
Proceedings of Machine Learning Research 80:1–16, 2018 ACML 2018

Construction of Incoherent Dictionaries via Direct Babel
Function Minimization

Editors: Jun Zhu and Ichiro Takeuchi

Abstract

Highly incoherent dictionaries have broad applications in machine learning. Minimizing
the mutual coherence is a common intuition to construct incoherent dictionaries in the
previous methods. However, as pointed out by Tropp (2004), mutual coherence does not
offer a very subtle description and Babel function, as a generalization of mutual coherence,
is a more attractive alternative. However, it is much more challenging to optimize. In this
work, we minimize the Babel function directly to construct incoherent dictionaries. As far
as we know, this is the first work to optimize the Babel function. We propose an augmented
Lagrange multiplier based algorithm to solve this nonconvex and nonsmooth problem with
the convergence guarantee that every accumulation point is a KKT point. We define a new
norm ‖X‖∞,maxp and propose an efficient method to compute its proximal operation with
O(n2logn) complexity, which dominates the running time of our algorithm, where maxp
means the sum of the largest p elements and n is the number of the atoms. Numerical
experiments testify to the advantage of our method.

Keywords: Incoherent dictionaries, Babel function, mutual coherence, optimization algo-
rithm.

1. Introduction

Highly incoherent dictionaries are widely used with great success in compressed sensing
(Candès et al., 2006; Donoho, 2006), sparse representation (Bruckstein et al., 2009) and
dictionary learning (Donoho and Huo, 2001; Donoho and Elad, 2003; Gribonval and Nielsen,
2003). Specific applications include feature selection (Bajwa et al., 2010), network anomaly
detection (Andrysiak and Saganowski, 2015) and incoherent subspaces learning for classifi-
cation (Barchiesi and Plumbley, 2015) in machine learning, denoising (Wang et al., 2014),
compression (Sezer et al., 2008) and inpainting (Elad et al., 2005) in image processing and
channel estimation (Li et al., 2016) in signal processing. Other applications include the cod-
ing theory and communications (Strohmer and Heath, 2003), robust transmission (Fickus
and Mixon, 2012) and quantum computing (Eldar and Forney, 2002).

A dictionary in a Hilbert space is a finite redundant collection of unit-norm vectors
which spans the whole space. We use D = [di, · · · ,dn] as the matrix form of the dictionary
and di as an atom of D. We say that a dictionary is incoherent when the atoms have a low
dependency on each other. Incoherence plays an important role for the stable signal recovery
in compressed sensing, sparse representation and dictionary learning (Tropp, 2004; Arora
et al., 2014). Mutual coherence is a simple way to characterize the incoherence, defined as
the maximum absolute inner product between two distinct atoms:

µ(D) = max
1≤i,j≤n,i6=j

| 〈di,dj〉 |
‖di‖‖dj‖

.
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Minimizing the mutual coherence is a straightforward intuition for the construction of in-
coherent dictionaries (Tsiligianni et al., 2014; Rusu and Gonzálezprelcic, 2015; Lin et al.,
2018). However, as mentioned in (Tropp, 2004), mutual coherence does not offer a very
subtle description of incoherence since it only reflects the most extreme correlations. When
most of the inner products are tiny, mutual coherence can be downright misleading. Babel
function (Tropp, 2004), as a generalization of mutual coherence, can avoid this disadvan-
tage. It measures the maximal total coherence between an atom and a collection of other
atoms:

B(p) = max
Λ,|Λ|=p

max
i/∈Λ

∑
j∈Λ

| 〈di,dj〉 |
‖di‖‖dj‖

.

This motivates us to minimize the Babel function for the construction of incoherent dic-
tionaries. The following example further verifies the advantage of minimizing the Babel
function with some theoretical guarantee.

1.1. Compressed Sensing: An Example

Compressed sensing merges the sampling and compression by exploiting the sparsity. Con-
sider a signal x ∈ Rd, which can be sparsely represented over a redundant bases Φ ∈ Rd×n,
i.e., x = Φα with ‖α‖0 � n. Given a sensing matrix Ψ ∈ Rm×d with ‖α‖0 < m � n,
compressed sensing suggests to represent x by m scalars given by y = Ψx. The original
signal x can be recovered from y by exploiting its sparse representation, i.e., solving the
following problem

min
α
‖α‖0 s.t. y = Dα, (1)

where D = ΨΦ is referred to as the effective dictionary.
It is known that solving problem (1) is NP-hard (Natarajan, 1995). Thus a few ap-

proximate strategies are proposed such as the Basic Pursuit (BP) (Chen et al., 1998) and
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993). A fundamental question is that
under what conditions the solutions of these approximate strategies are identical to the
solution of problem (1). Mutual coherence and Babel function can be used to characterize
the conditions of successful recovery.

Theorem 1 (Tropp, 2004) For problem (1), if a feasible point α satisfies

‖α‖0 <
1

2

(
1 +

1

µ(D)

)
, (2)

or

B(‖α‖0 − 1) +B(‖α‖0) < 1, (3)

then α is the solution of problem (1) and can be obtained by OMP and BP. �

Since B(p) is a non-decreasing function on p, condition (3) is equivalent to ‖α‖0 <

max{p+1 : B(p−1)+B(p) < 1}. It can be easily checked that 1
2

(
1 + 1

µ(D)

)
≤ max{p+1 :
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B(p − 1) + B(p) < 1} via B(p) ≤ pµ. Thus condition (2) imposes more restriction-
s on the sparsity than condition (3), which verifies the superiority of Babel function to
mutual coherence. Moreover, Tropp (2004) constructed an example to further explain
this comment. In infinite-dimensional Hilbert space, for the i-th element of atom dk, let

dk(i) =

{
0, i < k,

ri−k
√

1− r2 k ≤ i. Then µ = r and B(p) ≤ 2r
1−r . If r = 0.2, then condition

(2) requires ‖α‖0 < 3 while (3) holds for all ‖α‖0.
Theorem 1 demonstrates that in order to recover a unique sparse representation, we need

to construct highly incoherent D. That is to say, small mutual coherence or Babel function.
Since condition (3) provides a broader boundary of recovery guarantee than condition (2),
minimizing the Babel function is superior to minimizing the mutual coherence. We follow
(Elad, 2007; Tsiligianni et al., 2014; Xu et al., 2010) to consider the optimization of the
sampling process, i.e., optimize Ψ with given Φ.

1.2. Previous Work

The alternating projection method (Tropp et al., 2005; Elad, 2007; Tsiligianni et al., 2014;
Xu et al., 2010) is one of the most influential work on the design of incoherent dictionaries.
The procedure can be described as the following iterative steps: 1. Normalize the columns
of ΨΦ and compute the Gram matrix G = (ΨΦ)TΨΦ. 2. Project G onto set S1 = {G :

|Gi,j | ≤ t, i 6= j}, where t is some threshold such as the Welch bound
√

n−m
m(n−1) (Welch,

1974). 3. Project G onto set S2 = {G : rank(G) ≤ m,G � 0} and obtain D ∈ Rm×n

where G = DTD. 4. Form the new sensing matrix Ψ via solving a least square problem:
minΨ ‖D−ΨΦ‖2F .

The alternating projection method can only make the off-diagonal values of G lower
than the parameter t. It will get a sub-optimal solution when t is larger than the true
mutual coherence. Otherwise, sets S1 and S2 have no intersections. Note that the Welch
bound is not tight when n > m(m+1)/2. Moreover, the convergence is not proved in (Elad,
2007; Tsiligianni et al., 2014; Xu et al., 2010). The least square step makes it difficult to
apply the convergence result of the standard alternating projection method (Lewis et al.,
2009).

There are some other strategies besides the projection based methods. Lin et al. (2018)
optimized a smoothed approximation of the mutual coherence ‖G−I‖∞ directly and Duarte-
Carvajalino and Sapiro (2009) minimized a square loss rather than the l∞ loss of G − I
for ease of calculation in applications of image processing. Rusu (2013) and Rusu and
Gonzálezprelcic (2015) solved a sequence of convex optimization problems. To simplify the
algorithm, in this paper we only consider to construct data-independent dictionaries with
high incoherence, rather than learning a dictionary via fitting the data. So we do not review
the methods in the dictionary learning community.

1.3. Contributions

The above methods all base on the intuition of minimizing the mutual coherence. As far as
we know, there is no literature focusing on minimizing the Babel function. In this paper,
we directly minimize the Babel function to construct incoherent dictionaries. In summary,
our contributions include:
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1. We propose an augmented Lagrange multiplier based method to minimize the Babel
function directly with the convergence guarantee that every accumulation point is a
KKT point. To the best of our knowledge, we are the first to optimize the Babel
function. Due to its property of direct minimization, our method can obtain higher
incoherence measured by both mutual coherence and Babel function. Our method
can also be used to minimize the mutual coherence directly as a special case.

2. We define a new norm ‖X‖∞,maxp , which has a strong relationship with the Babel
function. We propose an efficient method to compute its proximal operation with
O(n2logn) complexity, which is required for the minimization of the Babel function
in each iteration, and thus dominates the running time of our algorithm. Besides
minimizing the Babel function, we expect that this norm can also be used in other
applications with a requirement of regularizing the largest p elements.

2. Minimizing the Babel Function

In this section, we discuss how to minimize the Babel function directly. We first define two
norms. For a vector x ∈ Rn and a matrix X ∈ Rn×n, define

‖x‖maxp =
∑p

j=1 |xδ(j)|,
‖X‖∞,maxp = max1≤i≤n

∑p
j=1 |Xi,δ(j)|,

where xδ(j) is the j-th largest entry of x in absolute value and Xi,δ(j) is the j-th largest
entry of the i-th row of X in absolute value. It can be easily checked that ‖x‖maxp and
‖X‖∞,maxp are norms. ‖X‖∞,maxp could be considered to be between the l∞,1 norm and
l∞,∞ norm and can be used to regularize the largest p elements of each row of X. From the
definition of Babel function, we have

B(p) =
∥∥DTD− I

∥∥
∞,maxp ,

with ‖Di‖ = 1, i = 1, · · · , n. We use Di ∈ Rm,1 as the i-th column of D and Di,: ∈ R1,n as
the i-th row. I is the identity matrix. So we can solve the following problem to minimize
the Babel function directly.

min
D∈Rm×n

∥∥DTD− I
∥∥
∞,maxp ,

s.t. DT ∈ Span(ΦT ), ‖Di‖ = 1, i = 1, · · · , n,
(4)

where DT ∈ Span(ΦT ) comes from D = ΨΦ for the sake of applying our method to
compressed sensing. Note that we consider the problem with given Φ ∈ Rd×n and unknown
Ψ ∈ Rm×d in this paper. Let r = rank(Φ) and UΣVT = Φ be the compact SVD of Φ,
then D = ΨUΣVT = RVT where R ≡ ΨUΣ ∈ Rm×r. Thus the solution of problem (4)
is D = RVT , where R is the solution of

min
R∈Rm×r

∥∥VRTRVT − I
∥∥
∞,maxp ,

s.t. Vi,:R
TRVT

i,: = 1, i = 1, · · · , n.

4



Short Title

Algorithm 1 Augmented Lagrangian Multiplier method for direct Babel Function mini-
mization (ALM-BF)

Initialize 0 < $ < 1, γ > 1, τ > 0, Λ < Λ, ρ0, X0, Y0, W0, Λ0
1 and Λ0

2.
for k = 0, 1, 2, · · · do

Step 1: Let (Xk,0,Yk,0,Wk,0) = (Xk,Yk,Wk)
repeat

Xk,t+1 = Prox 1

ρk
‖·‖∞,maxp

(
(ρkYk,t −Λk

1 + τXk,t)/(ρk + τ)
)
.

Yk,t+1 = ProjΠ
(
(ρkXk,t+1 + Λk

1 + ρkVWk,tVT − ρkI−Λk
2 + τYk,t)/(2ρk + τ)

)
.

Wk,t+1 = ProjΩ
(
(VT (ρkYk,t+1 + ρkI + Λk

2)V + τWk,t)/(ρk + τ)
)
.

Let (σk,t+1
1 ,σk,t+1

2 ,σk,t+1
3 ) ∈ ∂X,Y,WL(Xk,t+1,Yk,t+1,Wk,t+1,Λk

1,Λ
k
2).

until ‖(σk,t+1
1 ,σk,t+1

2 ,σk,t+1
3 )‖F ≤ εk.

Let (Xk+1,Yk+1,Wk+1) = (Xk,t+1,Yk,t+1,Wk,t+1).
Step 2: Λ̂k+1

1 = Λk
1 + ρk(Xk+1 −Yk+1), Λk+1

1 = Proj[Λ,Λ](Λ̂
k+1
1 ).

Λ̂k+1
2 = Λk

2 + ρk(Yk+1 −VWk+1VT + I), Λk+1
2 = Proj[Λ,Λ](Λ̂

k+1
2 ).

Step 3: ρk+1 = γρk if
‖Xk+1−Yk+1‖F>$‖Xk−Yk‖F or ‖Yk+1−VWk+1VT+I‖F>$‖Yk−VWkVT+I‖F .
else ρk+1 = ρk.

end for
Let UΣVT = Φ ∈ Rd×n be its compact SVD. Find R ∈ Rm×r such that RTR = Wk.
Find a solution Ψ (must exist since r ≤ d) of R = ΨUΣ. Output Ψ ∈ Rm×d and
D = RVT ∈ Rm×n.

Let W = RTR and introduce auxiliary variables X and Y, we can solve the following
problem

min
X∈Rn×n,Y∈Π,W∈Ω

f(X) = ‖X‖∞,maxp ,

s.t. X = Y, Y = VWVT − I,
(5)

with given V ∈ Rn×r, where Π = {Y ∈ Rn×n : Yi,i = 0, i = 1, · · · , n} and Ω = {W ∈
Rr×r : W = WT ,W � 0, rank(W) ≤ m}. Let δΠ and δΩ(W) be the indicator functions of
Π and Ω, respectively. The augmented Lagrangian function is

L(X,Y,W,Λ1,Λ2) = f(X) + δΠ(Y) + δΩ(W) + 〈Λ1,X−Y〉+
〈
Λ2,Y −VWVT + I

〉
+
ρ

2
‖X−Y‖2F +

ρ

2
‖Y −VWVT + I‖2F .

We can solve problem (5) using the augmented Lagrange multiplier method, which is
described in Algorithm 1. ProjΩ means the projection onto set Ω and Proj[Λ,Λ](Λ̂) means

projecting each element of Λ̂ such that Λ ≤ Λ̂i,j ≤ Λ,∀i, j In Algorithm 1, the most
challenging step is to find an approximate critical point of the following problem in step 1

min
X,Y,W

L̂(X,Y,W) = L(X,Y,W,Λk
1,Λ

k
2) (6)
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We can use the Proximal Alternating Minimization method (Bolte et al., 2014) to solve it,
i.e., alternately solve

Xk,t+1 = argmin
X

L̂(X,Yk,t,Wk,t) +
τ

2
‖X−Xk,t‖2F ,

Yk,t+1 = argmin
Y

L̂(Xk,t+1,Y,Wk,t) +
τ

2
‖Y −Yk,t‖2F ,

Wk,t+1 = argmin
W

L̂(Xk,t+1,Yk,t+1,W) +
τ

2
‖W −Wk,t‖2F .

In Algorithm 1, projections onto sets Ω and Π have closed form solutions. The proximal
operation of ‖X‖∞,maxp , defined as

Prox 1
ρ
‖·‖∞,maxp (Y) = argmin

X∈Rn×n
‖X‖∞,maxp +

ρ

2
‖X−Y‖2F , (7)

can be computed exactly with O(n2logn) complexity, which is described in Sections 3, 4 and
5. L̂(X,Y,W) satisfies the KL condition (Bolte et al., 2014) and thus {Xk,t,Yk,t,Wk,t} is
guaranteed to converge to a critical point of problem (6) when t→∞. So the requirement

of ‖(σk,t+1
1 ,σk,t+1

2 ,σk,t+1
3 )‖F ≤ εk in step 1 can be satisfied with arbitrarily εk. It should

be mentioned that in Step 1 of Algorithm 1 we only need (Xk,t+1,Yk,t+1,Wk,t+1) to be an
inexact critical point of minX,Y,W L(X,Y,W,Λk

1,Λ
k
2), the global minimum is not needed.

The convergence of the augmented Lagrange multiplier method is proved in (Conn et al.,
1991; Andreani et al., 2008). However, the standard analysis considers the general nonlinear
programming with constraints of hi(x) = 0 and hj(x) ≤ 0, where hi and hj are required to
be differential. Thus it cannot be applied directly to our problem with a positive semidefinite
and rank constraint. By exploiting the property of the normal cone of Ω and Π, we can have
the convergence result established in Theorem 2. Some literatures use the KL condition
to obtain that the sequence globally converges to a KKT point, e.g., (Wang et al., 2015).
However, they require strong assumptions which are not satisfied by problem (5).

Theorem 2 Assume that {Xk,Yk,Wk} is bounded, εk → 0 and W∗VT
i,:Vi,:, i = 1, · · · , n,

are linearly independent. Let (X∗,Y∗,W∗) be an accumulation point of (Xk,Yk,Wk), then
(X∗,Y∗,W∗) is a KKT point of problem (5).

The assumption of linear independence is a standard assumption in the convergence
analysis of the augmented Lagrange multiplier method (Conn et al., 1991; Andreani et al.,
2008). We consider the special case of r = n to verify it. Then we have that Vi,: is orthogonal
to Vj,: if i 6= j. So it is equivalent to say that there does not exist i ∈ {1, 2, · · · , n} such
that W∗VT

i,: = 0, which means that W∗VT does not contain columns with all 0. In the
standard compressed sensing scenario with Φ = I and V = I, it is equivalent to say that
W∗ does not contain columns with all 0.

2.1. Initialize with Alternating Projection

Initialization is very important for nonconvex programming. In this subsection, we discuss
how to give a suitable initializer for ALM-BF. In experiments, we find that ALM-BF is more
easily to get stuck at a bad saddle point than the alternating projection method. Intuitively

6



Short Title

Algorithm 2 Alternating Projection

Initialize X0, W0, τ , t.
for k = 0, 1, 2, · · · do

Xk+1 = ProjΘ
(
(VWkVT − I + τXk)/(1 + τ)

)
,

Wk+1 = ProjΩ
(
(VT (Xk+1 + I)V + τWk)/(1 + τ)

)
.

end for
Output Xk and Wk.

speaking, The alternating projection method projects all the elements of the Gram matrix
below a threshold at each iteration while ALM-BF only decreases the largest few ones.

Based on this intuition, we can initialize ALM-BF via a projection based procedure. We
formulate the problem as

min
X∈Θ,W∈Ω

‖X−VWVT + I‖2F , (8)

where Θ = {X ∈ Rn×n : Xi,i = 0,−t ≤ Xi,j ≤ t,∀i, j = 1, · · · , n}, Ω = {W ∈ Rr×r :
W = WT ,W � 0, rank(W) ≤ m} and t is an estimation of the mutual coherence. We
have no prior knowledge on t except 0 ≤ t ≤ 1. In the alternating projection method, it is
not easy to tune this parameter. However, in our method, we only use it as a initialization
and thus it can be set conservatively or progressively. We can use the Proximal Alternating
Minimization method (Bolte et al., 2014) to solve it, which consists of two steps at each
iteration:

Xk,t+1 = argmin
X∈Θ

1

2
‖X−VWkVT + I‖2F +

τ

2
‖X−Xk‖2F ,

Wk,t+1 = argmin
W∈Ω

1

2
‖W −VT (Xk+1 + I)V‖2F +

τ

2
‖W −Wk‖2F .

The difference between this projection procedure and the methods in (Elad, 2007; Tsiligianni
et al., 2014; Xu et al., 2010) is that we make use of matrix V, the singular vectors of Φ,
and thus avoid the least square step in (Elad, 2007; Tsiligianni et al., 2014; Xu et al., 2010).
This minor change ensures the convergence of this projection procedure. Applying the
convergence result in (Bolte et al., 2014) directly, we can have the following convergence
theorem. We describe the method in Algorithm 2.

Theorem 3 If {Xk} and {Wk} are bounded, 0 < τ < 1, then {Xk,Wk} generated by
Algorithm 2 converges to a critical point of problem (8).

3. Proximal Operation of ‖X‖∞,maxp
Until now, all steps in Algorithm 1 are computable except the update of X, which requires
to compute the proximal operation of ‖X‖∞,maxp , defined as (7). Theoretically, it cannot be
simply computed as the shrinkage of the largest p elements of each row of Y. For example,
let Y = [2, 1.1, 0.9], ρ = 1 and p = 2. Then the simple shrinkage leads to X = [1, 0.1, 0.9]
with the objective in (7) of 2.9. However, X = [1, 0.5, 0.5] leads to a lower objective of
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2.26. From now on, we focus on how to compute it efficiently. Let ‖X‖∗∞,maxp be the
Fenchel dual norm of ‖X‖∞,maxp . The following lemma reduces the proximal operation of
Prox 1

ρ
‖·‖∞,maxp (Y) to the projection operation of Proj‖·‖∗∞,maxp≤1(ρY).

Lemma 4 Let W∗ = Proj‖·‖∗∞,maxp≤1(ρY), then we have Prox 1
ρ
‖·‖∞,maxp (Y) = Y − W∗

ρ .

The following theorem gives an explicit expression of ‖X‖∗∞,maxp .

Theorem 5 Let ‖x‖∗maxp and ‖X‖∗∞,maxp be the Fenchel dual norm of ‖x‖maxp and ‖X‖∞,maxp,
respectively, then

‖x‖∗maxp = max

{
‖x‖∞,

1

p
‖x‖1

}
≡ ‖x‖

max
{
l∞,

1
p
l1
},

‖X‖∗∞,maxp =

n∑
i=1

‖Xi,:‖∗maxp ≡ ‖X‖1,max
{
l∞,

1
p
l1
}.

4. Projection onto the ‖x‖max{l∞, 1p l1} Ball

As will be shown in Section 5, the projection of Z onto the ‖X‖
1,max

{
l∞,

1
p
l1
} ball can be

solved by projecting each row of Z onto the ‖x‖
max

{
l∞,

1
p
l1
} ball. Thus in this section we

will give an efficient method to solve this subproblem. Formulate the problem as:

min
x

1

2
‖x− z‖2, s.t. ‖x‖

max
{
l∞,

1
p
l1
} ≤ t. (10)

For simplicity, we let z1 ≥ z2 ≥ · · · ≥ zn ≥ 0. Then the optimum solution must satisfy
x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. This assumption imposes no limitation but simplifies our analysis.
For the general case, we can recover the true solution by the sign and location of each
element of z. The problem can be reformulated as:

min
x

1

2

n∑
i=1

(xi − zi)
2, s.t. xi ≤ t,∀i,

1

p

n∑
i=1

xi ≤ t, xi ≥ 0,∀i.

The Lagrangian function is

L(x, α, θ, β) =
1

2

n∑
i=1

(xi − zi)
2 +

n∑
i=1

〈αi,xi − t〉+

〈
θ,

n∑
i=1

xi − pt

〉
−

n∑
i=1

〈βi,xi〉 .

By analyzing the KKT conditions, we have the following theorem to characterize the op-
timum solution. We use num(zi ≥ t) to count the number of the elements of z satisfying
zi ≥ t.

Theorem 6 Let {x, α, θ, β} be the KKT point, s = num(zi ≥ t), then we have

1. If ‖z‖∞ ≤ t and ‖z‖1 ≤ pt, then x = z.

2. If ‖z‖∞ > t and ‖z‖1 ≤ pt, then xj = t if zj > t; xj = zi if zj ≤ t.
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3. If ‖z‖∞ ≤ t and ‖z‖1 > pt, then xj = zj − θ if zj > θ; xj = 0 if zj ≤ θ. Moreover,∑
zj>θ

(zj − θ) = pt.

4. If ‖z‖∞ > t and ‖z‖1 > pt, then xj = t if zj − θ ≥ t; xj = zj − θ if 0 < zj − θ < t;
xj = 0 if zj ≤ θ. Specially,

(a) If zp − zp+1 ≥ t, then xj = t,∀j ∈ [1, p]; xj = 0, ∀j ∈ [p+ 1, n].

(b) If zp − zp+1 < t and st+
∑

zi<t
zi ≤ pt, then θ = 0.

(c) If zp − zp+1 < t and st+
∑

zi<t
zi > pt, then θ > 0 and moreover, num(zi − θ ≥

t)× t+
∑

0<zi−θ<t(zi − θ) = pt.

We can give an intuitive explanation of Theorem 6. If ‖z‖∞ ≤ t and ‖z‖1 ≤ pt, then
z is feasible and x = z. If ‖z‖∞ > t and ‖z‖1 ≤ pt, then we only need to project z onto
the l∞ ball, which is a truncation operation. If ‖z‖∞ ≤ t and ‖z‖1 > pt, then the problem
reduces to the projection onto the l1 ball, which is a shrinkage operation. If ‖z‖∞ > t and
‖z‖1 > pt, we should combine the truncation and shrinkage operation.

In cases 1, 2, 4.(a) and 4.(b), x can be computed directly. The remaining problem is to
find θ in cases 3 and 4.(c). In case 3, θ can be obtained by the method in (Duchi et al.,
2008). We leave the details in the supplementary material.

To find θ in case 4.(c), our strategy is to construct a continuous, piecewise linear and
decreasing function h(θ) = num(zi−θ ≥ t)× t+

∑
0<zi−θ<t(zi−θ) and find θ via h(θ) = pt.

The critical problem is to find the piecewise linear intervals and then express h(θ) explicitly
in each interval. Lemma 7 gives a dynamic procedure to sequentially find these intervals.
For some r and d, let r+ j = max{i : zi = zr+1} and d+ k = max{i : zi = zd+1}. Specially,
let k∗ = max{i : zi = z1}. This allows the repetition in z.

Lemma 7 Let zn+1 = 0 and z0 =∞. Define interval

S(r, d) = (max{zd+1, zr+1 − t},min{zd, zr − t}].

Move left from nonempty interval S(0, k∗) = (max{zk∗+1, z1 − t}, z1] and end when S(r, d)
reaches 0. For nonempty interval S(r, d),

1. If zd+1 < zr+1 − t < min{zd, zr − t}, then interval S(r + j, d) is on the left of S(r, d)
and S(r + j, d) is nonempty.

2. If zr+1 − t < zd+1 < min{zd, zr − t}, then interval S(r, d+ k) is on the left of S(r, d)
and S(r, d+ k) is nonempty.

3. If zr+1 − t = zd+1 < min{zd, zr − t}, then interval S(r + j, d + k) is on the left of
S(r, d) and S(r + j, d+ k) is nonempty.

The union of these disjoint intervals is [0, z1].

In Lemma 7, the main intuition of defining S(r, d) in such way is that if θ ∈ S(r, d), then
zi − θ ≥ t,∀i ∈ [1, r] and 0 ≤ zi − θ < t, ∀i ∈ [r + 1, d], which can be used to derive the
expression of h(θ) in the following Lemma.
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Algorithm 3 Projection onto the ‖x‖
max

{
∞, 1

p
l1≤t

} Ball

Input z and t.
Let z1 ≥ z2 · · · ≥ zn, zn+1 = 0 and s = num(zi ≥ t).
if ‖z‖∞ ≤ t and ‖z‖1 ≤ pt then

x = z.
else if ‖z‖∞ > t and ‖z‖1 ≤ pt then

xi = t for zi > t and xi = zi for zi ≤ t.
else if ‖z‖∞ ≤ t and ‖z‖1 > pt then

for d = 1, · · · , n do
if
∑d+1

i=1 zi − (d+ 1)zd+1 ≥ pt ≥
∑d

i=1 zi − dzd then

θ =
∑d
i=1 zi−pt
d , xi = zi − θ for i ∈ [1, d] and xi = 0 for i ∈ [d+ 1, n]. Terminate.

end if
end for

else if zp − zp+1 ≥ t then
xi = t for i ∈ [1, p]; xi = 0 for i ∈ [p+ 1, n].

else if st+
∑

zi<t
zi ≤ pt then

xi = t for zi ≥ t and xi = zi, for zi < t.
else

for each interval S(r, d) constructed in Lemma 7 do
Let a = max{zd+1, zr+1 − t}, b = min{zd, zr − t}.
if rt+

∑d
i=r+1 zi − (d− r)b ≤ pt ≤ rt+

∑d
i=r+1 zi − (d− r)a then

θ =
∑d
i=r+1 zi+(r−p)t

d−r , xi = t for i ∈ [1, r], xi = zi − θ for i ∈ [r + 1, d] and xi = 0
for i ∈ [d+ 1, n]. Terminate.

end if
end for

end if

Lemma 8 In case 4.(c), let h(θ) = num(zi − θ ≥ t) × t +
∑

0<zi−θ<t(zi − θ). Consider
S(r, d) constructed in Lemma 7, then

h(θ) = rt+

d∑
i=r+1

zi − (d− r)θ, θ ∈ S(r, d).

h(θ) with θ ∈ [0, z1] is continuous, piecewise linear, non-increasing and there is a unique
solution for h(θ) = pt.

We describe the projection method in Algorithm 3. The complexity of Algorithm 3 is
O(nlogn): first sort z with O(nlogn) complexity, then go through the disjoint intervals (if
needed) and obtain each xi with O(n) complexity, where n is the length of z.
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5. Projection onto the ‖X‖1,max{l∞, 1p l1} Ball

In this section, we consider the projection of Z onto the ‖X‖
1,max

{
l∞,

1
p
l1
} ball. Formulate

the problem as:

min
X

1

2
‖Z−X‖2F , s.t. ‖X‖

1,max
{
l∞,

1
p
l1
} ≤ T.

Let Zi,1 ≥ Zi,2 ≥ · · · ≥ Zi,n ≥ 0,∀i, then the optimum solution must satisfy Xi,1 ≥ Xi,2 ≥
· · · ≥ Xi,n ≥ 0,∀i. If ‖Z‖

1,max
{
∞, 1

p
l1
} ≤ T , then Z is the optimum solution. Otherwise, the

optimum solution must be on the boundary of the constraint. So we can reformulate the
problem as

min
X,g

1

2

∑
i,j

(Zi,j−Xi,j)
2, s.t. Xi,j≤gi,Xi,j≥0, ∀i, j. 1

p

n∑
j=1

Xi,j≤gi, ∀i.
n∑
i=1

gi=T. (11)

The Lagrangian function is:

L(X,g,α,θ,β,λ)=
1

2

∑
i,j

(Zi,j−Xi,j)
2+
∑
i,j

〈αi,j ,Xi,j−gi〉+
n∑
i=1

〈
θi,

n∑
j=1

Xi,j−pgi

〉
+

〈
λ,

n∑
i=1

gi−T

〉
−
∑
i,j

〈βi,j ,Xi,j〉 .

Quattoni et al. (2009) considered the problem of projecting Z onto the l1,∞ ball by trans-
forming it to projecting each row of Z onto the l∞ ball. We borrow their idea and project
each row of Z onto the ‖x‖

max
{
l∞,

1
p
l1
} ball. Thus we should first find each gi in problem

(11), which plays the role of t in problem (10). By analyzing the KKT conditions, we can
have the following Lemma, which gives us a direction to find gi.

Lemma 9 At the optimum solution, either (1) gi > 0 and
∑p

j=1(Zi,j −Xi,j) = λ; or (2)
gi = 0 and

∑p
j=1 Zi,j ≤ λ.

From Lemma 9 we know that for the rows of Z whose sum of the largest p elements
is less than λ, the projection is 0. Otherwise, we should use

∑p
j=1(Zi,j − Xi,j) = λ and∑n

i=1 gi = T to compute gi. Then use gi to compute the projection of Zi,:. As will be
proved in our supplementary material, function gi(gi) =

∑p
j=1(Zi,j −Xi,j) is continuous,

piecewise linear and strictly decreasing, where Xi,: = Proj‖·‖
max{∞, 1p l1}≤gi(Zi,:) only de-

pends on gi. Let g−1
i (λ) with λ ∈ [0,

∑p
j=1 Zi,j ] be the inverse function of gi(gi) and we can

have g−1
i (
∑p

j=1 Zi,j) = 0. Define

G−1
i (λ) =

{
0, λ ≥

∑p
j=1 Zi,j ,

g−1
i (λ), λ <

∑p
j=1 Zi,j ,

and G−1(λ) =

n∑
i=1

G−1
i (λ), λ ∈

0,max
i

p∑
j=1

Zi,j

 .
Then G−1(λ) is also continuous, piecewise linear and strictly decreasing. Moreover, we can

have G−1(λ) ∈
[
0, ‖Z‖

1,max
{
∞, 1

p
l1
}]. So there is a unique solution λ∗ for G−1(λ) = T .

11



Algorithm 4 Projection onto the ‖X‖
1,max

{
∞, 1

p
l1
} Ball

Input Z, T , p.
Get the piecewise linear intervals of G−1(λ): [λ1, λ2], [λ2, λ3], · · · , [λq−1, λq] with λ1 <
· · · < λq.
if ‖Z‖

1,max
{
∞, 1

p
l1
} ≤ T then

X = Z.
else
l = 1, r = q.
while 1 do

if r − l = 1 then
find λ∗ ∈ [λl, λr] such that G−1(λ∗) = T and let g∗i = G−1

i (λ∗),∀i ∈ [1, n]. Break.
end if
v = [(l + r)/2].
if G−1(λv) = T then

g∗i = G−1
i (λv), ∀i ∈ [1, n]. Break.

else if G−1(λv) > T then
l = v.

else
r = v.

end if
end while

end if
Xi = Proj‖·‖

max{∞, 1p l1}≤g∗i
(Zi),∀i ∈ [1, n].

We can find it efficiently by bisearch. Let g∗i = G−1
i (λ∗), then we can get X by Xi,: =

Proj‖·‖
max{∞, 1p l1}≤g∗i

(Zi,:).

We describe the method in Algorithm 4 with O(n2logn) complexity: getting the intervals
of G−1(λ), finding λ∗ and projecting the rows of Z all have a complexity of O(n2logn),
where n × n is the size of Z. We leave some computational details of Algorithm 4 in our
supplementary material.

6. Numerical Experiments

In this section, we verify the convergence of our methods in Section 6.1 and test the per-
formance for the construction of incoherent dictionaries in Section 6.2.

6.1. Convergence

We first verify the convergence of the proposed methods: the Augmented Lagrangian Mul-
tiplier method with direct Babel Function minimization (ALM-BF) and the Alternating
Projection method (APM, Algorithm 2). We take Φ to be a d×n random Gaussian matrix
and test on three settings with varying sizes of Φ: (1) d = 400, n = 500; (2) d = 800,
n = 1000; (3) d = 1200, n = 1500. We fix m = 50 and p = 20 in model (7). Thus the
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redundancy of the effective dictionary D, n/m, varies on the three settings. In ALM-BF
we set γ = 1.2, $ = 0.9, Λ = 10−20, Λ = 1020 and τ = 10−5. We run the inner loop of
ALM-BF for 10 iterations and 100 iterations respectively and note the method as ALM-

BF-5 and ALM-BF-100. We set the threshold t as the Welch bound
√

n−m
m(n−1) in Algorithm

2. Figure 1 plot the curves of the mutual coherence max1≤i,j≤n
|〈di,dj〉|
‖di‖2‖dj‖2 , Babel function

maxΛ,|Λ|=p maxj /∈Λ

∑
i∈Λ

|〈di,dj〉|
‖di‖2‖dj‖2 , constraint violations ‖X−Y‖2F and ‖Y−VWVT+I‖2F

vs. iteration respectively for ALM-BF-10, ALM-BF-100 and APM. We run Algorithm 2
for 50 (100; 200) iterations as the initialization procedure for ALM-BF on the setting of
d = 400, n = 500 (d = 800, n = 1000; d = 1200, n = 1500). We can see that both ALM-BF
and APM converge well. Since ALM-BF minimizes the Babel function directly while APM
only uses an approximated threshold, ALM-BF produces a solution with much lower mutual
coherence and Babel function. ALM-BF-5 performs a little worse than ALM-BF-100. In
applications with large size matrix D, too many inner iterations are not affordable and we
can still obtain a good solution with only a few inner iterations. We should mention that
the initialization is critical for ALM-BF. Otherwise, it may get stuck at a bad saddle point
or local minimum, especially when d and n are large.

6.2. Comparison on the Babel function and mutual coherence

In this section, we test the performance of ALM-BF for the construction of incoherent
dictionaries. We take Φ ∈ Rd×n to be a random Gaussian matrix and construct incoher-
ent D ∈ Rm×n satisfying DT ∈ Span(ΦT ). We compare ALM-BF with the Alternating
Projection Method (APM, Algorithm 1 in the supplementary material. We propose it for
the initialization), the method of Elad’s (Elad, 2007), Duarte’s (Duarte-Carvajalino and
Sapiro, 2009), Xu’s (Xu et al., 2010), Tsiligianni’s (Tsiligianni et al., 2014), Lin’s (Lin
et al., 2018) and random dictionary. We also compare ALM-BF with its specialization of
ALM-MC (ALM with direct Mutual Coherence minimization) by setting p = 1 in model
(5). We do not compare with the method in (Rusu, 2013) since they do not consider the
constraint DT ∈ Span(ΦT ). We also do not compare with the learning based methods,
such as the projection and rotation method (Barchiesi and Plumbley, 2013) and K-SVD
(Aharon et al., 2006). However, our method can be easily extended to learn a incoherent
dictionary based on the data by using the mutual coherence or Babel function as a regu-
larization (Bao et al., 2016). In fact, the projection step in (Barchiesi and Plumbley, 2013)
used the alternating projection method (Tropp et al., 2005) and the regularizer in (Bao
et al., 2016) is the square loss, which is similar to (Duarte-Carvajalino and Sapiro, 2009).
In Algorithm 1 we set γ = 1.2, $ = 0.9, ρ0 = 0.01, τ = 10−5, Λ = 10−20 and Λ = 1020. We
set the parameters of the compared methods following the corresponding literatures. We
test on d = 400, n = 500, d = 800, n = 1000 and d = 1200, n = 1500 with fixed p = 20.
We take the outer and inner iteration number as 50 and 10 for ALM-BF and ALM-MC
with additional 50 (100,200) iterations of Algorithm 2 for the initialization procedure on
d = 400, n = 500 (d = 800, n = 1000, d = 1200, n = 1500). We run all the other methods
for 550 (600,700) iterations for a fair comparison. The complexity in each iteration is O(n3)
for all the compared methods: In ALM-BF, ALM-MC and Lin’s method, the projection
onto the {X : ‖X‖

1,max
{
∞, 1

p
l1
} ≤ 1} ball or l1 ball needs O(n2logn) complexity and the
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Figure 1: The mutual coherence and Babel function of ADM-BF and APM. The constraint
violations of ADM-BF. Top: d = 400, n = 500. Middle: d = 800, n = 1000.
Bottom: d = 1200, n = 1500
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Figure 2: Compare ALM-BF, ALM-MC and APM with the method of Elad’s, Xu’s, Tlisi-
gianni’s, Duarte’s, Lin’s and random matrix.
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matrix multiplications need O(n3) complexity. In the method of Elad’s, Xu’s, Tsiligianni’s
and Duarte’s, eigenvalue decomposition and several matrix multiplications are needed.

Figure 2 shows the averaged Babel function and mutual coherence of D as a function
of measurement m over 10 runnings. We can see that APM performs superior to the other
alternating projection methods since it avoids the least square step. ALM-BF and ALM-
MC obtains the lowest Babel function and mutual coherence due to their property of direct
minimization. ALM-BF and ALM-MC performs similar on the characterization of mutual
coherence, but ALM-BF produces smaller Babel function than ALM-MC. This verifies that
minimizing the Babel function can reduce not only the top coherence but also the total
coherence.
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