is convex and n ð� 2Þ denotes the
block number of variables. We denote x ¼ ½x1; . . . ; xn� with
xi 2 Rpi , and A ¼ ½A1; . . . ;An� with Ai 2 Rd�pi . Problem (1)
has drawn increasing attention recently for the emerging
applications of compressive sensing in computer vision and
signal processing, e.g., sparsity based face recognition [41],
saliency detection [38], motion segmentation [11], [26], [30],
image denoising [23], video denoising [19], texture repair-
ing [21] and many others [5], [18], [29], [42], [43].

To solve (1), the popular Augmented Lagrangian Method
(ALM) [16] updates the primal variable x by

xkþ1 ¼ argmin
x

Lðx; ��k;bðkÞÞ ¼ argmin
x

fðxÞ þ rkðxÞ; (2)

where L is the augmented Lagrangian function defined as

Lðx; ��; bÞ ¼ fðxÞ þ h��;Ax� bi þ b

2
kAx� bk2;

and

rkðxÞ ¼ bðkÞ

2
Ax� bþ ��k

bðkÞ

����
����
2

: (3)

Then the dual variable �� is updated to minimize �L by gra-
dient descent with the step size bðkÞ, i.e.,

��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ: (4)

However, (2) may not be easily solvable, since rk is non-sep-
arable. The Alternating Direction Method of Multipliers
(ADMM) [12] instead solves (2) inexactly by updating xi’s
in an alternating way and thus the per-iteration cost can be
much lower. Many variants of ADMM have been proposed
by using different properties of f and A. We will review the
most related works in Section 1.1, and claim our contribu-
tions in Section 1.2.

Notations. The ‘2-norm of a vector and Frobenius norm of
a matrix are denoted as k � k. The spectral norm and the
smallest singular value of a matrix A are denoted as kAk2
and sminðAÞ, respectively. The identity matrix is denoted as
I without specifying its size. The all-one vector is denoted
as 11. We denote S and Sþ as the set of symmetry and posi-
tive semidefinite matrices respectively and define haa; aaiA ¼
kaak2A ¼ aa>Aaa for A 2 S. If A� B is positive semi-definite,
then we denote A � B. The block diagonal matrix DiagfAi;
i ¼ 1; . . . ; ng has Ai as its ith block on the diagonal. A func-
tion f : Rp ! R is said to be L-smooth (or rf is Lipschitz
continuous), if

krfðxÞ � rfðyÞk � Lkx� yk; 8x; y 2 Rp: (5)

	 C. Lu, J. Feng, and S. Yan are with the Department of Electrical and Com-
puter Engineering, National University of Singapore, Singapore 119077.
E-mail: canyilu@gmail.com, {elefjia, eleyans}@nus.edu.sg.

	 Z. Lin is with the Key Laboratory of Machine Perception (MOE), School of
EECS, Peking University, Beijing Shi 100000, China, and the Cooperative
Medianet Innovation Center, Shanghai Jiao Tong University, Minhang
Qu 200240, China. E-mail: zlin@pku.edu.cn.

Manuscript received 7 July 2016; revised 25 Jan. 2017; accepted 15 Mar. 2017.
Date of publication 28 Mar. 2017; date of current version 13 Feb. 2018.
Recommended for acceptance by K. Weinberger.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2017.2689021

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018 527

0162-8828� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9542-8346
https://orcid.org/0000-0002-9542-8346
https://orcid.org/0000-0002-9542-8346
https://orcid.org/0000-0002-9542-8346
https://orcid.org/0000-0002-9542-8346
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0001-6843-0064
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
mailto:
mailto:
mailto:

1.1 Review of ADMMs
Most of ADMMs are only able to solve (1) with separable f ;
i.e., there exist fi’s such that fðxÞ ¼ Pn

i¼1 fiðxiÞ. They can
be categorized into Gauss-Seidel ADMMs and Jacobian
ADMMs. The Gauss-Seidel ADMMs update xi’s in a
sequential way, i.e., update xkþ1

i by fixing others as their lat-
est versions, while the Jacobian ADMMs update xi’s in a
parallel way, i.e., update each xkþ1

i by fixing xj ¼ xkj , for all
j 6¼ i. We review these two types of ADMMs respectively.
The difference between ADMMs lies in the updating of xi’s,
while �� is updated in the same way by (4).

Gauss-Seidel ADMMs solve (1) with n ¼ 2 blocks. The
standard ADMM [2] solves (2) inexactly by updating x1 and
x2 in a sequential way, i.e.,

xkþ1
1 ¼ argmin

x1
Lð½x1; xk2�; ��k;bðkÞÞ

¼ argmin
x1

f1ðx1Þ þ rk1ðx1Þ;
(6)

xkþ1
2 ¼ argmin

x2
Lð½xkþ1

1 ; x2�; ��k;bðkÞÞ
¼ argmin

x2
f2ðx2Þ þ rk2ðx2Þ;

(7)

where

rk1ðx1Þ ¼
bðkÞ

2
A1x1 þA2x

k
2 � bþ ��k

bðkÞ

����
����
2

; (8)

rk2ðx2Þ ¼
bðkÞ

2
A1x

kþ1
1 þA2x2 � bþ ��k

bðkÞ

����
����
2

: (9)

By using different properties of f1 andA1, x1 (the same dis-
cussion is also applicable to x2) can be updated more effi-
ciently than solving (6). If f1 is L1-smooth, then x1 can be
updated by

xkþ1
1 ¼ argmin

x1

f̂1ðx1Þ þ rk1ðx1Þ; (10)

where f̂1 ðx1Þ ¼ fðxk1Þ þ hrf1ðxk1Þ; x1 � xk1i þ L1
2 k x1 � xk1 k2.

Themotivation is that f̂1 is amajorant (upper bound) function
of f1, i.e., f̂1 � f1 [1]. If f1 ¼ g1 þ h1, where g1 is convex and h1

is convex andL1-smooth, then x1 can be updated by (10) with

f̂1ðx1Þ ¼ gðx1Þ þ hðxk1Þ þ hrh1ðxk1Þ; x1 � xk1i þ L1
2 kx1 � xk1k2. In

this case, f̂1 � f1.We name themethod using (10) as Proximal

ADMM (P-ADMM) for these two cases. Similar techniques

have been used in [1], [36].
If the columns of A1 are not orthogonal, solving (6) is usu-

ally very expensive especially when f1 is nonsmooth. Then
LinearizedADMM (L-ADMM) [6], [24] instead updates x1 by

xkþ1
1 ¼ argmin

x1
f1ðx1Þ þ r̂k1ðx1Þ; (11)

where r̂k1ðx1Þ ¼ rk1ðxk1Þ þ hrrk1ðxk1Þ; x1 � xk1i þ h1
2 kx1 � xk1k2 with

h1 > kA1k22. Note that r̂k1 � rk1 since rk1 is kA1k22-smooth. For
some nonsmooth f1, e.g., the ‘1-norm, (11) can be solved

efficiently with a closed form solution.
If f1 is a sum of a nonsmooth function and an L1-smooth

function, then we can simultaneously use the majorant func-
tion f̂1 of f1 as P-ADMM and r̂k1 of rk1 as L-ADMM. Thus
f̂1 þ r̂k1 � f1 þ rk1. This motivates the Proximal Linearized
ADMM (PL-ADMM) which updates x1 by

xkþ1
1 ¼ argmin

x1
f̂1ðx1Þ þ r̂k1ðx1Þ: (12)

For (1) with n > 2 blocks of variables, the naive extension
of Gauss-Seidel ADMMs may diverge [3]. To address this

issue, several Jacobian ADMMs have been proposed by using
different properties of fi andAi. The Linearized ADMMwith
Parallel Splitting (L-ADMM-PS) [28] solves (2) inexactly by
linearizing rk in (3) at xki ’s and updates xi’s in parallel by

xkþ1
i ¼ argmin

xi
fiðxiÞ þ

�
A>

i ðbðkÞðAxk � bÞ þ ��kÞ; xi
�

þ bðkÞhi
2

kxi � xki k2;
(13)

where hi > nkAik22. Proximal Jacobian ADMM (Prox-
JADMM), a more general method in [10], updates xi’s in
parallel by

xkþ1
i ¼ argmin

xi
fiðxiÞ þ bðkÞ

2
Aixi þ

X
j 6¼i

Ajx
k
j � bþ ��k

bðkÞ

�����
�����
2

þ bðkÞ

2
kxi � xki k2Gi

;

(14)

where Gi
 ðn� 1ÞA>
i Ai. Actually (13) is a special case of

(14) whenGi ¼ hiI�A>
i Ai with hi > nkAik22. If fi ¼ gi þ hi,

where gi is convex and hi is convex and Li-smooth, then the
Proximal Linearized ADMM with Parallel Splitting (PL-
ADMM-PS) [23] updates xi’s in parallel by

xkþ1
i ¼ argmin

xi
f̂iðxiÞ þ

�
A>

i ðbðkÞðAxk � bÞ þ ��kÞ; xi
�

þ bðkÞhi
2

kxi � xki k2;
(15)

where f̂iðxiÞ ¼ gðxiÞ þ hðxki Þ þ hrhiðxki Þ; xi � xki i þ Li
2 kxi� xki k2

and hi > nkAik22. As we will show later, the updating rules

(14) and (15) are equivalent to minimizing different major-

ant functions of fðxÞ þ rkðxÞ in (2).
For the convergence guarantee, all the above ADMMs

own the convergence rate Oð1=KÞ [6], [14], [23], [28] (oð1=KÞ
in [10] for Prox-JADMM), where K is the number of itera-
tions. There are also some other workswhich consider differ-
ent special cases of our problem (1) and give different
convergence rates of ADMMs. For example, the works [13],
[31] propose fast ADMMs with better convergence rate. But
their considered problems are quite specific and their con-
vergence guarantees require several additional assumptions.
For (1) with separable objective and n > 2, the works [17],
[22] prove the convergence of the naive multi-blocks exten-
sion of ADMM under various assumptions, e.g., full column
rank of Ai, strong convexity or Lipschitz continuity of some
fi and some others which may be hard to be verified in prac-
tice. The work [40] reformulates the multi-blocks problem
into a two-block one by variable splitting and solves it by
ADMM. But it is verified to be slower than Prox-JADMM in
[10] since there aremanymore number of variables.

1.2 Contributions
From the above discussions, we observe that different
ADMMs can be regarded as variants of inexact ALM in the
sense that the primal variable xkþ1 in ADMMs is updated
by solving (2) in ALM approximately. This actually slows
the convergence, but the per-iteration cost is lower. So there
is a trade-off between the exactness of the subproblem opti-
mization and the convergence speed. In practice, we balance
both to choose the proper solver. Generally, if f is not very
simple, e.g., sum of several nonsmooth functions, ADMMs
are much more efficient than ALM. ADMMs use two main

528 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

techniques for approximation and update xkþ1 in an easier
way than ALM: Alternating Minimization (AM) andMajori-
zation Minimization (MM) [20]. AM, which updates one
block each time when fixing others, makes the subproblems
easier to solve. For example, the updating of ½xkþ1

1 ; xkþ1
2 � in

ADMM (6) and (7) is easier than the one in ALM (2). But
the cost of the one block updating may be still high and it
can be further reduced by using MM, which minimizes a
majorant function instead of the original objective to find an
approximate solution. For example, as reviewed in Section
1.1, different Gauss-Seidel ADMMs update x1 by minimiz-
ing different majorant functions of the objective in standard
ADMM (6), while different Jacobian ADMMs update xi’s by
minimizing different majorant functions of the objective in
ALM (2). Actually, Gauss-Seidel ADMMs first use AM and
then apply MM to update each block, while Jacobian
ADMMs first use MM and then AM to update each block
(though this is equivalent to updating all blocks simulta-
neously). Besides the primal variables, the dual variable
��kþ1 updating in (4) is also equivalent to minimizing a
majorant function of �Lðxkþ1; ��;bðkÞÞ, i.e.,

��kþ1 ¼ argmin
��

�L�xkþ1; ��; bðkÞ�þ 1

2bðkÞ ��� ��k
�� ��2: (16)

These observations suggest that MM provides a new insight
to interpret ADMMs. The convergences of ADMMs which
use different majorant functions are guaranteed, but they
are proved case by case. It is not clear what is the role of
MM in ADMMs. Another issue is that, in practice, one can
develop many ADMMs for the same problem. But it is gen-
erally difficult to see which one converges faster. The
proved same rate Oð1=KÞ in the worst case fails to charac-
terize the different speeds of ADMMs in practice. We lack
practical principles and guidelines for designing efficient
ADMMs. In this work, we raise several crucial questions:

1. What kind of majorant functions can be used in
ADMMs?

2. Is is possible to give a unified convergence analysis
of ADMMs which use different majorant functions?

3. What is the connection between the convergence
speed of ADMMs and the used majorant functions?

4. How to choose the proper majorant functions for
designing efficient ADMMs?

5. For (1) with n > 2, does there any Gauss-Seidel type
ADMM converge without the strongly convex objec-
tive assumption?

In this work, we show many interesting findings about
ADMMs through the lens of MM. We aim to address the
above questions and in particular wemake the following con-
tributions. First, for a multivariable function f , we propose
the majorant first-order surrogate function f̂ , which requires
three conditions to be satisfied: majorization, proximity and
separability. The first two guarantee that f̂ is a reasonable
approximation of f , while the last one makes the minimizing
of f̂ easy. Note that the objective f in (1) can be non-separable
sincewe only need tominimize f̂ . Second, we present the uni-
fied frameworks of Gauss-Seidel ADMMs and Jacobian
ADMMs based on ourmajorant first-order surrogate and give
the unified convergence guarantee. They not only draw con-
nections with existing ADMMs, but also extend them to solve
new problems with non-separable objective. Third, we show
that the bound which measures the convergence speed of

ADMMs depends on the tightness of the used majorant func-
tion. The tighter, the faster. This explains our previous intui-
tive observation that ADMMs converge faster when (2) in
ALM is solved more accurately. Fourth, we develop several
useful techniques to tighten the majorant surrogates and thus
improve the efficiency of ADMMs. Consider (1) with n > 2,
we propose theMixedGauss-Seidel and Jacobian ADMM (M-
ADMM) algorithm. It divides n blocks of variables into two
super blocks, and then updates them in a sequential way as
Gauss-Seidel ADMMs,while the variables in each super block
are updated in a parallelway as JacobianADMMs.M-ADMM
takes the structure ofA, e.g., 12 Ax� bk k2 that may be partially
separable, into account to compute a tighter majorant surro-
gate, while previous Jacobian ADMMs fail to do so. In addi-
tion, we show how to partition n blocks of variables into two
super blocks wisely, which is crucial in the efficient imple-
mentation of ADMMs. Fifth, we propose to solve problem
(1) with n > 2 blocks by Proximal Gauss-Seidel ADMM
(Prox-GSADMM) and prove that it converges without the
strongly convex objective assumption. To the best of our
knowledge, this is the first convergent Gauss-Seidel type
ADMM for such a problem. The last contribution is the
developed toolbox which implements efficient ADMMs for
many popular problems in compressed sensing. See
https://github.com/canyilu/LibADMM. Though there are
already many toolboxes in compressed sensing, the solved
problems are more or less limited due to the applicability of
the used solvers, e.g., SPAMS [34] and SLEP [27] focus more
on sparsemodels and non-constrained problems.We instead
focus on the constrained problem (1), which is much more
general. See a list of problems in our toolbox in the Appen-
dix, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2017.2689021.

2 MAJORANT FIRST-ORDER SURROGATE

OF A MULTIVARIABLE FUNCTION

In this section, we propose the majorant first-order surro-
gate of the multivariable functions which enjoy some
“good” properties.

Definition 1 (Lipschitz Continuity). Let f : Rp1 � � � � �
Rpn ! R be differentiable. Then rf is called Lipschitz contin-
uous if there exist Li � 00; i ¼ 1; . . . ; n, such that

jfðxÞ � fðyÞ � hrfðyÞ; x� yij � 1

2

Xn
i¼1

kxi � yik2Li ; (17)

for any x ¼ ½x1; . . . ; xn� and y ¼ ½y1; . . . ; yn� with xi; yi 2 Rpi .

In this case, we say that f is fLigni¼1-smooth.

The Lipschitz continuity of the multivariable function is
crucial in this work. It is different from the single variable
case defined in (5). For n ¼ 1, (17) holds if (5) holds (Lemma
1.2.3 in [35]), but not vice versa. This motivates the above
definition.

Definition 2 (Strong Convexity). Let f : Rp1 � � � � � Rpn !
R and gðxÞ ¼ fðxÞ � 1

2

Pn
i¼1 kxi � yik2Pi be convex for any yi.

If Pi � 0, we say that f is fPigni¼1-convex. If Pi
 0, we say
that f is fPigni¼1-strongly convex.

Definition 3 (Majorant First-Order Surrogate). A func-
tion f̂ : Rp1 � � � � �Rpn ! R is a majorant first-order

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 529

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

https://github.com/canyilu/LibADMM
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2689021
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2689021

surrogate of f : Rp1 � � � � �Rpn ! R near kk ¼ ½kk1; . . . ; kkn�
with kki 2 Rpi when the following conditions are satisfied:

	 Majorization: f̂ is a majorant function of f , i.e.,
f̂ðxÞ � fðxÞ for any x.

	 Proximity: there exists Li � 00 such that the approxi-
mation error hðxÞ :¼ f̂ðxÞ � fðxÞ satisfies

jhðxÞj � 1

2

Xn
i¼1

kxi � kkik2Li : (18)

	 Separability: f̂ is separable w.r.t. xi’s; i.e., there exist
f̂i’s such that f̂ðxÞ ¼

Pn
i¼1 f̂iðxiÞ.

We denote by SfLigni¼1
ðf; kkÞ the set of such surrogates, and by

SfLi;Pigni¼1
ðf; kkÞ the subset of fPigni¼1-convex surrogates.

In MM, one aims to find an approximate solution to
minxfðxÞ by solving minxf̂ðxÞ, which is easier. To this end,
the above three conditions on f̂ look reasonable. Majoriza-
tion guarantees that fðxÞ tends to be minimized when f̂ðxÞ
is minimized. Proximity means that f̂ðxÞ cannot be too loose
and this guarantees a controllable approximation to fðxÞ.
The separability makes the optimization on f̂ðxÞ easier than
fðxÞ, which can be non-separable. This is important for
multi-blocks optimization.

Note that Li measures the difference f̂ � f , or the tight-
ness of the majorant surrogate f̂ . If Lik k2 is smaller, then the
majorant surrogate is tighter. This plays an important role
in this work.

Lemma 1. If the approximation error hðxÞ ¼ f̂ðxÞ � fðxÞ satis-
fies the following Smoothness assumption, i.e.,

hðxÞ is fLigni¼1-smooth, hðkkÞ ¼ 0 and rhðkkÞ ¼ 0, (19)

then the Proximity assumption in (18) holds.

Lemma 1 can be obtained by using (17) for h at kk. Lemma 1
is useful to verify the Proximity assumption. Some widely
used majorant first-order surrogates are (see Lemma 5 in
Appendix, which can be found on the Computer SocietyDig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2017.2689021:

	 Proximal Surrogates. Let f be a separable function.
Define f̂ðxÞ ¼ fðxÞ þ 1

2

Pn
i¼1 kxi � kkik2Li , where Li � 0.

Then, f̂2Sf2Li;Ligni¼1
ðf; kkÞ. If f is convex, f̂2SfLi;Ligni¼1

ðf; kkÞ.
If f is fQigni¼1-strongly convex, f̂ 2 SfLi;LiþQigni¼1

ðf; kkÞ.
	 Lipschitz Gradient Surrogates. Let f be fLigni¼1-smooth.

Define f̂ðxÞ ¼ fðkkÞ þ hrfðkkÞ; x� kki þ 1
2

Pn
i¼1 kxi� kikik2Li .

Then, f̂2Sf2Ligni¼1
ðf; kkÞ. If f is convex, f̂2SfLi;Ligni¼1

ðf; kkÞ. If
f is fQigni¼1-strongly convex, f̂ 2 S fLi�Qi;Ligni¼1

ðf; kkÞ.
	 Proximal Gradient Surrogates. Let f¼f1 þ f2, where f1

is fLigni¼1-smooth. Define f̂ðxÞ ¼ f1ðkkÞ þ hrf1ðkkÞ; x �
kki þ 1

2

Pn
i¼1 kxi � kikik2Li þ f2ðxÞ. If f1 and f2 are con-

vex, f̂ 2 SfLi;Ligni¼1
ðf; kkÞ. Then, f̂ 2 Sf2Ligni¼1

ðf; kkÞ. If f1
is fQigni¼1-strongly convex and f2 is convex, f̂ 2
SfLi�Qi;Ligni¼1

ðf; kkÞ.
If Li ¼ 0, the proximal surrogates reduce to f̂ ¼ f . Some
other examples of majorant functions, e.g., Jensen surro-
gates, can be found in [33]. Also, the positive linear combi-
nation of majorant surrogates is still a majorant surrogate.
See more discussions in the Appendix, available online.

Lemma 2 (Key Property of the Majorant First-Order
Surrogate). Let f̂ 2 SfLi;Pigni¼1

ðf; kkÞ. Then, we have

fðxÞ þ hu; y� xi � fðyÞ

� 1

2

Xn
i¼1

�kyi � kkik2Li � kyi � xik2Pi
�
; 8x; y; (20)

where u 2 @f̂ðxÞ is any subgradient of the convex function f̂ .
If f is fQgni¼1-convex, we have

u� v; x� yh i � 1

2

Xn
i¼1

�
yi � xi

�� ��2
PiþQi

� yi � kki
�� ��2

Li

�
; (21)

where u 2 @f̂ðxÞ and v 2 @fðyÞ.
The majorant first-order surrogate given in Definition 3 is

motivated by [33]. However, they havemany keydifferences:

1. Our majorant surrogate is defined based on the mul-
tivariable function and it is much more general than
the single variable case in [33]. The Lipschitz conti-
nuity of the multivariable function is different; the
Separability of f̂ is new.

2. For approximation error h ¼ f̂ � f , we use the Prox-
imity assumption in (18) which is less restrictive than
the Smoothness assumption in (19). We only require
the error h to be bounded, and it needs not necessar-
ily be smooth.

3. The properties in Lemma 2 are new and they play a
central role in our convergence analysis. Lemma 2.1
in [33] also introduces some properties of the major-
ant first-order surrogate. But their bounds are too
loose and are not applicable to our proofs due to the
constraint of (1) considered in this work.

4. The considered constrained problem in this work is
different from the non-constrained problem in [33].
When proving Proposition 2.3 in [33], they use a key
property fðxkþ1Þ � fðxkÞ, while this does not hold in
ADMMs.

At the end of this section, we discuss some properties of
1
2 Ax� bk k2 which are important for in ADMMs.

Lemma 3. Let rðxÞ ¼ 1
2 kAx� bk2, where x ¼ ½x1; . . . ; xn�, A ¼

½A1; . . . ;An� and b are of compatible sizes. We have

(1) rðxÞ is fL0
igni¼1-smooth. The choice of L0

i depends on the
structure of A.

(2) rðxÞ � r̂ðxÞ, where

r̂ðxÞ ¼ 1

2

Xn
i¼1

Aixi þ
X
j6¼i

Ajyj � b

�����
�����
2

þ 1

2

Xn
i¼1

kxi � yik2Gi
þ 1� n

2
kAy� bk2;

(22)

for any y ¼ ½y1; . . . ; yn� andGi � L0
i �A>

i Ai.
(3) IfGi ¼ hiI�A>

i Ai with hi � kL0
ik2, (22) reduces to

r̂ðxÞ ¼
Xn
i¼1

xi � yi;A
>
i ðAy� bÞ� �

þ
Xn
i¼1

hi
2
kxi � yik2 þ

1

2
kAy� bk2:

(23)

The choice of L0
i guarantees that r̂ � r. To make r̂ tight, we

expect that kL0
ik2 can be as small as possible. Generally, there

530 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2689021
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2689021

are two interesting choices: (1) L0
i ¼ kAk22I; (2) L0

i ¼ nA>
i Ai.

When considering kL0
ik2, it is not clear which choice of L0

i has
smaller kL0

ik2. The second choice of L0
i is widely used in Jaco-

bian ADMMs. It explains the choice of hi > kL0
ik2 ¼ n Aik22

��
in L-ADMM-PS (13). However, such a choice of L0

i may not
be good since it does not make fully use of the structure ofA,
and thus r̂ may not be a tight surrogate of r. For example,
let A1 ¼ ½C1; 00�, A2 ¼ ½C2; 00�, A3 ¼ ½00;C3�, A4 ¼ ½00;C4�, and
b ¼ ½b1;b2� of compatible sizes. Then rðxÞ ¼ 1

2 k
P2

i¼1 Cixi�
b1k2 þ 1

2 k
P4

i¼3 Cixi � b2k2. We can choose L0
i ¼ 2A>

i Ai,

which is much better than 4A>
i Ai. Actually, the choice of L0

i

depends on the separability of r. In practice, it is easy to com-
pute L0

i when givenA. A good choice of L0
i gives a tight surro-

gate r̂, and this may significantly improve the efficiency of
JacobianADMMs (see Section 4).

3 UNIFIED GAUSS-SEIDEL ADMMS

In this section, we consider solving (1) with n ¼ 2 blocks by
a unified framework of Gauss-Seidel ADMMs. In the
ðkþ 1Þth iteration, we compute the majorant surrogate f̂k

of f near xk, i.e., f̂k 2 SfLi;Pig2i¼1
ðf; xkÞ and f̂k is separable,

i.e., f̂kðxÞ ¼ f̂k
1 ðx1Þ þ f̂k

2 ðx2Þ. For rk1 and rk2 in (8) and (9), we
construct their proximal surrogates respectively as follows1

r̂k1ðx1Þ ¼ rk1ðx1Þ þ
bðkÞ

2
kx1 � xk1k2G1

; (24)

r̂k2ðx2Þ ¼ rk2ðx2Þ þ
bðkÞ

2
kx2 � xk2k2G2

; (25)

whereG1 � 0 andG2
 0. Then we update x1 and x2 by

xkþ1
1 ¼ argmin

x1
f̂k
1 ðx1Þ þ r̂k1ðx1Þ; (26)

xkþ1
2 ¼ argmin

x2
f̂k
2 ðx2Þ þ r̂k2ðx2Þ: (27)

Finally, �� is updated by (4). This leads to the unified frame-
work of Gauss-Seidel ADMMs, as shown in Algorithm 1.

Note that in Algorithm 1, f is not necessarily separable.
In this case, our algorithm and the convergence guarantee
shown later are completely new. If f is already separable,
then the objectives in (26) and (27) are majorant surrogates
of the ones in (6) and (7), respectively. Many previous
Gauss-Seidel ADMMs are special cases by using different
majorant surrogates f̂1 and r̂k1 (depending on Gk

1) in Algo-
rithm 1. See Table 1 for a summary.

Assume that there exists at least one KKT point ðx�; ���Þ
of problem (1), i.e., Ax� ¼ b and �A>��� 2 @fðx�Þ. Previous
works prove that ADMMs converge to the KKT point at the
rate Oð1=KÞ (K is the number of iterations) in different
ways. The works [14], [36] give the same rate of ADMM,
L-ADMM, and P-ADMM. But they require that both the
primal and dual feasible sets should be bounded. The work
[23] removes the above assumptions and shows that the
convergence rates of L-ADMM-PS and PL-ADMM-PS are

fð�xKÞ � fðx�Þ þ hA>���; �xK � x�i þ a

2
A�xK � bb

�� ��2
� Oð1=KÞ;

(28)

where �xK is a weighted sum of xk’s and a > 0. Now we give
the convergence bound of Algorithm 1 as (28).

Algorithm 1. A Unified Framework of Gauss-Seidel
ADMMs

For k ¼ 0; 1; 2; . . . do
1. Compute a majorant first-order surrogate f̂k 2 SfLi;Pig2i¼1ðf; xkÞwith f̂kðxÞ ¼ f̂k

1 ðx1Þ þ f̂k
2 ðx2Þ.

2. Update x1 by solving (26).
3. Update x2 by solving (27).
4. Update �� by ��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ.
5. Choose bðkþ1Þ such that bðkÞ � bðkþ1Þ � bmax.
end

Theorem 1. In Algorithm 1, assume that f̂k 2 SfLi;Pig2i¼1
ðf; xkÞ

with Pi � Li � 0, i ¼ 1; 2, G1 � 0 in (24), and G2
 0 in

(25). For any K > 0, let �xK ¼ PK
k¼0 g

ðkÞxkþ1 with gðkÞ ¼
ðbðkÞÞ�1=

PK
k¼0ðbðkÞÞ�1. Then

fð�xKÞ � fðx�Þ þ hA>���; �xK � x�i þ bð0Þa
2

kA�xK � bk2

�
P2

i¼1 kx�i � x0i k2H0
i
þ k��� � ��0k2H0

3

2
PK

k¼0 bðkÞ� ��1
;

(29)

where a ¼ minf12 ;
s2
min

ðG2Þ
2kA2k22

g,H0
1 ¼ 1

bð0Þ L1 þG1,H
0
2 ¼ 1

bð0Þ L2 þ
A>

2 A2 þG2, andH
0
3 ¼ ð1=bð0ÞÞ2I.

Consider H0
i , i ¼ 1; 2, at the RHS of (29), it can be seen

that they depend on Li and Gi, which control the difference
f̂ � f and r̂ki � rki , respectively. This suggests a faster con-
vergence when using tighter majorant surrogates, though
the convergence rate of Gauss-Seidel ADMMs in Algorithm
1 is Oð1=KÞwhen bðkÞ’s are bounded.

Note that the assumption G2
 0 guarantees that a > 0.
Such an assumption is also used in [14], [36] which prove
the same convergence rate in different ways. It suggests that
using G2
 0 instead of G2 ¼ 0 in the traditional ADMM
can achieve the Oð1=KÞ convergence rate.

4 UNIFIED JACOBIAN ADMMS

In this section, we consider solving (1) with n > 2 by a uni-
fied framework of Jacobian ADMMs. The motivation is to
solve (2) inexactly by minimizing a majorant surrogate of
fðxÞ þ rkðxÞ. In the ðkþ 1Þth iteration, we first compute the

majorant surrogate of f near xk, i.e., f̂k 2 SfLi;Pigni¼1
ðf; xkÞ, and

f̂k is separable, f̂kðxÞ ¼ Pn
i¼1 f̂

k
i ðxiÞ. Assume that 1

2 kAxk2 is

TABLE 1
Previous Gauss-Seidel ADMMs Are Special Cases

of Algorithm 1 with Different f̂1 andG1

f̂k
1 ðx1Þ G1

ADMM [12] f1ðx1Þ 0

P-ADMM [36]
Lipschitz Gradient Surrogate or

0Proximal Gradient Surrogate

L-ADMM [6] f1ðx1Þ h1I�A>
1 A1

PL-ADMM
Lipschitz Gradient Surrogate or

h1I�A>
1 A1Proximal Gradient Surrogate

In this table, h1 > kA1k22.

1. Note that the definitions of r̂ki in Sections 3, 4, and 5 are different.

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 531

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

fL0
igni¼1-smooth. For rk in (2), we define itsmajorant surrogate

r̂k by using (22), i.e., r̂kðxÞ ¼ Pn
i¼1 r̂

k
i ðxiÞ, where

r̂ki ðxiÞ
bðkÞ ¼ 1

2
Aixi þ

X
j 6¼i

Ajx
k
j � bþ ��k

bðkÞ

�����
�����
2

þ 1

2
kxi � xki k2Gi

þ cki ;

(30)

with Gi
 L0
i �A>

i Ai and cki ’s are constants satisfyingPn
i¼1 c

k
i ¼ 1�n

2 kAxk � bk2. Thus f̂kðxÞ þ r̂kðxÞ is a majorant
surrogate of fðxÞ þ rkðxÞ in (2). Now we minimize
f̂kðxÞ þ r̂kðxÞ instead to update x, i.e.,

xkþ1 ¼ argmin
x

f̂kðxÞ þ r̂kðxÞ: (31)

Note that both f̂ and r̂k are separable. Thus solving (31) is
equivalent to updating each xi in parallel, i.e.,

xkþ1
i ¼ argmin

xi
f̂k
i ðxiÞ þ r̂ki ðxiÞ: (32)

Finally �� is updated by (4). This leads to the unified frame-
work of Jacobian ADMMs, as shown in Algorithm 2.

If f is non-separable, then our algorithm and conver-
gence guarantee shown later are completely new. If f is sep-
arable, several previous Jacobian ADMMs are special cases
by using different majorant surrogates f̂i and r̂ki (depending
onGi) in Algorithm 2. See Table 2 for a summary.

Algorithm 2. A Unified Framework of Jacobian ADMMs

For k ¼ 0; 1; 2; . . . do
1. Compute a majorant first-order surrogate f̂k 2

SfLi ;Pigni¼1
ðf; xkÞwith f̂kðxÞ ¼ Pn

i¼1 f̂
k
i ðxiÞ.

2. Update xi, i ¼ 1; . . . ; n, in parallel by solving (32).
3. Update �� by ��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ.
4. Choose bðkþ1Þ such that bðkÞ � bðkþ1Þ � bmax.
end

Theorem 2. In Algorithm 2, assume that f̂k 2 SfLi;Pigni¼1
ðf; xkÞ

with Pi � Li � 0, 1
2 Axk k2 is fL0

igni¼1-smooth, and Gi
 L0
i �

A>
i Ai in (30). For any K > 0, let �xK ¼ PK

k¼0 g
ðkÞxkþ1 with

gðkÞ ¼ ðbðkÞÞ�1=
PK

k¼0ðbðkÞÞ�1. Then

fð�xKÞ � fðx�Þ þ hA>���; �xK � x�i þ bð0Þa
2

kA�xK � bk2

�
Pn

i¼1 kx�i � x0i k2H0
i
þ k��� � ��0k2H0

nþ1

2
PK

k¼0 bðkÞ
� ��1

;

(33)

where a ¼ minf12 ;
s2
min

DiagfA>
i
AiþGi;i¼1;...;ng�A>Að Þ
2kAk22

g, H0
i ¼

1
bð0Þ Li þA>

i Ai þGi, i ¼ 1; . . . ; n, andH0
nþ1 ¼ 1=bð0Þ� �2

I.

The above bound implies an interesting connection
between the convergence speed and the tightness of the
majorant surrogates. For simplicity, let bðkÞ ¼ b. Then (33)
reduces to

Pn
i¼1 kx�i � x0i k2bH0

i
þ 1

b
k��� � ��0k2

2ðK þ 1Þ

�
1
2

Pn
i¼1 kx�i � x0i k2LiþbL0

i
þ 1

2b k��� � ��0k2
ðK þ 1Þ ;

(34)

where (34) uses Gi
 L0
i �A>

i Ai. Now consider the two con-
stant terms in the numerator of (34). The first term controls the
tightness of the used majorant surrogate for the x updating,

i.e., jf̂0ðx�Þ þ r̂0ðx�Þ � fðx�Þ � rðx�Þj � 1
2

Pn
i¼1 kx�i � x0i k2LiþbL0

i
,

which uses (18) with x ¼ x� and k ¼ 0. The second term is

actually the difference function 1
2b ��� ��k
�� ��2 between

�Lðxkþ1; ��;bðkÞÞ and its majorant surrogate in (16) when

�� ¼ ��� and k ¼ 0. So the convergence bound depends on the

tightness of the used majorant surrogates for both the primal

and dual variables updating. If f̂k þ r̂k is tighter (associated to

the x updating) or b is larger (associated to the �� updating),

the algorithm converges faster. In practice, ADMMs stop

based on certain criteria induced by the KKT conditions. If b

is relatively large, the algorithm seems to converge faster but
the objective function value may be larger. How to choose the

best b or bðkÞ is still an open issue. In this work, we focus the

discussion on how to improve the tightness of the majorant

surrogate for the primal variable updating.
Note that Algorithm 2 improves previous Jacobian

ADMMswhich use L0
i ¼ nA>

i Ai. Such a choice of L0
i does not

fully use the structure of A (see the discussions after
Lemma 3). In this work, we have a new choice L0

i ¼ Ak k22I.
In practice, one may use the one which has smaller L0

i

�� ��
2
.

The reason behind is that L0
i’s control the tightness of r̂kðxÞ.

The tighter surrogate r̂kðxÞ will make the algorithm con-
verges faster. In Section 5, we discuss how to further improve
the tightness of r̂kðxÞ by introducing alternating minimiza-
tion in Jacobian ADMMs and the backtracking technique.

5 MIXED GAUSS-SEIDEL AND JACOBIAN ADMM

Consider solving (1) with n ¼ 2 by Gauss-Seidel ADMMs
and Jacobian ADMMs, the former one will converge faster.
The reason is that Jacobian ADMMs require Gi
 A>

i Ai,
while Gauss-Seidel ADMMs only require Gi
 0. Thus the
bound in (29) is expected to be tighter than the one in (33).
The superiority of Gauss-Seidel ADMMs over Jacobian
ADMMs is that the former first use alternating minimiza-
tion to reduce the complexity of the problem (fewer varia-
bles) and then the used majorant surrogate can be tighter
when using majorization minimization.

In this section, we consider (1) with n > 2 blocks. We
propose the Mixed Gauss-Seidel and Jacobian ADMM
(M-ADMM), which introduces the alternating minimization
before using majorization minimization. M-ADMM first
divides these n blocks x ¼ ½x1; . . . ; xn� into two super blocks,
i.e., xB1

¼ ½xi; i 2 B1� with n1 blocks of variables, and xB2
¼

½xi; i 2 B2� with n2 blocks of variables, where B1 and B2

satisfy B1 \B2 ¼ ? and B1 [B2 ¼ f1; . . . ; ng. Then xB1

and xB2
are updated in a sequential way as Gauss-Seidel

ADMMs, while xi’s in each super block are updated in

TABLE 2
Previous Jacobian ADMMs Are Special Cases of

Algorithm 2 with Different f̂i andGi

f̂k
i ðxiÞ Gi

L-ADMM-PS [28] fiðxiÞ hiI�A>
i Ai,

PL-ADMM-PS [23] Proximal Gradient

Surrogate

hiI�A>
i Ai

Prox-JADMM [10] fiðxiÞ
 ðn� 1ÞA>
i Ai

In this table, hi > nkAik22.

532 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

a parallel way as Jacobian ADMMs. As shown later,
M-ADMM owns a tighter bound than (33), and thus it will
be faster than Jacobian ADMMs. In the following, we first
introduce M-ADMM, and then discuss the variable parti-
tion and backtracking technique which are crucial for the
efficient implementation of M-ADMM in practice.

5.1 M-ADMM
Assume that we are given a partition of n blocks, denoted as
fB1; B2g. We accordingly partition A into AB1

¼ ½Ai; i 2 B1�
and AB2

¼ ½Ai; i 2 B2�. Then (1) is equivalent to

min
xB1

;xB2

fðxÞ; s.t. AB1
xB1

þAB2
xB2

¼ b: (35)

In the ðkþ 1Þth iteration, we first compute the majorant
surrogate of f near xk, i.e., f̂k 2 SfLi;Pigni¼1

ðf; xkÞ, and f̂k is
separable, f̂kðxÞ ¼ f̂kB1

ðxB1
Þ þ f̂k

B2
ðxB2

Þ, where f̂kBi
ðxBi

Þ ¼P
j2Bi

f̂k
j ðxjÞ, i ¼ 1; 2. Then (35) can be solved by updating

xB1
and xB2

as the traditional ADMM, i.e.,

xkþ1
B1

¼ argmin
xB1

f̂k
B1
ðxB1

Þ þ rkB1
ðxB1

Þ; (36)

xkþ1
B2

¼ argmin
xB2

f̂k
B2
ðxB2

Þ þ rkB2
ðxB2

Þ; (37)

where

rkB1
ðxB1

Þ ¼ bðkÞ

2
AB1

xB1
þAB2

xkB2
� bþ ��k

bðkÞ

����
����
2

;

and

rkB2
ðxB2

Þ ¼ bðkÞ

2
AB1

xkþ1
B1

þAB2
xB2

� bþ ��k

bðkÞ

����
����
2

:

However, the above problems are expensive to solve since
they may not be separable w.r.t. xi’s in B1 or B2. Assume

that 1
2 kAB1

xB1
k2 is fL0

igi2B1
-smooth. By (22), we construct

a majorant surrogate r̂kB1
of rkB1

near xkB1
, i.e., r̂kB1

ðxB1
Þ ¼P

i2B1
r̂ki ðxiÞ, where

r̂ki ðxiÞ
bðkÞ ¼ 1

2
Aixi þ

X
j2B1
j 6¼i

Ajx
k
j þAB2

xkB2
� bþ ��k

bðkÞ

�������

�������

2

þ 1

2
kxi � xki k2Gi

þ cki ; i 2 B1;

(38)

with Gi � L0
i �AT

i Ai, i 2 B1, and cki ’s satisfying
P

i2B1
cki ¼

1�n1
2 kAxk � bþ ��k

bðkÞ k
2. Similarly, assume that 1

2 kAB2
xB2

k2 is

fL0
igi2B2

-smooth. Then a majorant surrogate r̂kB2
of rkB2

near

xkB2
is r̂kB2

ðxB2
Þ ¼ P

i2B2
r̂ki ðxiÞ, where

r̂ki ðxiÞ
bðkÞ

¼ 1

2
Aixi þ

X
j2B2
j6¼i

Ajx
k
j þAB1

xkþ1
B1

� bþ ��k

bðkÞ

�������

�������

2

þ 1

2
kxi � xki k2Gi

þ cki ; i 2 B2;

(39)

with Gi
 L0
i �A>

i Ai, i 2 B2, and cki ’s satisfyingP
i2B2

cki ¼ 1�n2
2 kAB1

xkþ1
B1

þAB2
xkB2

� bþ ��k

bðkÞ k
2. By replacing

rkB1
ðxB1

Þ and rkB2
ðxB2

Þ with their majorant surrogates

r̂kB1
ðxB1

Þ and r̂kB2
ðxB2

Þ in (36) and (37) respectively, we

update xB1
and xB2

by

xkþ1
B1

¼ argmin
xB1

f̂k
B1
ðxB1

Þ þ r̂kB1
ðxB1

Þ;

xkþ1
B2

¼ argmin
xB2

f̂k
B2
ðxB2

Þ þ r̂kB2
ðxB2

Þ:

Note that the above two problems are separable for each xi
in B1 and B2. They are respectively equivalent to

xkþ1
i ¼ argmin

xi

f̂k
i ðxiÞ þ r̂ki ðxiÞ; i 2 B1; (40)

xkþ1
i ¼ argmin

xi

f̂k
i ðxiÞ þ r̂ki ðxiÞ; i 2 B2: (41)

Finally �� is updated by (4). This leads to the Mixed Gauss-
Seidel and Jacobian ADMM (M-ADMM), as shown in
Algorithm 3. Now we give its convergence bound as (28).

Algorithm 3.Mixed Gauss-Seidel and Jacobian ADMM

For k ¼ 0; 1; 2; . . . do
1. Compute a majorant first-order surrogate f̂k 2

SfLi ;Pigni¼1
ðf; xkÞwith f̂kðxÞ ¼ Pn

i¼1 f̂
k
i ðxiÞ.

2. For all i 2 B1, update xi’s in parallel by solving (40).
3. For all i 2 B2, update xi’s in parallel by solving (41).
4. Update �� by ��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ.
5. Choose bðkþ1Þ such that bðkÞ � bðkþ1Þ � bmax.
end

Theorem 3. In Algorithm 3, assume that f̂k 2 SfLi;Pigni¼1
ðf; xkÞ

with Pi � Li � 0, 12 AB1
xB1

�� ��2 is fL0
igi2B1

-smooth, 12 AB2
xB2

�� ��2
is fL0

igi2B2
-smooth, Gi � L0

i �A>
i Ai, i 2 B1 in (38) and

Gi
 L0
i �A>

i Ai, i 2 B2 in (39). For any K > 0, let �xK ¼PK
k¼0 g

ðkÞxkþ1 with gðkÞ ¼ ðbðkÞÞ�1=
PK

k¼0ðbðkÞÞ�1. Then

fð�xKÞ � fðx�Þ þ hA>���; �xK � x�i þ bð0Þa
2

kA�xK � bk2

�
P2

j¼1 kx�Bj
� x0Bj

k2H0
j
þ k��� � ��0k2H0

3

2
PK

k¼0 bðkÞ� ��1
;

(42)

where a ¼ min
n

1
2 ;

s2
min

�
Diag A>

i
AiþGi;i2B2f g�A>

B2
AB2

�
2kAB2

k22

o
, H0

1 ¼
Diagf 1

bð0Þ Li þ A>
i Ai þ Gi; i 2 B1g � A>

B1
AB1

, H0
2 ¼

Diagf 1
bð0Þ Li þA>

i Ai þGi; i 2 B2g; and H0
3 ¼ ð1=bð0ÞÞ2I.

M-ADMM in Algorithm 3 further unifies Gauss-
Seidel ADMMs in Algorithm 1 and Jacobian ADMMs in
Algorithm 2. If n ¼ 2, let B1 ¼ f1g and B2 ¼ f2g. Then
M-ADMM degenerates into the Gauss-Seidel ADMMs,
and (42) reduces to (29). If n > 2, let B1 ¼ ? and B2 ¼
f1; . . . ; ng. Then M-ADMM degenerates into the Jacobian
ADMMs, and (42) reduces to (33). More importantly, for the
case of n > 2 and other choices of B1 and B2, M-ADMM
will be faster than Jacobian ADMMs, since the right hand
side of (42) may be much smaller than the one of (33). This
is due to their different choices of Gi. If we choose
L0
i ¼ nA>

i Ai, Jacobian ADMMs require Gi
 ðn� 1ÞA>
i Ai

for all i ¼ 1; . . . ; n, while M-ADMM only requires Gi

ðn1 � 1ÞA>

i Ai for i 2 B1 and Gi
 ðn2 � 1ÞA>
i Ai for i 2 B2.

Note that n ¼ n1 þ n2. The improvement benefits from the
sequential updating rules of xB1

and xB2
by using tighter

majorant surrogates in M-ADMM. Indeed, M-ADMM only
needs to majorize rkB1

ðxB1
Þ in (36) and rkB2

ðxB2
Þ in (37) for

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 533

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

xB1
and xB2

respectively, while Jacobian ADMMs need to
majorize rkðxÞ in (3) for all xi’s simultaneously.

Note that the block-wise ADMM in [15] and Hybrid
ADMM (H-ADMM) in [9] share a similar mixed Gauss-Seidel
and Jacobian updating scheme as our M-ADMM. The block-
wise ADMM is a special case of our M-ADMM by taking
Gi ¼ tiA

>
i Ai, where ti > n1 � 1, i 2 B1 and ti > n2 � 1,

i 2 B2. The limitation of such a choice ofGi is that its subpro-
blems may not be easy to solve especially when fi is non-
smooth. Also, their convergence analysis requires more
restrictive assumption, i.e., each Ai has full column rank.
H-ADMM is also a special case of our M-ADMM by taking
Gi
 kAB1

k22I, i 2 B1 andGi
 kAB2
k22I, i 2 B2. This is not as

tight as ours since we can choose Gi
 kAB1
k22I�A>

i Ai,
i 2 B1 and Gi
 kAB2

k22I�A>
i Ai, i 2 B2. Generally, M-

ADMM ismore general when considering the choices of f̂ ,Gk

and bðkÞ. The backtracking technique and wise variable parti-
tion introduced below will further improve the convergence
speed of M-ADMM. More importantly, we conclude that M-
ADMM is generally faster than Jacobian ADMMs due to the
used tighter majorant surrogates while block-wise ADMM
andH-ADMMhave no such a result and support in theory.

5.2 M-ADMM with Backtracking
We have given the convergence guarantee of M-ADMM
when fixing Gi. In practice, we can estimate it by the back-
tracking technique which will lead to tighter majorant sur-
rogate. The effectiveness has been verified in first-order
optimization [1]. Now, we introduce the backtracking tech-
nique into M-ADMM.

Algorithm 4.M-ADMMwith Backtracking

Initialization: k ¼ 0, xki ,G
k
i
 00, ��k, bðkÞ > 0, t > 0, m > 1.

For k ¼ 0; 1; 2; . . . do
1. Compute a majorant first-order surrogate f̂k 2

SfLi ;Pigni¼1
ðf; xkÞwith f̂kðxÞ ¼ Pn

i¼1 f̂
k
i ðxiÞ.

2. SetGi ¼ Gk
i and compute xkþ1

i by (40)-(41).

3. If (43) does not hold, setGk
i ¼ mGk

i , i 2 B1. Go to 2).

If (45) does not hold, setGk
i ¼ mGk

i , i 2 B2. Go to 2).

4. Update �� by ��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ.
5. Choose bðkþ1Þ such that bðkÞ � bðkþ1Þ � bmax.

6. SetGkþ1
i ¼ Gk

i , i ¼ 1; . . . ; n.
end

To guarantee the convergence, Gi can be replaced by Gk
i

such that rkB1
ðxkþ1

B1
Þ � r̂kB1

ðxkþ1
B1

Þ and rkB2
ðxkþ1

B2
Þ � r̂kB2

ðxkþ1
B2

Þ.
They are guaranteed when

AB1
ðxkþ1

B1
� xkB1

Þ
��� ���2� X

i2B1

xkþ1
i � xki

�� ��2
Gk
i
þA>

i
Ai
; (43)

AB2
ðxkþ1

B2
� xkB2

Þ
��� ���2� X

i2B2

xkþ1
i � xki

�� ��2
Gk
i
þA>

i
Ai
: (44)

To achieve the Oð1=KÞ convergence rate, we replace (44) as

t xkþ1
B2

� xkB2

��� ���2� xkþ1
B2

� xkB2

��� ���2
Kk
2
�A>

B2
AB2

; (45)

for some small constant t > 0 and Kk
2 ¼ DiagfA>

i Ai þGk
i ;

i 2 B2g. In this case, wemay be able to findGk
i with relatively

smaller Gk
i

�� ��
2
, and thus r̂kB1

ðxkþ1
B1

Þ and r̂kB2
ðxkþ1

B2
Þ are tighter

upper bounds of rkB1
ðxkþ1

B1
Þ and rkB2

ðxkþ1
B2

Þ, respectively. This
leads to a better approximate solution and improves the effi-

ciency. We summarize M-ADMM with backtracking in

Algorithm 4. Note that Step 3) will only be performed for

finitely many times. Similarly, the convergence guarantee is

given as follows.

Theorem 4. In Algorithm 4, assume that f̂k 2 SfLi;Pigni¼1
ðf; xkÞ

with Pi � Li � 0. Then (42) holds with H0
1 ¼ Diagf 1

bð0Þ Li þ
A>

i Ai þG0
i ; i 2 B1g �A>

B1
AB1

, H0
2 ¼ Diagf 1

bð0Þ Li þA>
i Aiþ

G0
i ; i 2 B2g,H0

3 ¼ 1=bð0Þ� �2
I, and a ¼ minf12 ; t

2kAB2
k22
g.

Note that Algorithm 4 reduces to Algorithm 3 by choosing
Gi’s in Theorem 3. Theorem 3 is a special case of Theorem 4
by setting t ¼ s2

minðDiag A>
i Ai þGi; i 2 B2

� ��A>
B2
AB2

Þ. So
we only give the proof of Theorem 4 in Appendix, available
online. It is worth mentioning that, when using backtracking,
r̂kBj

is not a majorant first-order surrogate of rkBj
, since the

majorization condition may not hold. Actually, r̂kBj
only

majorizes rkBj
locally at xkþ1

Bj
. But this is sufficient for the con-

vergence proof, since the formulations of rkBj
and r̂kBj

are
known andwe are able to use their specific properties instead
of (20) in the proofs.

5.3 Variable Partition
For (1) with n > 2, M-ADMM requires partitioning varia-
bles into 2 super blocks B1 and B2. Different variable parti-
tions lead to different choices of L0

i which controls the
tightness of the majorant surrogates, and thus the conver-
gence behaviors of M-ADMM are different. Looking for an
intelligent way of variable partition may significantly
improve the efficiency of M-ADMM. We discuss how to
partition variables in three cases by considering the prop-
erty of Ai’s in (1). The principle is to find a partition such
that the constructed surrogate r̂kB1

for rkB1
in (36) and r̂kB2

for
rkB2

in (37) can be as tight as possible.
Case I (Complicated Case). A>

i Al 6¼ 0 for any i 6¼ l. This case
is complicated since rkBj

, j ¼ 1; 2 in (36) and (37) are non-sepa-
rable for any partition. Then the separable surrogates r̂kBj

’s
may be loose when considering the choices of Gi in (38) and
(39). As suggested by Theorem 3, to tighten the bound of (42),

a reasonable partition is to make LB1
þ LB2

, where LB1
¼

ðn1 � 1ÞPi2B1
kAik22 � kAB1

k22 and LB2
¼ ðn2 � 1ÞPi2B2

kAik22,
as small as possible.2 We have a heuristic approach to this
end:

Step 1: Sort kAik22’s in a descending order.
Step 2: Group the largest n1 elements as the first block

and the rest as the second block.
Step 3: The best value of n1 is the one which minimizes

LB1
þ LB2

by a one-shot searching from 1 to n.
Case II (Simple Case). There exists a partition such that

A>
i Al ¼ 0, i 6¼ l, for any i; l 2 B1 and i; l 2 B2. (46)

This case is simple since the above partition makes rkBj
,

j ¼ 1; 2 in (36) and (37) separable. Then r̂kBj
’s tend to be tight

since we can compute each r̂ki independently and useGi � 0,

i 2 B1 in (38) and Gi
 0, i 2 B2 in (39). Even, the

2. If n1 is not very small, kAB1
k22 is usually much smaller than

ðn1 � 1ÞPi2B1
kAik22. We can use LB1

¼ ðn1 � 1ÞPi2B1
kAik22 in this

case.

534 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

per-iteration cost is cheapwhen using r̂ki ¼ rki for many prob-
lems in practice. In this case, (35) can be solved by (36) and

(37), which is similar to the standard ADMM. For example,

the Low-Rank Representationmodel in [25] satisfies (46),

min
Z;J;E

Jk k�þ� Ek k2;1; s.t. X ¼ AZþ E;Z ¼ J; (47)

where � > 0. The augmented Lagrangian function is

LðZ; J;E; ��1; ��2Þ ¼ Jk k�þ� Ek k2;1 þ h��1;X�AZ� Ei
þ h��2;Z� Ji þ b

2
X�AZ� Ek k2 þ Z� Jk k2

	

:

Based on the partition fJ;Eg and fZg, they can be updated by

fJkþ1;Ekþ1g ¼ argminJ;ELðZk; J;E; ��k
1; ��

k
2Þ;

Zkþ1 ¼ argminZLðZ; Jkþ1;Ekþ1; ��k
1; ��

k
2Þ:

�

This is the standard ADMM and its convergence is guaran-
teed. Note that LðZk; J;E; ��k

1; ��
k
2Þ is separable w.r.t. J and E

and thus Jkþ1 and Ekþ1 can be computed independently.
The updates of the three blocks are similar to the naive
multi-block extension of ADMM used in [25], but in differ-
ent updating orders. Our simple modification fixes the con-
vergence issue of the naive multi-block extension of ADMM
in [25] for (47).

In computer vision and signal processing, there are a lot
of multi-blocks problems, or their equivalent ones by intro-
ducing auxiliary variables, with the property (46) and thus
can be solved more efficiently by the Gauss-Seidel ADMMs
than Jacobian ADMMs, e.g., sparse subspace clustering
model (70) in [11], nonnegative matrix completion problem
(143) in [23], multi-task low-rank affinity pursuit model (4)
in [5], sparse spectral clustering model (6) in [32], nonnega-
tive low-rank and sparse graph model (5) in [43], simulta-
neously structured models (3.3) in [37], convex program (8)
in [4] for graph clustering, robust multi-view spectral clus-
tering model (3) in [42] and consolidated tensor recovery
model (2.6) in [18]. However, some of previous works
do not use the property (46) to implement the efficient
ADMMs, and this is the reason why we release the toolbox.

Case III (Other Cases). Neither assumptions in Cases I and
II holds. It is generally difficult to find the best partition in
this case. But one can combine the ideas in both Cases I and
II. For example, there exists one or more subgroups BS ,
such that A>

i Al ¼ 0, i 6¼ l, for any i; l 2 BS . We can put the
whole subgroup in one super block, i.e., BS � B1.

In practice, one usually needs to reformulate the original
problem as an equivalent one by introducing auxiliary
variables such that the subproblem in ADMMs can be sim-
ple. When designing efficient ADMMs, the problem refor-
mulation and the above variable partition strategies should
be considered simultaneously. Some more examples can be
found in our released toolbox.

6 PROXIMAL GAUSS-SEIDEL ADMM FOR

MULTI-BLOCKS PROBLEMS

Consider problem (1) with n > 2 blocks, existing Jacobian
type ADMMs and our M-ADMM converges only based on
the convex objective function assumption. Some recent works
[7], [9] propose Gauss-Seidel type ADMMs but their conver-
gence guarantees require much stronger assumption, e.g.,
strongly convex objective function or the stepsize should be

small enough. An interesting open problem is, for (1) with
n > 2 blocks, does there exist a Gauss-Seidel type ADMM
converges without the strongly convex objective assumption?
In this section,we propose to solve (1)withn > 2 by the Prox-
imal Gauss-Seidel ADMM (Prox-GSADMM), which is a
Gauss-Seidel typeADMM. Its convergence requires the objec-
tive f or itsmajorant surrogate f̂ to be strongly convex.

In the ðkþ 1Þth iteration, we first compute the majorant
surrogate of f near xk, i.e., f̂k 2 SfLi;Pigni¼1

ðf; xkÞ, and f̂k is

separable, f̂kðxÞ ¼ Pn
i¼1 f̂

k
i ðxiÞ. Then we update xi, i ¼

1; . . . ; n, in a Gauss-Seidel fashion, i.e.,

xkþ1
i ¼ argmin

xi

f̂ki ðxiÞ þ
bðkÞ

2
xi � xki

�� ��2
Gk
i

þ bðkÞ

2
Aixi þ

Xi�1

j¼1

Ajx
kþ1
j þ

Xn
j¼iþ1

Ajx
k
j � bþ ��k

bðkÞ

�����
�����
2

;

(48)

where the choice of Gk
i is given below. The updates of ��kþ1

and bðkþ1Þ are the same as previous frameworks. We summa-

rize the whole procedure of Prox-GSADMM in Algorithm 5.

Now, we give the convergence result of Prox-GSADMM. We

defineG ¼ DiagfGi; i ¼ 1; . . . ; ng, L ¼ DiagfLi; i ¼ 1; . . . ; ng,
P ¼ DiagfPi; i ¼ 1; . . . ; ng,Q ¼ DiagfQi; i ¼ 1; . . . ; ng, and

Â ¼

0 A>
1 A2 � � � A>

1 An

0 . .
. ..

.

. .
.

A>
n�1An

0

2
66664

3
77775:

Algorithm 5. Proximal Gauss-Seidel ADMM for (1) with
n > 2
For k ¼ 0; 1; 2; . . . do
1. Compute a majorant first-order surrogate f̂k 2

SfLi ;Pigni¼1
ðf; xkÞwith f̂kðxÞ ¼ Pn

i¼1 f̂
k
i ðxiÞ.

2. Update xi, i ¼ 1; . . . ; n, by (48) in a Gauss-Seidel fashion.

3. Update �� by ��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ.
4. Choose bðkþ1Þ such that bðkÞ � bðkþ1Þ � bmax.
end

Theorem 5. In Algorithm 5, assume that f is fQigni¼1-convex,
Qi � 0, f̂k 2 SfLi;Pigni¼1

ðf; xkÞ, Pi � Li � 0, and Pi þQi
 0.

Let Gk
 1
bðkÞ Lþ bðkÞÂ>ðPþQÞ�1Â. Then the sequence fxkg

converges to some xL that is a solution to problem (1).

The above theorem shows that when Pi þQi
 0, with
a proper choice ofGk

i , Prox-GSADMM converges to the opti-
mal solution. The assumption Pi þQi
 0 implies that, f
and f̂ , at least one of them should be strongly convex. In the
case Qi
 0, i.e., f is strongly convex, our Prox-GSADMM
can be regarded as a generalization of the Algorithm 5 in [9].
A more important case is Qi ¼ 0 and Pi
 0, i.e., f is convex
and f̂ is strongly convex, our Prox-GSADMM and conver-
gence result are completely new. For convex f , Section 2
gives some examples of f̂ which are fPigni¼1-strongly convex.
Among them, the proximal surrogate is the most general
choice for constructing fPigni¼1-strongly convex f̂ with
regardless of the structure of f . For example, let fðxÞ ¼Pn

i¼1 fiðxiÞ be convex. We can simply use

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 535

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

f̂kðxÞ ¼
Xn
i¼1

fiðxiÞ þ 1

2
kxi � xki k2Li

�
; (49)

where Li
 0. Then f̂k 2 SfLi;Pigni¼1
ðf; xkÞ, where Pi ¼ Li. One

may use different Li in different iterations. The above choice
of f̂ guarantees that Pi þQi
 0 when f is convex (but non-
strongly convex). Thus our Prox-GSADMM is very general
and practical.

Note that the convergence result in Theorem 5 and its
proof are different from M-ADMM. The convergence rate of
Prox-GSADMM is currently not clear, though it is expected
to be not slower than M-ADMM since the latest version of x
is always used for the current updating. Also, the choice
of Gk lacks of an intuitive insight from the perspective of
majorization minimization and it may not be tight. We leave
these for interesting future works.

7 EXPERIMENTS

In this section, we conduct several experiments to show the
effectiveness of our new ADMMs. All the algorithms are
implemented by Matlab and are tested on a PC with 8 GB of
RAM and Intel Core 2 Quad CPU Q9550. The details of the
compared solvers can be found in the Appendix, available
online.

7.1 Solving Toy Problems with Multi-Blocks
Besides the unified analysis of several variants of ADMMs,
we have two new methods, M-ADMM and Prox-GSADMM
for multi-block problems. In this section, we conduct two
experiments to demonstrate the effectiveness of our new
methods. The first experiment is to verify the improvement
of ourM-ADMMandProx-GSADMMover existingmethods,
e.g., Prox-JADMM[10], on the basis pursuit problem. The sec-
ond experiment is to verify the effectiveness of our proposed
variable partition strategy forM-ADMM in Section 5.3.

7.1.1 ‘1-Minimization Problem

Weconduct an experiment to show the effectiveness of ourM-
ADMM and Prox-GSADMM for multi-blocks problems. We
test on the same ‘1-minimization problem as that in [10] for
finding sparse solutions of an underdetermined linear system

min
fxig

fðxÞ ¼
Xn
i¼1

kxik1; s.t. b ¼
Xn
i¼1

Aixi; (50)

where there has n blocks and the data is partitioned accord-
ingly A ¼ ½A1; . . . ;An�. This problem is known as the basis
pursuit and has many applications in computer vision
and signal processing. We generate the data as follows.
The sparse representation vector x� is randomly generated
with k ¼ 60 nonzeros drawn from the Nð0; 1Þ distribution.
We generate A 2 Rd�m, where d ¼ 300 and m ¼ 1;000, with
its elements independently sampled from an Nð0; 1Þ distri-
bution. Then A is partitioned evenly into n ¼ 100 blocks.
The response y is computed by y ¼ Ax�.

M-ADMM solves (50) by the following rules

xkþ1
i ¼ argminxikxik1 þ

bðkÞhðkÞ
i

2 xi � uk
i

�� ��2; i 2 B1;

xkþ1
i ¼ argminxikxik1 þ

bðkÞhðkÞ
i

2 xi � vki
�� ��2; i 2 B2;

��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ;

8>><
>>:

where uk
i ¼ xki �

AT
i
ð��kþbðkÞðAxk�bÞÞ

bðkÞhðkÞ
i

,

vki ¼ xki �
AT

i ð��k þ bðkÞðAB1
xkþ1
B1

þAB2
xkB2

� bÞÞ
bðkÞhðkÞi

:

In this experiment, we simply choose B1 ¼ f1; 2; . . . ; 50g
and B2 ¼ f51; 52; . . . ; 100g. We initialize xi and �� as zeros.
We set bð0Þ ¼ 10=kbk1 as suggested in [10] and update
bðkþ1Þ ¼ minðrbðkÞ; 106Þ with r ¼ 1:1. The backtracking tech-
nique in Algorithm 4 is used to estimate hðkÞ adaptively. We
set m ¼ 1:3, h

ð0Þ
i ¼ rhn1kAik22, i 2 B1 and h

ð0Þ
i ¼ rhn2kAik22,

i 2 B2, where rh ¼ 5� 10�3. For Prox-GSADMM, we use
(49) to construct f̂ with Li ¼ 0:3I. We set Gk

i ¼ hiI�A>
i Ai,

where hi ¼ rhkDiagðAÞ þ bð0Þ
pi

Â>Âk2 and rh ¼ 0:01. The set-

tings of bð0Þ and bðkþ1Þ are the same as those in M-ADMM.
We also compare our methods with other four ADMM
variants: Variable Splitting ADMM (VSADMM) [40],
Jacobian ADMM with correction steps (Corr-JADMM) [8],
Prox-JADMM [10] and H-ADMM [9]. The detailed updating
rules and settings of the first three methods can be found
in [10]. For H-ADMM, it has the same updating rule as our
M-ADMM on problem (50). The key difference is that our
M-ADMM uses the backtracking technique to estimate h

ðkÞ
i

and the stepsize bðkÞ can be increased, while H-ADMM
fix both (we use ti ¼ 0:04 r2

2 Ak k42 which is slightly better
than the choice in [9]). In each iteration, all the compared
methods require computing the proximal mapping of the
‘1-norm which has a closed form solution. Thus, these meth-
ods have the same per-iteration complexity on problem (50).

It is known that, under certain incoherence conditions,
the ground truth x� can be exactly recovered by solving
(50). So we consider the following three measures to evalu-
ate the performance of different solvers: (1) jfðxkÞ � fðx�Þj;
(2) residual kAxk � bk; (3) relative error kxk � x�k=kx�k. We
run all the compared methods for 1,000 iterations and
record the above three measures. We run on 100 random tri-
als and plot the averages in Fig. 1. Note that in Fig. 1a, many
methods seem to stop within 400 iterations. This is because
the iterations with jfðxkÞ � fðx�Þj ¼ 0 cannot be plotted in
logarithmic scale. It can be seen that VSADMM is much
slower than the others, possibly due to many more

Fig. 1. Plots of (a) jfðxkÞ � fðx�Þj; (b) residual Axk � b
�� ��; (c) relative

error xk � x�
�� ��= x�k k on the basis pursuit problem.

536 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

introduced blocks of variables. Prox-JADMM, Corr-
JADMM and H-ADMM significantly improves VSADMM
and they have similar performance.3 The reason that H-
ADMM does not perform better than Prox-JADMM and
Corr-JADMM is that H-ADMM uses a fixed hand-tuned
parameter while the other two use an adaptive parameter
tunning scheme. Our M-ADMM outperforms existing meth-
ods based on three evaluation measures. This demonstrates
the effectiveness of the mixed updating rules, backtracking
technique and the flexible choice of bðkÞ used in M-ADMM.
Prox-GSADMM further improves M-ADMM and this
shows the advantage of the Gauss-Seidel scheme over the
Jacobian scheme.

7.1.2 Analysis of the Proposed Variable Partition

Strategy

In this work, from the convergence bound, we observe that
ADMMs generally converge faster if the used majorant
function is tighter. Considering the problem with n > 2,
the convergence behaviors of M-ADMM may be quite dif-
ferent when using different variable partitions. Now, we
conduct an experiment to compare the convergence behav-
iors of M-ADMM with different variable partitions and
demonstrate the effectiveness of the proposed partition
method in Case I in Section 5.3. We consider the following
group sparse optimization problem

min
fxig

fðxÞ ¼
Xn
i¼1

kxik; s.t. b ¼
Xn
i¼1

Aixi; (51)

where x ¼ ½x1; x2; . . . ; xn� has n blocks and A ¼ ½A1; . . . ;An�,
in which Ai 2 Rd�mi has a compatible dimension with
xi 2 Rmi and

Pn
i¼1 mi ¼ m. Note that in practice, it is not nec-

essary that the values of Aik k22, i ¼ 1; . . . ; n, are similar. They
can be quite different. Considering to solve problem (51) by
M-ADMM, the convergence speed may be quite different
when the variable partition is different in this case. To see
this, we generate the synthetic data as follows. We set
n ¼ 100, d ¼ 100,mi ¼ 10 and the elements ofAi 2 Rd�mi are
independently sampled from a Nð0; iÞ distribution. In this
case, Ai’s have the same size, but Aik k22’s are quite different.
We plot the sorted kAik22’s in descending order in Fig. 2a. We
generate x 2 Rm with each element independently sampling
from anNð0; 1Þ distribution. Thenwe compute b ¼ Ax.

By choosing Gi � hiI�A>
i Ai in (38) and (39), M-ADMM

solves (51) by the following rules

xkþ1
i ¼ argminxikxik þ bðkÞhi

2 xi � uk
i

�� ��2; i 2 B1;

xkþ1
i ¼ argminxikxik þ bðkÞhi

2 xi � vki
�� ��2; i 2 B2;

��kþ1 ¼ ��k þ bðkÞðAxkþ1 � bÞ;

8>><
>>:

where

uk
i ¼ xki �

AT
i ð��k þ bðkÞðAxk � bÞÞ

bðkÞhi
;

vki ¼ xki �
AT

i ð��k þ bðkÞðAB1
xkþ1
B1

þAB2
xkB2

� bÞÞ
bðkÞhi

:

In M-ADMM, xi and �� are initialized as zeros. We set
bð0Þ ¼ 10�6 and update bðkþ1Þ ¼ minðrbðkÞ; 106Þ with r ¼ 1:1.
Let hi ¼ n1kAik22 for i 2 B1, and hi ¼ 1:01n2kAik22 for i 2 B2.
M-ADMM requires dividing these n blocks of variables into
two super blocks, i.e., xB1

with n1 blocks, and xB2
with n2

blocks. Our partition strategy in Case I in Section 5.3

finds n1 by minimizing LB1
þ LB2

, where LB1
¼ ðn1 � 1ÞP

i2B1
kAik22 � AB1

�� ��2
2

and LB2
¼ ðn2 � 1ÞPi2B2

kAik22. In

this experiment, our method gives the best n1 ¼ 34. See the

plot of LB1
þ LB2

versus n1 in Fig. 2b. Note that one may

have many other choices of n1 2 f1; 2 . . . ; 100g. Figs. 2c, 2d,
and 2e plot the objective function value fðxkÞ versus itera-

tion k ð� 1;000Þ, the residual Axk � b
�� �� versus k and dual

residual xkþ1 � xk
�� �� versus k, based on different choices of

n1 2 f1; 34; 50; 80; 99g. Generally, it can be seen that our
choice n1 ¼ 34 performs better than other choices of n1 in
the sense that the obtained objective function value is much
smaller and the two residuals decrease to 0 faster. If n1 is
relatively small (e.g., n1 ¼ 1) or relatively large n1 ¼ 99,
M-ADMM does not perform well since the two super blocks
are more unbalanced. Furthermore, we consider all the
choices of n1 ¼ 1; 2; . . . ; 100 (each choice of n1 corresponds
to a partition), and run M-ADMM for 1,000 iterations.
We record the objective function value at k ¼ 1;000 for each
n1 and plot fðx1000Þ versus n1 in Fig. 2f. It can be seen that
the trends of the lines in Figs. 2b and 2f are similar. This
verifies our key observation that the M-ADMM converges

Fig. 2. Plots of (a) sorted fkAik22; i ¼ 1; . . . ; ng in descending order; (b)
LB1

þ LB2
versus n1; (c) fðxkÞ versus k; (d) residual Axk � b

�� �� versus k
based on different variable partitions (corresponding to different n1); (e)
dual residual xkþ1 � xk

�� �� versus k, and (f) fðx1000Þ versus n1.

3. The experiments in [9] show that H-ADMM outperforms Prox-
JADMM. The reason is that they do not replicate the results of Prox-
JADMM in [10]. See Remark 15 in [9].

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 537

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

faster when the used majorant surrogate is tighter which is
implied by a smaller value of LB1

þ LB2
(or the two super

blocks are more balanced). Also, the obtained function
value fðx1000Þ is quite different for different n1 (different
variable partition), and our choice n1 ¼ 34 is close to the
best. This demonstrates the effectiveness of our proposed
variable partition strategy.

7.2 Solving Non-Separable Objective Problem
To show that M-ADMM can solve the problem with non-
separable objective, we consider the Latent Low-Rank
Representation (LatLRR) problem [26] for affine subspace
clustering

min
Z;L

kZk� þ kLk� þ
�

2
kXZþ LX� Xk2; s.t. 11>Z ¼ 11>; (52)

where � > 0 and the constraint is due to the affine subspace
structure of data X [11]. The objective of (52) is non-separa-
ble and can be rewritten as the following one with separable
objective

min
Z;L;E

kZk� þ kLk� þ
�

2
kEk2;

s.t. 11>Z ¼ 11>; XZþ LX� X ¼ E:

(53)

We compare the following three solvers which own the
convergence guarantee to solve the latent LRR problem:

	 L-ADMM-PS (3): use (13) for three blocks problem
(53).

	 M-ADMM (3): use M-ADMM for three blocks prob-
lem (53).

	 M-ADMM (2): use M-ADMM for three blocks prob-
lem (52).

Note that hðZ;LÞ ¼ 1
2 kXZþ LX� Xk2 in (52) is f2kXk22I;

2kXk22Ig-smooth. M-ADMM (2) uses the Lipschitz gradient
surrogate in (23) to make the subproblems separable. For
M-ADMM (3), we partition the three variables into two
super blocks: fZg and fL;Eg, and update them in the
Gauss-Seidel way. In contrast, L-ADMM-PS updates Z, L
and E in parallel.

We apply latent LRR for subspace clustering by using the
learned Z based on both the synthesized and real data. For
the synthesized data, we generate X ¼ ½X1;X2; . . .� with its
columns sampled from different subspaces. We construct
k ¼ 5 independent subspaces fSig5i¼1 R200 whose bases
fUig5i¼1 are computed by Ui ¼ TUi, 1 � i � 4, where T is a
random rotation and U1 2 R200�5 is a random orthogonal
matrix. We sample 100 vectors from each subspace by
Xi ¼ UiQþ 0:1, 1 � i � 5 with Q 2 R5�100 being an i.i.d.
Nð0; 1Þ matrix. Furthermore, 20 percent of data vectors are
chosen to be corrupted, e.g., for a data vector x chosen to be
corrupted, its observed vector is computed by adding
Gaussian noise with zero mean and variance 0:2 xk k. Given
X 2 R200�500 by the above way, we can solve the latent LRR
problem by the three solvers and obtain the solution Z�.
Then the data vectors can be grouped into k groups based
on the affinity matrix ðjZ�j þ jðZ�Þ>jÞ=2 by spectral cluster-
ing [26]. The clustering accuracy is used to evaluate the clus-
tering performance [26]. We test on different choices of �
and compare the three solvers based on fðxkÞ versus CPU
time (in seconds), Ax� bk k versus CPU time and clustering
accuracy. The results are shown in Fig. 3 and we have the
following observations:

	 M-ADMM (3) always outperforms L-ADMM-PS (3)
in the sense that the objective value is smaller when
the algorithms converge and the residual decreases
much faster. Both solve the same problem (53) with
three blocks of variables. But M-ADMM (3) updates
Z and fL;Eg sequentially, and thus it is faster than L-
ADMM-PS (3) which updates them in parallel. This is
consistent with our analysis at the end of Section 5.1.

	 When � is relatively small, M-ADMM (2) converges
faster than M-ADMM (3). When � is relatively large,
M-ADMM (2) leads to a smaller objective value, but it
requires much more running time (many more itera-
tions). Both solvers have their advantages and disad-
vantages. In this experiment, the block number n and
the looseness of the surrogate are two crucial factors.
M-ADMM (2) solves (52) with only two blocks, but it
requires constructing the Lipschitz gradient surrogate
by (23) for hðZ;LÞ ¼ �

2 kXZþ LX� Xk2. This surrogate
is looser when � is lager. This is why M-ADMM (2) is
slower when � increases (the same phenomenon also
appears in ISTA and FISTA [1]). On the other hand,
M-ADMM (3) for 3 blocks problem (53) converges
quickly regardless of the choice of �. The issue of M-
ADMM (3) is that the surrogate r̂ki ðxiÞ in (38) and (39)
also becomes looser when bðkÞ increases. So M-
ADMM (3) may quickly get stuck and the final objec-
tive value is larger thanM-ADMM (2). In practice, one
has to balance the effects of both the block number n
and the looseness of the surrogate, by considering the
specific problems.

We further apply latent LRR for motion segmentation
and test on the Hopkins 155 dataset [39]. This dataset con-
tains 156 sequences, each with 39�550 vectors drawn from
two or three motions (one motion corresponds to one sub-
space). Each sequence is a sole segmentation (clustering)
task and thus there are 156 clustering tasks in total. We fol-
low the experimental settings in [26] but without the com-
plex post-processing. We set � ¼ 500 and compare the

Fig. 3. Comparison of L-ADMM-PS (3), M-ADMM (3) and M-ADMM (2)
on different choices of �: (a) � ¼ 0:001; (b) � ¼ 0:1 and (c) � ¼ 10. Top
row: plots of fðxkÞ versus CPU time; middle row: Plots of Axk � b

�� �� ver-
sus CPU time. (d) Subspace clustering accuracy versus �. In (a)-(c), for
better visualization, we plot the objective value in a relatively smaller
range in sub-figures.

538 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

performance by using M-ADMM (2), L-ADMM-PS (3) and
M-ADMM (3). We stop the algorithms when

Axk � b
�� ��= bk k � �; and xkþ1 � xk

�� ��= bk k � �; (54)

where � ¼ 10�4. For eachmotion sequence,we record the clus-
tering accuracy and the CPU time of solvers. Then the mean
clustering accuracy and the total CPU time of all 156 sequen-
ces are reported in Table 3. It can be seen that, due to the same
stopping criteria in (54), the CPU time of L-ADMM-PS (3) and
that of M-ADMM (3) are similar. But the solution to latent
LRR obtained by M-ADMM (3) achieves better clustering
accuracy than L-ADMM-PS (3). The reason is that M-ADMM
(3) obtains a better solutionwithmuch smaller objective value
within similar running time (or similar number of iterations).
In this experiment, M-ADMM (2) for (52) is inferior to the
other two solvers since the used � is relatively large and thus
the usedmajorant surrogate is loose.

7.3 Solving Nonnegative Matrix Completion
In this section, we show how to use Gauss-Seidel ADMM
to solve a class of problems (n > 2) with the condition (46)
being satisfied. We consider the following nonnegative
noisy matrix completion problem [28]

min
X;E

Xk k�þ
�

2
Ek k2; s.t. PVðXÞ þ E ¼ B; X � 00; (55)

where V is an index set and PV is a linear mapping that
keeps the entries in V unchanged and those outsideV zeros.
The above problem can be reformulated as a three blocks
problem by (94) in [28] and then solved by L-ADMM-PS.
We instead reformulate (55) as

min
X;E;Z

Xk k�þ
�

2
Ek k2;

s.t. PVðZÞ þ E ¼ B; X ¼ Z; Z � 00:

(56)

Note that (46) holds for (56) with the partition fX;Eg and
fZg. Thus (56) can be solved using (36) and (37) with closed
form solutions for each variable. We still refer to this
method as M-ADMM in this experiment.

We consider the same image inpainting problem as in [28]
which is to fill in the missing pixel values of a corrupted
image. As the pixel values are nonnegative, the image
inpainting problem can be solved by (55). The corrupted
image is generated from the original image by sampling
60 percent of the pixels uniformly at random and adding
Gaussian noise with mean zero and standard deviation 0.1.
We use the same adaptive penalty to update bðkÞ as [28].

We set � ¼ 10, �1 ¼ 10�3, �2 ¼ 10�4 and bð0Þ ¼ minðd1; d2Þ�2,
where d1� d2 is the size of X. We update bðkþ1Þ ¼ maxð10bðkÞ;
106Þ when maxiðbðkÞkxkþ1

i � xki k=kbkÞ � �1. The stopping crite-
ria are maxiðkxkþ1

i � xki k=kbkÞ � �2 and Axk � b
�� ��= bk k � �1.

We test on eight images, all with size 256� 256, in Fig. 4 and
evaluate the recovery performance based on the PSNR value.
The higher PSNR value indicates better recovery perfor-
mance. The quantitative results are reported in Table 4 and
Fig. 5 gives more results test on the parrot image. It can be
seen that, with slightly better recovery performance, M-
ADMM converges faster than L-ADMM-PS. The improve-
ment benefits from the sequential updating of fXg and
fZ;Eg and avoids computing of the majorant surrogate as
that in L-ADMM-PS.

8 CONCLUSION

This paper revisits ADMM, an old but reborn method for
convex problems with linear constraint. Many previous
ADMMs can be categorized into the Gauss-Seidel ADMMs
and Jacobian ADMMs according to different updating
orders of the primal variables. We observed that many pre-
vious ADMMs update the primal variables by minimizing
different majorant functions. Then we proposed the major-
ant first-order surrogate functions and presented the unified
frameworks with unified convergence analysis. They not
only draw the connections with existing ADMMs, but also
can be used to solve new problems with non-separable

TABLE 3
Comparison of L-ADMM-PS (3) and M-ADMM (3) and M-ADMM

(2) for Latent LRR on the Hopkins 155 Dataset

Methods L-ADMM-PS (3) M-ADMM (3) M-ADMM (2)

Accuracy (%) 90.9 92.7 87.1
CPU Time (s) 756.2 738.5 932.1

Fig. 4. Images used for nonnegative matrix completion.

TABLE 4
Numerical Comparison on the Image Inpainting

L-ADMM-PS M-ADMM

images PSNR CPU # Iter. PSNR CPU #Iter.

parrot 28.51 3.50 87 28.54 2.00 55
barbara 27.69 3.36 85 27.72 2.27 60
boat 28.91 3.54 85 28.93 2.21 58
cameraman 26.06 3.33 84 26.08 2.15 58
foreman 31.83 3.80 86 31.84 2.06 54
house 31.26 3.48 87 31.26 2.29 56
lena 27.65 3.55 85 27.68 2.33 62
monarch 25.29 3.47 85 25.33 2.52 63

Fig. 5. Top row: The observed noisy image (left), recovered image by L-
ADMM-PS (middle), and recovered image by M-ADMM (right). Bottom
row: plots of fðxkÞ versus CPU time (left), plots of Axk � b

�� �� versus
CPU time (middle), and PSNR values versus CPU time (right).

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 539

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

objectives. The convergence bound show that the conver-
gence speed depends on the tightness of the used majorant
functions. We then analyzed how to improve the tightness
to improve the efficiency. We improve Jacobian ADMMs by
introducing the Mixed Gauss-Seidel and Jacobian ADMM
and the backtracking technique. We also discussed how to
perform variable partition for efficient implementations.
Experiments on both synthesized and real-world data well
demonstrated the effectiveness of our new ADMMs.

In the future, one may consider extending our unified
analysis based on MM to develop new ADMMs or solve
other problems, e.g., strongly convex or nonconvex prob-
lems, and other ADMMs, e.g., stochastic ADMMs.

ACKNOWLEDGMENTS

J. Feng is partially supported by National University of
Singapore startup grant R-263-000-C08-133 and Ministry
of Education of Singapore AcRF Tier One grant R-263-000-
C21-112. Z. Lin is supported by National Basic Research
Program of China (973 Program) (Grant no. 2015CB352502)
and National Natural Science Foundation (NSF) of China
(Grant nos. 61625301 and 61231002). Z. Lin is the corre-
sponding author for this paper.

REFERENCES

[1] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2,
pp. 183–202, 2009.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2011.

[3] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of
ADMM for multi-block convex minimization problems is not nec-
essarily convergent,” Math. Program., vol. 155, nos. 1-2, pp. 57–59,
2013.

[4] Y. Chen, S. Sanghavi, and H. Xu, “Improved graph clustering,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6440–6455, Oct. 2014.

[5] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-task low-
rank affinity pursuit for image segmentation,” in Proc. IEEE Int.
Conf. Comput. Vis., 2011, pp. 2439–2446.

[6] W. Deng and W. Yin, “On the global and linear convergence of
the generalized alternating direction method of multipliers,”
J. Sci. Comput., vol. 66, no. 3, pp. 889–916, 2016.

[7] D. Han and X. Yuan, “A note on the alternating direction method
of multipliers,” J. Optimization Theory Appl., vol. 155, no. 1,
pp. 227–238, 2012.

[8] B. He, L. Hou, and X. Yuan, “On full Jacobian decomposition
of the augmented Lagrangian method for separable convex pro-
gramming,” SIAM J. Optimization, vol. 25, no. 4, pp. 2274–2312, 2015.

[9] D. P. Robinson and R. E. Tappenden, “A flexible ADMM algo-
rithm for big data applications,” J. Sci. Comput., pp. 1–33, 2015.

[10] W. Deng, M.-J. Lai, andW. Yin, “Parallel multi-block ADMMwith
oð1=kÞ convergence,” J. Sci. Comput., pp. 1–25, 2014.

[11] E. Elhamifar and R. Vidal, “Sparse subspace clustering:
Algorithm, theory, and applications,” IEEE Trans. Pattern Recognit.
Mach. Intell., vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

[12] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite element approximation,”
Comput. Math. Appl., vol. 2, no. 1, pp. 17–40, 1976.

[13] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast
alternating direction optimization methods,” SIAM J. Imag. Sci.,
vol. 7, no. 3, pp. 1588–1623, 2014.

[14] B. He and X. Yuan, “On the Oð1=nÞ convergence rate of the Doug-
las-Rachford alternating direction method,” SIAM J. Numerical
Anal., vol. 50, no. 2, pp. 700–709, 2012.

[15] B. He and X. Yuan, “Block-wise alternating direction method of
multipliers for multipleblock convex programming and beyond,
2015, available: http://www.optimization-online.org/DB_FILE/
2014/09/4544.pdf

[16] M. R. Hestenes, “Multiplier and gradient methods,” J. Optimiza-
tion Theory Appl., vol. 4, no. 5, pp. 303–320, 1969.

[17] M. Hong and Z.-Q. Luo, “On the linear convergence of the alter-
nating direction method of multipliers,”Math. Program., pp. 1–35,
2012.

[18] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable models
for robust low-rank tensor completion,” Pacific J. Optimization,
vol. 11, no. 2, pp. 339–364, 2015.

[19] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using
low rank matrix completion,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2010, pp. 1791–1798.

[20] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using
surrogate objective functions,” J. Comput. Graph. Statist., vol. 9,
no. 1, pp. 1–20, 2000.

[21] X. Liang, X. Ren, Z. Zhang, and Y. Ma, “Repairing sparse low-rank
texture,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 482–495.

[22] T.Y. Lin, S.-Q. Ma, and S.-Z. Zhang, “On the sublinear conver-
gence rate of multi-block ADMM,” J. Oper. Research Soc. China,
vol. 3, no. 3, pp. 251–274, 2015.

[23] Z. Lin, R. Liu, and H. Li, “Linearized alternating direction method
with parallel splitting and adaptive penalty for separable convex
programs in machine learning,” Mach. Learn., vol. 99, no. 2,
pp. 287–325, 2015.

[24] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Proc.
Advances Neural Inf. Process. Syst., 2011, pp. 612–620.

[25] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans.
Pattern Recognit. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[26] G. Liu and S. Yan, “Latent low-rank representation for subspace
segmentation and feature extraction,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 1615–1622.

[27] J. Liu, S. Ji, and J. Ye, “SLEP: Sparse learning with efficient projec-
tions,” 2009. [Online]. Available: http://www.public.asu.edu/
~jye02/Software/SLEP

[28] R. Liu, Z. Lin, and Z. Su, “Linearized alternating direction method
with parallel splitting and adaptive penalty for separable convex
programs in machine learning,” in Proc. Asian Conf. Mach. Learn.,
2013, pp. 116–132.

[29] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis: Exact recovery of corrupted low-
rank tensors via convex optimization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 5249–5257.

[30] C. Lu, J. Feng, Z. Lin, and S. Yan, “Correlation adaptive subspace
segmentation by trace Lasso,” in Proc. IEEE Int. Conf. Comput. Vis.,
2013, pp. 1345–1352.

[31] C. Lu, H. Li, Z. Lin, and S. Yan, “Fast proximal linearized alternat-
ing direction method of multiplier with parallel splitting,” in Proc.
AAAI Conf. Artif. Intell., 2016, pp. 739–745.

[32] C. Lu, S. Yan, and Z. Lin, “Convex sparse spectral clustering:
Single-view to multi-view,” IEEE Trans. Image Process., vol. 25,
no. 6, pp. 2833–2843, Jun. 2016.

[33] J. Mairal, “Optimization with first-order surrogate functions,” in
Proc. Int. Conf. Mach. Learn., 2013, pp. 783–791.

[34] J. Mairal, F. Bach, J. Ponce, G. Sapiro, R. Jenatton, andG. Obozinski,
“SPAMS: Sparse modeling software,” 2011. [Online]. Available:
http://spams-devel.gforge.inria.fr/index.html

[35] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Berlin, Germany: Springer, 2004.

[36] H. Ouyang, N. He, L. Tran, and A. Gray, “Stochastic alternating
direction method of multipliers,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 80–88.

[37] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi,
“Simultaneously structured models with application to sparse
and low-rank matrices,” IEEE Trans. Inf. Theory, vol. 61, no. 5,
pp. 2886–2908, May 2015.

[38] X. Shen and Y. Wu, “A unified approach to salient object detection
via low rank matrix recovery,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 853–860.

[39] R. Tron and R. Vidal, “A benchmark for the comparison of 3-D
motion segmentation algorithms,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2007, pp. 1–8.

[40] X. Wang, M. Hong, S. Ma, and Z.-Q. Luo, “Solving multiple-block
separable convex minimization problems using two-block alter-
nating direction method of multipliers,” Pacific J. Optimization,
vol. 11, no. 4, pp. 645–667, 2015.

540 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 3, MARCH 2018

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

http://www.optimization-online.org/DB_FILE/2014/09/4544.pdf
http://www.optimization-online.org/DB_FILE/2014/09/4544.pdf
http://www.public.asu.edu/~jye02/Software/SLEP
http://www.public.asu.edu/~jye02/Software/SLEP
http://spams-devel.gforge.inria.fr/index.html

[41] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE Trans. Pattern
Recognit. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[42] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clus-
tering via low-rank and sparse decomposition,” in Proc. AAAI
Conf. Artif. Intell., 2014, pp. 2149–2155.

[43] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, “Non-
negative low rank and sparse graph for semi-supervised
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012,
pp. 2328–2335.

Canyi Lu is currently working toward the PhD
degree in the Department of Electrical and
Computer Engineering, National University of
Singapore. His current research interests include
computer vision, machine learning, pattern rec-
ognition, and optimization. He was the winner of
the Microsoft Research Asia Fellowship 2014. He
is a student member of the IEEE.

Jiashi Feng received the BE degree from the
University of Science and Technology, China, in
2007 and the PhD degree from National Univer-
sity of Singapore, in 2014. He is currently an
assistant professor in the Department of Electri-
cal and Computer Engineering, National Univer-
sity of Singapore. He was a postdoc researcher
with the University of California from 2014 to
2015. His current research interests focus on
machine learning and computer vision techniques
for large-scale data analysis. Specifically, he has

done work in object recognition, deep learning, machine learning, high-
dimensional statistics, and big data analysis.

Shuicheng Yan is currently an associate profes-
sor in the Department of Electrical and Computer
Engineering, National University of Singapore,
and the founding lead of the Learning and Vision
Research Group (http://www.lv-nus.org). His
research areas include machine learning, com-
puter vision and multimedia, and he has auth-
ored/co-authored hundreds of technical papers
over a wide range of research topics, with Google
Scholar citation >30,000 times and H-index 64.
He is ISI Highly-cited Researcher, 2014 and

IAPR Fellow 2014. He has been serving as an associate editor of the
IEEE Transactions on Knowledge and Data Engineering, the IEEE
Transactions on Circuits and Systems for Video Technology, and the
ACM Transactions on Intelligent Systems and Technology. He received
the Best Paper Awards from ACM MM’13 (Best Paper and Best Student
Paper), ACM MM12 (Best Demo), PCM’11, ACM MM10, ICME10 and
ICIMCS’09, the runner-up prize of ILSVRC’13, the winner prize of
ILSVRC14 detection task, the winner prizes of the classification task in
PASCAL VOC 2010-2012, the winner prize of the segmentation task in
PASCAL VOC 2012, the honourable mention prize of the detection task
in PASCAL VOC’10, 2010 TCSVT Best Associate Editor (BAE) Award,
2010 Young Faculty Research Award, 2011 Singapore Young Scientist
Award, and 2012 NUS Young Researcher Award. He is a fellow of
the IEEE.

Zhouchen Lin (M’00-SM’08) received the PhD
degree in applied mathematics from Peking
University, in 2000. He is currently a professor in
the Key Laboratory of Machine Perception,
School of Electronics Engineering and Computer
Science, Peking University. He is also a chair
professor of Northeast Normal University. His
research areas include computer vision, image
processing, machine learning, pattern recogni-
tion, and numerical optimization. He is an area
chair of CVPR 2014/2016, ICCV 2015, and NIPS

2015, and a senior program committee member of AAAI 2016/2017
and IJCAI 2016. He is an associate editor of the IEEE Transactions on
Pattern Analysis and Machine Intelligence and the International Journal
of Computer Vision. He is a fellow of the IAPR and senior member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ET AL.: A UNIFIED ALTERNATING DIRECTION METHOD OF MULTIPLIERS BY MAJORIZATION MINIMIZATION 541

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:42:49 UTC from IEEE Xplore. Restrictions apply.

http://www.lv-nus.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

